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Abstract—The technique of k-anonymization has been proposed 

to obfuscate private data through associating it with at least k 
identities. This paper investigates the basic tabular structures that 
underline the notion of k-anonymization using cell suppression. 
These structures are studied under idealized conditions to identify the 
essential features of the k-anonymization notion. We optimize data k-
anonymization through requiring a minimum number of anonymized 
values that are balanced over all columns and rows. We study the 
relationship between the sizes of the anonymized tables, the value k, 
and the number of attributes. This study has a theoretical value 
through contributing to develop a mathematical foundation of the k-
anonymization concept. Its practical significance is still to be 
investigated. 
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I. INTRODUCTION 

O protect individual privacy, personal identifying 
information must be appropriately processed before 

releasing data. Personal identifying information is private 
information that links a record to an identified person. It is 
commonly known, that de-identifying the data does not 
provide a satisfactory mechanism to guarantee the anonymity 
of the released private information [14] [8]. De-identifying 
data refers to stripping it of personal identifying information.  

In general, many privacy-protecting methods can be utilized 
in this context including randomization, cryptography, and 
anonymity.  Information anonymity can be classified into two 
categories: private information anonymity and non-private 
information anonymity [1]. We are concerned here with 
private information anonymity; that is, the anonymity of 
information that refers to an identifiable individual (person).  

The k-anonymization method involves restricting the 
release of information in a relational table to ensure data 
privacy while preserving the integrity of the released data. The 
problem is how to disclose personal identifying data, while 
preventing identity disclosure [1]. The notion of identity 
disclosure originated in the area of statistical databases [5].  

The columns of a relational table can be categorized into 
three types: columns that explicitly identify individuals, 
columns containing potentially identifying information that 
could be linked with other data sets to re-identify (quasi-
identifying columns) and columns containing no identifying 
information [13]. Quasi-identifying columns are these 
attributes that in combination can be used to identify an 
individual. In the k-anonymization technique quasi-identifying 
columns are transformed through such techniques as 
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generalization and suppression in such a way that every record 
is indistinguishable from at least k-1 other records. 

Generalization is an aggregation of information that is 
performed through making the data less precise utilizing a 
taxonomy tree for categorical data or discretization of 
continuous, numerical values. It involves changing specific 
values into less specific but semantically consistent values 
(e.g., “birth date” can be generalized to “birth year”). 
Suppression is an anonymization method where information is 
deleted. Our concern here is the type of suppression that 
results in deleting cell values of tables, in contrast to deleting 
rows or columns. This type of suppression “consists of 
omitting (or replacing by an asterisk) the necessary cells to 
guarantee that an external attacker cannot deduce the sensitive 
information.” [6]. 

II. RELATED WORKS 
There are several k-anonymization algorithms proposed in 

the literature [3] [12] [10] [5]. Here we review a non-
exhaustive sample of works in this area.  The Hundpool and 
Willenborg algorithm [11] applies generalization and 
suppression to all 2 and 3-value combinations of attribute 
values. The datafly approach [15] generates frequency lists 
and iteratively generalizes those combinations with fewer than 
k occurrences. Samarati [9] proposed an algorithm to identify 
all “k-minimal” generalizations, among which reside the 
optimal k-anonymizations according to certain preference 
criteria. The Bayardo and Agrawal algorithm [4] starts with a 
fully generalized data and systematically specializes the 
dataset into one that is minimally anonymous.  

It is known that an optimal anonymization is NP-hard [7]. 
We note that the notion optimality through a “minimality” of 
changes (generalization or suppression is not applied more 
than is necessary), is a very well known concept in the k-
anonymization field. In [11], Samarati introduced an 
algorithm for finding a single minimal k-anonymous full-
domain generalization. Bayardo and Agrawal [5] describe an 
optimal anonymization, as one which minimizes changes in 
the input data according to a given cost metric. Generally, the 
generalization methods work iteratively on the taxonomical 
hierarchy per attribute in order to achieve minimal 
generalization up through the hierarchy.  

 

III. THE PROBLEM AND OUR CONTRIBUTION 

Most of the different proposed cost metrics for the 
algorithms in the previous section aim at minimizing the 
amount of information loss resulting from the generalization 
and suppression operations. We will concentrate in this paper  

Sabah S. Al-Fedaghi 

Balanced k-Anonymization  

T 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1833

 

 

on the cell suppression method. Usually, information loss is 
defined in terms of the number of suppressed cells. A 
desirable property in k-anonymization is to suppress the 
minimum set of cells in order to assure adequate 
confidentiality. Our contribution in this paper is to extend the 
optimality criteria by balancing the suppression evenly among 
the columns and rows of the table. To illustrate this concept, 
consider the 2-anonymization of Table I with tuples t1-t18. 
Tables II and Table III show two possible solutions. Since the 
cost is usually calculated in terms of the number of asterisks 
[3], therefore,  
 

TABLE I 
ORIGINAL TABLE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
                             TABLE II                                                      TABLE III 
               UNBALANCED TABLE                           BALANCED TABLE 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
both solutions of tables 2 and 3 have equal costs. We claim 
that, the more distributed the suppressed cells in the table, the 
less there is a loss of information. In the 2-anonymization of 

Table 2 most information about ‘States’ is lost; whereas the 
loss of information is distributed by equal “amount” in Table 
3. In this paper, we study some characteristics of balanced k-
anonymized tables of the type shown in table 3. In the k-
anonymization literature, the extreme cases of 
balanced/unbalanced tables 2 and 3 rarely appear. Usually, the 
given examples are in-between structures. Nevertheless, there 
is no explicit mentioning of the notion of balanced 
suppression.  

The ‘balancing of suppression’ criteria can also be applied 
for the rows (tuples). Consider the 2-anonymization of table 4. 
Tables V and Table VI show two possible 2-anonymization 
solutions.  

 
TABLE IV 

ORIGINAL TABLE 
 
 
 
 
 

 
          TABLE V                                                      TABLE VI 

                    UNBALANCED TABLE                         BALANCED TABLE 
 

 
 
 
 

 
Both solutions have equal costs in terms of the number of 
suppressed cells. However, the loss of information is not 
evenly distributed among tuples in table 5, whereas, in table 6 
two cells are suppressed in each tuple. We claim that the more 
distributed the suppressed cells among rows, the less there is a 
loss of information. Admittedly, the benefit of distributing *’s 
among tuples is not as obvious as the benefit of distributing 
*’s among attributes. We can claim that the tuples represent 
individuals, hence, balancing the distribution of *’s among 
these individuals put an upper bound on the loss of 
information of an individual in the anonymized table. In the 
unbalanced table 5, we lose 75% of the information of 
individuals t3 and t4, assuming equal “information values” of 
all cells. In the balanced table 4, there is only a 50% maximum 
loss of information of any individual. We can construct more 
elaborate examples in which the difference in information loss 
is substantially larger.  

This paper brig forth this issue of optimality of k-
anonymization. We study some characteristics of fully 
balanced tables where the number of *’s is equal over 
columns and rows. We analyze three variables: k (of k-
anonymization), m (the number of attributes), and the number 
of tuples. For given k and m, there may not exist such a 
balanced k-anonymized table.  

A1 A2 A3 State 
0 0 0 * 
0 0 0 * 
0 0 1 * 
0 0 1 * 
0 1 0 * 
0 1 0 * 
0 1 1 * 
0 1 1 * 
1 0 0 * 
1 0 0 * 
1 0 1 * 
1 0 1 * 
1 1 0 * 
1 1 0 * 
1 1 1 * 
1 1 1 * 
1 1 1 MI 
1 1 1 MI 

A1 A2 A3 State 
0 0 0 * 
0 0 0 * 
• 0 1 NY 
0 • 1 IL 
0 1 0 • 
0 1 0 • 
* 1 1 TX 
0 • 1 IL 
1 * 0 AZ 
1 0 * OK 
• 0 1 NY 
1 0 * OK 
1 * 0 AZ 
1 1 • NJ 
* 1 1 TX 
1 1 • NJ 
1 1 1 MI 
1 1 1 MI 

 A1 A2 A3 State 

t1 0 0 0 FL 

t2 0 0 0 CA 

t3 0 0 1 NY 

t4 0 0 1 IL 

t5 0 1 0 FL 

t6 0 1 0 CA 

t7 0 1 1 TX 

t8 0 1 1 IL 

t9 1 0 0 AZ 

t10 1 0 0 OK 

t11 1 0 1 NY 

t12 1 0 1 OK 

t13 1 1 0 AZ 

t14 1 1 0 NJ 

t15 1 1 1 TX 

t16 1 1 1 NJ 

t17 1 1 1 MI 

t18 1 1 1 MI 

 A1 A2 A3 State 

t1 1 2 3 TX 

t2 1 2 3 AZ 

t3 8 9 3 TX 

t4 1 2 7 TX 

A1 A2 A3 State 
1 2 3 * 
1 2 3 * 
* * * TX 
* * * TX 

A1 A2 A3 State 
* * 3 TX 
1 2 * * 
* * 3 TX 
1 2 * * 
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IV. BALANCED STRUCTURES 
Without loss of generality, we assume that there are no 

other attributes except the attributes A = (A1, ... , Am) that are 
utilized in the process of anonymizing a table. This is typically 
assumed in most works on k-anunymization. Also, we modify 
the definition of k-anonymization by assuming that all tuples 
are distinct. If there are tuples over A that have identical 
values, then this is clearly an ‘easier’ case to anonymize in 
order to achieve k indistinguishable tuples. Also, without loss 
of generality, we assume that there is no subset of the 
attributes A that identify tuples uniquely. Otherwise, this 
subset can be taken as the set of attributes used in our k-
anonymization.  
Definition: The table B(A1,…,Am) with a set of attributes , 
A= (A1, ... , Am) and n distinct tuples,  is said to satisfy the 
balanced k-anonymity property if and only if we minimize the 
number of suppressed cells, such that: 
(a) For each tuple t, there are k − 1 other tuples that are 
indistinguishable from t. 
(b) All columns have an equal number of suppressed cells. 
(c) All rows have an equal number of suppressed cells. 

Thus, we extend the optimality criteria by spreading the 
suppression evenly among the columns and rows of the table.  
Example 1: The following table taken from [3] is a column-
balanced table.  
 

TABLE VII 
A COLUMN-BALANCED TABLE 

Age Race  Gende
r 

Zip Code 

* Whit
e 

* * 

* Whit
e 

* * 

27 * Female 92010 
27 * Female 92010 

  
This type of table has the advantages of distributing the 
amount of loss of information evenly among attributes. 
However, the *’s are not distributed evenly among tuples. Of 
course, in actual situations we may not always be able to 
achieve such structures. Nevertheless, studying the balanced 
tables is a necessary step in understanding different types of k-
anonymized tables. 

We will refer to a balanced k-anonymized table B with m 
attributed as B(k, m).  
Theorem: Let B(k, m) be a balanced k-anonymized table, 
then:  
                                      n = i*k*m  
where i is a positive integer, n is the number of tuples, and m 
is the number of attributes.  
Proof: Each round of cell suppression in the anonymization 
process makes k*m tuples indistinguishable from each other. 
That is, each suppression step takes k tuples and suppresses 
one value from the same attribute in these tuples. Since there 

is an equal number of asterisks in each column, we need k*m 
tuples to accomplish this distribution.  

Eliminating the redundant rows of the balanced k-
anonymized table creates what we call, the balanced structure, 
BKA-structure.  
Example 2: Assume binary domains. For B(2, 2), the largest n  
such that 2m  ≥ i*k*m is 8 tuples where k = 2, m = 2, and i = 
2. A sample table and its balanced 2-anonymized table are 
shown in table 8 and 9. The corresponding BKA-structure has 
i* k rows as shown in table 10.  
  
             TABLE VIII                                      TABLE IX                          TABLE X 
   UNBALANCED TABLE          BALANCED TABLE     BKA-STRUCTURE 

 
 

 
 
 
 
 
 
 
 
 
 
No possible B(2, 2) is feasible with more than eight tuples; 

i.e., n > i*k*m, where i (the number of rounds of suppression) 
is 2. Notice that each row in the balanced table 9 represents 
two tuples in the original table 8. The process of 2-
anonymization includes two rounds of suppression: 
(1) For attribute Gender: suppressing tuples t1 and t2; and for 
HIV/AIDS: suppressing tuples t3 and t4. Thus, this round 
takes four tuples. 
(2) For attribute Gender: suppressing t5 and t6; and for 
HIV/AIDS: suppressing t7 and t8. Thus, this round takes four 
tuples. 
To illustrate this fact, we insert two different symbols, * and  
•, for suppression as shown in the corresponding BKA-
structure table 10.  

From the basic BKA-structure, table 10, of B(2,2) we may 
construct many tables - not necessarily with binary domains. 
For example, the basic BKA-structure of B(2,2) in which 
values are left blank, may correspond to the structure and  the 
table shown in tables 11 and 12.  

                                                                      TABLE XII 
                                                                       BALANCED TABLE 

                               TABLE XI 
                      BKA-STRUCTURE 

 
 
 
 
 
 

 
 
 
 
 

*  
 *

•  
 • 

* 1950 

California * 

• 1960 

Florida • 

State Year 
Texas 1950 

Illinois 1950 
California 1990 
California 2000 
Wisconsin 1960 
New York 1960 
Florida 1980 
Florida 1970 

 Gender HIV/AIDS 

t1 Male Negative 

t2 Female Negative 
t3 Male Negative 
t4 Male Positive 
t5 Male Positive 
t6 Female Positive 
t7 Female Negative 
t8 Female Positive 

Gender HIV/AIDS 

* Negative 

* Negative 
Male * 
Male * 

• Positive 

• Positive 
Female • 
Female • 
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Example 3: For the table B(2, 3), the largest n  such that 2m  ≥ 
i*k*m is 6 tuples. Notice that there may exist several versions 
of B(2, 3) for the same domain.  
Example 4: Assume binary domains. For the table B(3, 3), the 
largest n  such that 2m  ≥ i*k*m is 9 tuples. It is not possible to 
produce a table of this type. The number of possible (distinct) 
rows is 23 = 8, which is less than 9. This example raises the 
possibility of constructing near-balanced k-anonymized tables. 
Example 5: Assume binary domains. For the table B(4, 4), the 
largest n  such that 2m  ≥ i*k*m is 16 tuples.  
It can be proven that a balanced table for B(4, 4) does not 
exist, however, space does not allow for such an elaborate 
proof. 
Example 6: Consider table 13 with ternary domains and three 
attributes. We print the table in the horizontal position to save 
space. Thus, the first tuple is (0, 0, 0), the second tuple is (0, 
0, 1), the third tuple is (0, 0, 2), etc. In B(2, 3) shown as table 
14, we have 3m  ≥ i*k*m or 24  tuples, since i = 4 is the 
greatest constant that satisfies the constraint. The balanced 
table in this case can take four rounds of suppression 
represented in table 14 by the symbols *, •, ♣, and ♥.  

V. CONCLUSION 
The balanced k-anonymization structure is an interesting 

mathematical structure, which may correspond to many tables 
that can be k-anonymized in a balanced fashion. In our 
treatment of the subject, we have concentrated on the 
characteristics of such tables. Further work would develop 
algorithms to produce these structures for given values of k, 
m, and domains with different cardinalities. 

How these structures can be related to a given relational 
table?  In practice, achieving balanced tables is not practical 
because they are very rare. However, it is plausible to focus 
on building maximally balanced anonymized tables. 
Therefore, possible research work includes two directions: 
1- Incorporating the concept of balanced anonymized tables in 
known anonymization algorithms.  
2- Developing a method that maps a given table to its closest 
BKA-structure.  This approach may be feasible for small 
tables.  
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t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 
0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 1 1 1 2 
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 1 2 0 1 2 0 

0 0 0 0 0 0 0 • * * • 1 1 1 1 1 ♣ ♥ ♣ ♥ 2 2 2 2 
0 0 * * 1 1 • 2 2 0 0 • 1 1 ♣ ♣ 2 2 0 0 ♥ 1 1 ♥ 
* * 2 0 • • 0 1 2 0 1 2 ♣ ♣ 2 0 1 2 1 2 0 ♥ ♥ 0 

   TABLE XIII 
A TABLE WITH TERNARY DOMAINS

TABLE XIV 
B(2, 3)


