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 
Abstract—NASA, ESA, and NSSC space agencies have plans to 

put planetary rovers on Mars in 2020. For these future planetary 
rovers to succeed, they will heavily depend on sensors to detect 
obstacles. This will also become of vital importance in the future, if 
rovers become less dependent on commands received from earth-
based control and more dependent on self-configuration and self-
decision making. These planetary rovers will face harsh 
environments and the possibility of hardware failure is high, as seen 
in missions from the past. In this paper, we focus on using 
Autonomic principles where self-healing, self-optimization, and self-
adaption are explored using the MAPE-K model and expanding this 
model to encapsulate the attributes such as Awareness, Analysis, and 
Adjustment (AAA-3). In the experimentation, a Pioneer P3-DX 
research robot is used to simulate a planetary rover. The sonar 
sensors on the P3-DX robot are used to simulate the sensors on a 
planetary rover (even though in reality, sonar sensors cannot operate 
in a vacuum). Experiments using the P3-DX robot focus on how our 
software system can be adapted with the loss of sonar sensor 
functionality. The autonomic manager system is responsible for the 
decision making on how to make use of remaining ‘enabled’ sonars 
sensors to compensate for those sonar sensors that are ‘disabled’. The 
key to this research is that the robot can still detect objects even with 
reduced sonar sensor capability.  

   
Keywords—Autonomic, self-adaption, self-healing, self-

optimization. 

I. INTRODUCTION 

OR a mobile robot to be able to navigate within its 
surrounding terrain, its sensors have to be at optimal 

performance. Sensors send information, in the form of 
electronic signals back to the robot controller. This information 
is then processed and therefore allows the robot to make a 
decision on its next command action. Sonar sensors can be 
used to allow a mobile robot to detect objects within its path. 
Sonar sensors usually are situated on the front and rear of the 
robot. The sonar sensors are typically arranged in an ‘array’ 
configuration, were each sensor is angled separately so that the 
sensors can cover a 180° range in front of the robot. While the 
mobile robot is moving, one or more of the sonar sensors can 
locate an object that may be on the robots path. However, what 
if there was a hardware issue with some of the sonar sensors? 
The ability to detect objects would be greatly reduced.  

Planetary rovers use both cameras and sensors to navigate 
the terrain of a moon or a planet. Sensor failure would mean a 
severe impact on mission objectives. Experimental planetary 
rovers such as the SR2 [1], use range finders to help them 
detect objects. Even before the autonomic concept [2], 
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researchers have been looking at fault tolerance as a biological 
unit, where fault detection was handled with adaptive sensor 
analysis [3]. Further has also shown that by comparing the 
known state and actual sensor feedback of a collection of 
sensor nodes, could lead to the detection of single sensor drop-
outs. If sensor failure is identified, then compensation could be 
possible by using known values instead of the measured ones 
[4]. 

The autonomic ‘self-adaptive’ approach implies that even 
with reduced sensor functionality, it is possible to carry on with 
mission objectives, by making use of what sensor functionality 
is still available. Autonomic ‘self-awareness can also be 
employed to detect early signs of degradation in sensors. Using 
knowledge gathered from previous missions, regular health 
checks can detect if a particular sensor module is not 
performing at an expected level. Autonomic self-adaptive 
principle reacts to an unforeseen situation, like damaged caused 
to sensors. The autonomic self-awareness can initiate a change 
in the mission strategy, if the predicted failure could jeopardize 
mission objectives. 

II. PREVIOUS WORK 

Previous work [5] detailed how a damaged wheel on a 
mobile robot caused the robot to veer off to the left (or right), 
depending on what wheel was had faulted. Policies were 
initiated within the autonomic management system to 
compensate for the wheel alignment problem. The mobile robot 
was able to self-adapt even with the wheel fault and therefore 
continuing to function. For this paper, we want to explore how 
a mobile robot can detect objects after it has suffered failure to 
some of its sonar sensors. Using autonomic principles, we want 
to investigate how self-analyzing can detect faults within the 
sonar sensor array and then employ self-configuration and self-
adjustment protocols to compensate for the limitation in sensor 
detection.  

III. RELATED WORK 

In our research, the detection of sonar sensor faults forms 
part of our experimentation into self-diagnosis. Sensors faults 
do not always show themselves as simply being non-
functioning or disabled. The intermittent fault or under-
performance fault are the most difficult to detect [13]. In this 
research, the authors use Evidence, Fault, and Value nodes to 
recognize hardware faults by observing the change of the 
sensor data over time. They described small deviation and big 
deviation to evaluate the extent of the sensor error. In our 
approach, we use tolerance ranges to decide if a sensor is 
performing correctly.  
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Detection of abnormal behavior in sensors can also be 
achieved by comparing sensor data with neighboring sensor 
data [14]. In this research, the authors take input readings of the 
sensors and subject them to a correlation test that determines 
which sensors are correlated to each other. In our research, the 
data from suspected sonar sensors are checked by using 
adjacent sonar sensors; if the results between the sonar sensors 
do no match, then we can declare the suspected sensor as being 
faulty.  

There have been several activities in the US regarding the 
research in loss of sensor function. For example, in [12], the 
authors use Organizational-based Multi-agent System model 
(OMAS), to describe sonar sensor capability loss in robots. If a 
sensor losses functionality, then another sensor is substituted, 
that can carry out at least some or all of its predecessor 
capability. Organizational rules are applied to decide which 
agent roles of one sensor can be applied to another sensor.  

The Related Work contributions all involve detection of 
sensor failure from a fault tolerance and diagnosis approach. 
Our research centers on detection, analysis, and adjustment of 
sensor faults using autonomic principles; by employing 
specialized algorithms, we can adapt the affected hardware 
systems to continue to function even when functionality has 
been greatly reduced. 

IV. AUTONOMIC MODEL 

In 2001, IBM made a commitment to the conceptual ideas of 
autonomic computing. The main goal was to create systems 
that could self-manage and take appropriate action when facing 
system failure [19].  

Self-diagnosis is not only concerned with the discovery of 
potential fault but also the severity and consequences relating 
to the fault [15]. Self-configuring has the ability for a system to 
automatically adjust itself when faced with changing 
conditions. Self-healing is concerned with recovery and 
repairing itself when dealing with unexpected faults. Self-
optimizing has the knowledge of tolerance and performance 
values. It can then use known policies to maintain optimal 
performance and employ new policies to improve performance. 
Self-protecting is part of the autonomic system that can detect 
and mitigate possible threats. It can also establish what could 
potentially be a threat and use known policies to handle this 
threat [5].  

The autonomic computing system requires sensor channels 
to sense possible changes within the internal and external 
environment; it will also require motor channels to react to 
those changes [16]. Including autonomic principles in the 
software design of a robotic architecture, could extent the robot 
operating time in the field. The main challenge in designing an 
autonomic system is that all possible fault scenarios cannot be 
anticipated; rather design a system that can detect and resolve 
problems at run-time [17].  

The MAPE-K (Monitor-Analyze-Plan-Execute over a 
knowledge base), feedback loop model is the standard model to 
describe autonomic and self-adaptive systems [2]. The 
Knowledge component collects and maintains data from 
managed system and retains policies which can be shared with 

the MAPE components (Fig. 1). The Monitor (M) takes in data 
in from sensors and stores the data in Knowledge (K). The 
Analyze (A) performs analysis to establish if adaptive 
measures are required. If adaption is required, then the 
information is passed onto Plan (P) to trigger a policy 
algorithm that will compensate for the fault condition. The 
Execute (E) will deliver the policy commands via the effectors 
[18]. 

 

 

Fig. 1 MAPE-K feedback loop 
 
The components found in the MAPE-K feedback loop can 

be adapted to form the architecture of the Autonomic Sonar 
Manager (Fig. 2).  

 

 

Fig. 2 Sonar Manager Architecture (AAA-3) 
 

The Sonar Manager Architecture comprises of three layers; 
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the Awareness Layer, Analysis Layer, and Adjustment Layer 
(AAA-3). The AAA-3 layers are based on the MAPE-K 
components from Fig. 1. The AAA-3 Layer configuration is 
used to map our sonar sensor manager architecture, rather than 
using the traditional MAPE configuration. However, there is 
over-lapping between the MAPE and AAA-3, regarding 
components such as Analyze and Execute (Fig. 2). The Main 
Task loop controls the normal robot operations. The ‘health 
check’ loop runs at periodic intervals, to determine the health 
of the sonar sensors. 

A. Awareness Layer 

The Awareness Layer can only perform a limited amount of 
processing. The main function of the Awareness Layer is to 
decide if there is a failure within the sonar sensors. If failure is 
detected, then the information is passed to the Analysis Layer 
for processing. The Awareness Layer can detect if there are 
unusual readings between adjacent sonar sensors; the 
Awareness Layer will then record those sonar sensors under 
suspicion and pass this information to the Analysis Layer. 

B. Analysis Layer 

The Analysis Layer uses data received from the Awareness 
Layer to establish the extent of the sonar sensor failure. This 
Layer will map out which sonar sensors have been disabled and 
pass this information to the Adjustment Layer. The Analysis 
Layer will also check those sonar sensors that have been 
marked as suspicious; it will use a checking algorithm to verify 
if a sonar sensor is performing within expected parameters. If a 
sonar sensor reports invalid data, then that sonar sensor is 
marked as being disabled.  

C. Adjustment Layer 

 

Fig. 3 Pioneer P3DX fitted with the Polaroid Sonar Array (front and 
rear) and a Bumper Array at the front 

 

 

Fig. 4 Polaroid Sonar Sensor Transducer is used for operations in air 
at ultrasonic frequencies 

 
The Adjustment Layer receives data from the Analysis 

Layer showing which sonar sensors are currently disabled. The 

Adjustment Layer will then decide which algorithm (from the 
policy library) is appropriate to handle the fault condition. 
When the algorithm has been executed, the instructions are 
passed from the Adjustment Layer to the Effectors.  

V. PIONEER P3DX ROBOT AND SONAR SENSORS 

The Pioneer P3DX is a research laboratory robot that has 
two independent drive systems for each wheel. The robot 
contains an on-board computer that can be uploaded with user 
defined programs such as a Microsoft Windows operating 
systems and .Net application. The P3DX is equipped with two 
sets of Polaroid sonar sensors arrays. The Polaroid sonar sensor 
array comprises of eight electrostatic transducers and a sonar 
ranging module (Figs. 3 and 4). The individual transducers are 
controlled by the ranging module. The ‘echo’ signals captured 
by the transducers, allow the ranging module to calculate 
ranges from 6” to 35ft [6].  

The Sonar sensor array is manufactured in such a way that 
each of the sonar transducers is set at different angles from the 
center of the robot (Fig. 5). This allows for maximum detection 
of the surrounding terrain and obstacles within the robots path. 
Each sonar sensor is allocated a number; 0-7 for the front array 
and 8-15 for the rear array. 

 

 

Fig. 5 The sonar sensors are arranged at different angles from the 
center of the P3DX robot, so that maximum detection coverage is 

achieved 

VI. SONAR SENSOR PROBLEMS 

Ranging sensors like sonar are widely used in research and 
industrial robotics. They allow a robot to see an object without 
actually coming into contact with it. However, sonar sensors 
are limited in range and can also suffer from ‘Ghost’ echoes, 
where there is dense obstacle distribution and complex surfaces 
on objects [10]. In this paper, we are concerned only with sonar 
sensors detecting objects rather than the performance level of 
sonar sensors detecting obstacles of different shape and texture, 
located in varying environments.  

If sensor hardware fails (or loses its calibration), then there is 
no choice but to abandon the sensor [8]. When a sonar 
sensor(s) becomes faulty, it can impact the robots ability to 
navigate in various ways. A single sonar sensor fault would 
only result in a minor reduction in the robots object detecting 
ability. The faulty sensor can then be compensated for, if 
necessary, by a neighboring ‘working’ sensor. Detection of a 
faulty sonar sensor on the P3-DX is typically discovered by 
reading a value of ‘5000’, from the sonar array readings. This 
can be a result in the failure of the sonar micro-controller or 
where the physical connection to the sonar has been severed 
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[11]. However, a more difficult sonar fault to detect is where 
the sonar is reporting some data but this data is inaccurate, due 
to an impact (from the surrounding terrain) on the sensor itself, 
which has distorted the readings. Fig. 6 shows how we classed 
various sonar sensors failures (states), for the P3-DX robot. 

 

 

Fig. 6 Failure states for the Sonar Sensors on the P3-DX Robot. (a) 
IsNormal – all sonar sensors are working as expected. (b) IsMinor – 
one or two sonars are either disabled or reporting erroneous data. (c) 

IsMajor – a loss of 3 or more (but not all) sonars, providing only 
limited sensing ability. (d) IsCatatrosphic – all forward facing sonars 

are disabled. No ability to detect objects on immediate path 

VII. SOFTWARE FRAMEWORK 

Software Development for this paper is carried using the 
MRDS (Microsoft Robotics Developer Studio). MRDS is a 
.Net based programming environment for building robotic 
applications. Code development was implemented using C# in 
Microsoft’s Visual Studio environment [7].  

To create robot movement commands and sonar sensor 
readings, it required implementation of event driven commands 
that are integrated into state-based processing behaviors using a 
standard state machine concept [7]. The user Interface provides 
a means of controlling the movement of the robot and also 
monitoring the sonar values from the front and back sonar 
arrays. The user interface also provides error reporting for any 
faulty sonar sensors; this includes sonar sensors that are not 
showing any readings – (total failure) or sonar sensors that are 
not reporting data as expected.  

VIII. SONAR SENSOR FAULT EVALUATION 

From the failure states shown in Section VII, we will 
evaluate states IsNormal, IsMinor and IsMajor. The states 
IsMinor and IsMajor both involve sonar sensor faults but these 
states are recoverable, in that, it is still possible to detect 
objects even if some of the sonar sensors are disabled. 

A. Frontal Sonar Sensor Test (IsNormal)  

In the first experiment, we tested the effectiveness of the 
sonar sensor array to detect objects. A regular object was 
placed at different angles from the robot; these angles were 
calculated using the fixed position of each of the sonars on the 
robot (Fig. 5.). Sonars 1-6 on the sonar array are only used, as 
they are the forward facing sensors. As the robot moves, sonar 
data are analyzed; when the data reported back from the sonar 
sensors reaches an object range value, then the robot is issued a 
STOP command. In this experiment, the object range value 
was set at 250 mm. Even with a STOP command, there is some 
additional forward moment due to the robots momentum before 
it comes to a complete stop. Table I shows the values for each 
of the sonar sensors as they detect the object in their path.  

 
TABLE I 

FRONTAL SONAR SENSOR TEST (NO SONAR FAULTS) 
Angle of the 
Object to the 

Robot 

Sonar Position on the array 

1 2 3 4 5 6 

50° 983 982 982 983 983 232 

30° 817 818 817 817 237 818 

10° 711 712 712 238 714 713 

-10° 703 704 242 704 704 704 

-30° 783 240 784 784 784 784 

-50° 241 989 987 988 987 987 

 
The grey cells denote the value of the sonar 

readings in mm, when an object has been detected. 

B. Single Sonar Sensor Evaluation (IsMinor)  

 

Fig. 7 shows how the Sonar sensor tolerance range is calculated. 
This calculation is used when comparing the distances between 

neighboring sonar sensors and an object – show as (d) 
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TABLE II 
(ALGORITHM 1) - HIGHLIGHT DISPARATE READINGS 

1:  sr[] = sonarReadings[ ] (readings from P3-DX sonars 1-6) 

2: tr = tolerance range  

3: sonarCheck[ ][ ] (write sonar position and distance reading) 

4: x = 0  

5: sn = 1 

6: for (sn < number of sonars) do  

7:  if ( sn is == 1) then 

8:  differenceValue = (sr[sn+1] – (sr[sn ] 

9:  else if (sn is == 6) 

10:  differenceValue = (sr[sn-1] – (sr[sn ]  

11:  else (sn is > 1 && sn is < 6) 

12:  adjacentDiffValue = (sr[sn-1] – (sr[sn + 1]) 

13:    if (adjacentDiffValue is < tr) then 

14:    differenceValue = (sr[sn+1] – sr[sn]  

15:   end if 

16:  end if  

17: Check the differenceValue a greater than the tolerance range 

18: If it is greater, then that sonar will need checking  

19:  if (differenceValue > tr) 

20:   sonarCheck[x][0]= sn   

21:   sonarCheck[x][1]= sr[sn]   

22:  end if  

23:  x = x + 1 

24: end for 

25: return (sonarCheck) 

 
If a sonar sensor has become disabled, due to an internal 

electrical fault or an impact from an object in the surrounding 
environment, this is reported to the system ‘manager’ as a 
reading of ‘5000’. However, in some cases, the sonar sensor is 
reporting what looks like a valid reading (not 5000), but in fact, 
this reading could be false. The sonar may have received some 
slight damage or there could be a possibility of electrical data 
transmission becoming unstable.  

The Awareness Layer, discussed in Section IV, is 
responsible for investigating suspicious readings reported from 
the sonar array. While the robot is performing its allotted tasks, 
a ‘health check’ loop is performed to assess the data reported 
by the sonar sensors; for example, Sonar 4 in the array is 
reporting value of 415, Sonar 5 a value of 245 and Sonar 6 a 
value of 417; then Sonar 5 may need checking, as its value is 
considerably lower than Sonar 4 and Sonar 6. However, Sonar 
5 could be detecting an object and reporting a correct reading; 
this can be verified by using the adjacent sensors to check the 
reading is valid.  

When comparing the values of neighboring sonar sensors, 
we need to take into account the location of the sonar sensors 
on the P3-DX robot. The forward facing sensors on the sonar 
array (1-6), are arranged as part of an octadecagon design. 
Therefore, if a particular sonar sensor has detected an object 
square-on, then the neighboring sensor can also detect this 
object but at extended distance value. Fig. 7 shows how the 
difference value between two sonar sensors, looking at the 
same object, is calculated. The value is described as the 
tolerance range.  

 
 

TABLE III 
(ALGORITHM 2) – CHECK SONAR READINGS 

1: sonarCheck[ ][ ] contains the sonar position and readings 

2: sr[] = sonarReadings[ ] (readings from P3-DX sonars 1-6) 

3: sc = 0 

4: col = 0 

5: ra = 20°  

6: for (sc < number of sonarCheck rows) do  

7:    if ( sonarCheck[sc][col] == 1) then 

8:     RotateRobot(-ra)  

9:     checkReading = sr[sc+1]  

10:    end if  

11:    if ( sonarCheck[sc][col]== 6) then 

12:     RotateRobot(ra) 

13:     checkReading = sr[sc-1]  

14:    end if  

15:    if ( sonarCheck[sc][col] > 1 && sonarCheck[sc][col] < 6 ) then 

16:     RotateRobot(-ra) 

17:     SonarReadingA = sr[sc-1]  

18:     RotateRobot(ra) 

19:     SonarReadingB = sr[sc-1]  

20:     checkReading = SonarReadingA + SonarReadingB / 2 

21:   end if  

22:   diffValue = (checkingReading – sonarCheck[sc][col +1] 

23:   if (diffValue > tr) then 

24:    sonarCheck[sc][col] = disabled 

24:   end if 

26: sc = sc + 1 

27 end for 

28: return (disabled Sonars)  

 

ܾ ൌ ቀ
௔ଵା௔ଶ

஼௢௦ሺఈሻቁ						(1)

 

ݎݐ ൌ ሺܾ െ ܽ1ሻ െ ሺܽ2ሻ		(2)
 
The tolerance range value can now be applied to Algorithm 

1 (Table II), where all the sonar sensors are checked for any 
unusual values. In Fig. 7, Sonar 5 has detected object (d), we 
therefore can use Sonar 4 and Sonar 6 to check the distance 
value reported by Sonar 5 is indeed correct. The Highlight 
Disparate Readings algorithm can identify what readings are 
significantly different from their immediate neighbors – see 
Table II (Algorithm 1). The Highlight Disparate Readings 
algorithm is contained in the Awareness Layer. If a sonar 
sensor requires checking, then this information is passed to the 
Analysis Layer for processing (see Table III).  

If during the Highlight Disparate Readings process, a sonar 
sensor is identified for checking, i.e. sonarCheck[x], the 
Checking Sonar Readings algorithm is then deployed. The 
Checking Sonar Readings is contained in the Analysis Layer 
and will issue commands to the robot to use the neighboring 
sonar sensors adjacent to ‘sonarCheck[x]’ to check if the 
reading reported by sonarCheck[x] was indeed correct. 

The process performed by Algorithm 2 (Table III), involves 
using two neighboring sonar sensors to be rotated to the 
original position of ‘sonarCheck[x]’. If the readings reported 
by both sonar sensors are different from ‘sonarCheck[x]’, then 
‘sonarCheck[x]’ will be tagged as being disabled. If 
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‘sonarCheck[x]’ is at position one or six, then it will have only 
one neighboring sonar sensor available for checking. If the 
reading reported by this one sonar is different from 
‘sonarCheck[x]’, then ‘sonarCheck[x]’ will be tagged as being 
disabled. All sonar sensors tagged as being disabled will be 
handled in Section IX. 

C. Frontal Sonar Sensor Evaluation (IsMajor)  

If a sonar sensor becomes disabled, it returns a value of 
‘5000’ as a default to the sonar reader. Sonars sensors can also 
become disabled if, when processed through Algorithm 2, their 
distance readings proved to be unreliable. To emulate sonar 
sensor failure, rubber caps can be placed over the transducer to 
disable it. If the robot loses 50 percent of the sonar sensors, it 
can be completely blind on one side. For the robot to detect an 
object on its now ‘blind’ side, it will have to rotate on its center 
and use those remaining sonar sensors to locate the object. The 
amount of rotation required depends on the number of sonar 
sensors that have become disabled and the location of each 
sensor on the sonar array (see Fig. 5). We use the Awareness 
Layer to establish if there is a problem with one or more of the 
sonar sensors. If a reading of ‘5000’ is reported by one or more 
of the sonar sensors, the P3-DX is issued a STOP command; 
likewise, if the bumper sensor on the P3-DX robot is also 
triggered, this action will also issue a STOP command. The 
Analysis Layer is then notified that there is a fault with one or 
more of the sonar sensors. Analysis is then performed to 
establish which sonars are disabled and their position on the 
sonar array. Each sonar position on the sonar array also carries 
an angle value relative to the center of the P3-DX (See Fig. 5). 
This information is then passed to the Adjustment Layer, so 
that calculations can be performed to establish how the 
remaining enabled sonars sensors can be used to compensate 
for the disabled sonar sensors. 

IX. SONAR SENSOR FAULT COMPENSATION 

A. Frontal Sonar Sensor Compensation (Handling Disabled 
Sonar Sensors)  

The compensation policy deals with faults for the six 
forward facing sonar sensors. The two side sonar sensors zero 
and seven (see Fig. 5), are not required for this demonstration.  

Compensation for the faulty sonar sensor will require a 
deliberate ‘stop’ and ‘rotate’ strategy. The fully working sonar 
sensors will need to be rotated to a position where they can 
replace the faulty sonar sensor(s). The more sonar sensors that 
are lost, then the more rotation commands by the robot are 
required to locate an object. Using the six sonar sensors in an 
array, there can be 64 possible combinations using binary 
notation. Combination ‘1’ = 000000, all sonars are working 
correctly (no action required) and combination ‘64’ = 111111, 
all sonars sensors are disabled (the robot has no ability to detect 
an object); this leaves 62 possible fault combinations. Table IV 
shows an example of how much the robot needs to rotate 
(clockwise or anti-clockwise) in-order to compensate for the 
loss of some sonar sensors. A single sonar fault will only 
require one rotation of the robot, whereas a loss of three or 

more sonar sensors could require the robot to rotate at three 
different stages. It must be noted that if, for example, the robot 
is required to rotate +20 degrees to compensate for a disabled 
sonar sensor: after the compensation reading has been checked, 
the robot will be rotated back to its original position. This 
guarantees that the robot is always pointing to its original 
heading angle.   

Fig. 8 shows Scenario 4 (from Table IV), how the robot is 
rotated to compensate for the disabled sonar sensors. 

 
TABLE IV 

FRONTAL SONAR SENSOR FAULT 
Enabled sonar 

sensor position used 
to compensate 

Angle of enabled 
sensor on the 
sonar array 

Disabled Sonar 
Sensor position 

(and angle). 

Rotation(s) 
required 

Scenario 1 – the sonar sensor at position 3 has become disabled 

2 30° 3 (10°) -20° 

Scenario 2 – the sonar sensor at position 3 and 2 have become disabled 

4 -10° 3 (10°) +20° 

1 50° 2 (30°) -20° 
Scenario 3 – the sonar sensor at position 2, 4, 5 and 6 have become 

disabled 
1, 3 10°, 50° 2(30°), 4 (-10°) -20° 

3 10° 5 (-30°) -40° 

3 10° 6 (-50°) -60° 

Scenario 4 – the sonar sensor at position 1, 2, 3 have become disabled 

4, 5, 6 -10°, -30°, -50° 
3 (10°), 2(30°), 1 

(50°) 
+60° 

 

 

Fig. 8 Sonar sensors (1-3) as disabled (a); they are ‘blind’ to object 
OB. The Compensation Policy is used to establish that a 60° clock-

wise rotation (b), can allow the P3-DX robot to detect object OB 

B. Frontal Sonar Sensor Compensation (Algorithm)  

When disabled sonar sensors are first discovered, the P3-DX 
robot is stopped and analysis takes places to evaluate the extent 
of the fault. Table IV showed examples of which rotation 
commands are required for various sonar fault scenarios. The 
62 possible sonar sensor fault combinations will require 
different robot rotation calculations, so that the P3-DX robot 
can utilize the remaining enabled sonar sensors to compensate 
for the disabled sonar sensors. Algorithm 3 (Table V) shows 
the rotation angles which are calculated for any of the 62 
possible sonar sensors fault scenarios.   

When Algorithm 3 has been executed, it will return the 
rotation values required to compensate for the fault (depending 
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on the number of sonar sensors that are disabled).  
 

TABLE V 
ALGORITHM 3 - COMPENSATION FOR DISABLED SONAR SENSORS 

1: sonarArray[6] enabled/disabled sonar sensor positions 
2: disabledArray[ ] disabled sonar angle position values 
3: enabledArray[ ] enabled sonar angle position values 
4:  lsa = -50° lowest sonar sensor angle 
5:  hsa = 50° highest sonar sensor angle 
6:  ia = 20°  incremental angle 
7:  av = 0    angle value for each sonar sensor 
8:  Calculate the array angle position for enabled/disabled sensors 
9:  i = 0   
10: for (av = lsa ; av < hsa + 1; av = av + ia) do  
11:   if ( sonarArray[i] == disabled) then 
12:     disabledArray[i]= av  
13:   end if 
14:   if ( sonarArray[i] == enabled) then 
15:     enabledArray[i]= av 
16:   end if 
17:   i = i + 1 
18: end for 
19: Combine disabledArray[] and enabledArray[] values to establish  
20: the difference value required for an enabled sonar array to take  
21: the place of a disabled sonar array 
22: combinationArray[ ] combined disabled/enabled array values 
23: ii = 0   inner index  
24: oi = 0   outer index 
25: av = 0   reset angle value  
26: for (da < number in disabledArray) do  
27:  for (av = ia ; av < hsa + 1; av = av + ia) do  
28:   if ( enabledArray[ii] == (disabledArray[oi] + (-av))) then 
29:      combinationArray[ii] = av 
30:   end if 
31:   if ( enabledArray[ii] == (disabledArray[oi] + (av))) then 
32:      combinationArray[ii] =- av 
33:    end if 
34:   ii = ii + 1 
35:   end for 
36   oi = oi + 1 
37: end for 
38: Sort the CombinationArray[] according to the values closest to   
39: Zero (The Robot centre line 0°). This ensures the robot will rotate  
40: the minimum of times in-order to compensate for the disabled   
41: sonar sensors. Store the results in the calcArray[]  
42: calcArray[ ] sorted angle values needed for compensation 
43: for (ca < number in combinationArray) do  
44:  var nearest = ca.OrderBy (x => math.abs(long) x-0)).First() 
45:  Remove the nearest value found from the combinationArray[] 
46:  combinationArray.RemoveAll(item => item == nearest 
47:  calcArray.Add(nearest) 
48: end for 
49: Use the calcArray[] to work out the rotationCommand values  
50: foreach(int calc in calcArray) do 
51:   ii = 0 inner index 
52:   for(ea < number in enabledArray) do 
53:    if(disabledArray.Contains (ea[ii] + calc) then 
54:     disabledArray.Remove(ea[ii] + calc) 
55:     rotationCommand.Add = calc 
56:    end if 
57:    i = i + 1 
58:   end for 

C. Frontal Sonar Sensor Compensation (Rotation Patterns)  

Fig. 9 shows a chart plotting the number of robot rotations 
required for a particular sonar sensors fault scenarios. Fig. 9 
shows 31 sonar sensor fault combinations (alternate 
combinations from the 62 possible sonar fault combinations on 

the P3-DX robot sonar array). The position of the disabled 
sonars sensors on the robots’ sonar array can result in different 
rotation requirements. For example, in Fig. 9, scenario 11 has 
three disable sonar sensors and scenario 13 has also three 
disabled sonars; however, it only requires one robot rotation to 
compensate for scenario 11, whereas it takes two rotations to 
compensate for scenario 13.   

 

 

Fig. 9 How the increased number of disabled sonars sensors will also 
result in an increased in robot rotations to compensate for the fault 
 

 

Fig. 10 When the robot has entered sonar failure mode; the robot is 
stopped and rotated at specific intervals during its task; an object OB 

can be discovered during a rotation event 
 

Discovery of a sonar sensor fault causes the robot to stop 
and triggers an evaluation process to establish the extent of the 
fault. When the fault has been analyzed and the compensation 
policy has calculated the robot rotation(s) (see Algorithm 3) 
required, the robot can continue its allocated task. However, 
because the P3-DX robot is in a failure mode, the robot is 
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stopped at pre-defined intervals to check if there any obstacles 
in its path. Fig. 10 shows that the P3-DX robot is stopped every 
200 mm intervals; this is to ensure the robot does not strike an 
object while in sonar failure mode. When the robot is stopped, 
it then rotates on its axis according to the rotation instructions 
established from using the compensation algorithm (see 
Algorithm 3, Table V). The robot will only declare an object 
has been detected, if that object is within a certain threshold 
distance. If, after a robot rotation has been executed and an 
object detected, then the robot can apply its Obstacle 
Avoidance policy. The robot will have to maintain the sonar 
sensor fault compensation policy for the remainder of its task 
while the sonar sensors are reporting a fault condition. 
Extensive sonar sensors faults will result in multiple rotations 
by the robot at each STOP interval and consequently result in 
the task taking a longer time to complete. On a shorter journey, 
this may not present any issues but if the robot is executing a 
task involving a long distance, then this could have an impact 
on resources like power consumption.   

X. CONCLUSION AND FUTURE WORK 

The purpose of this research paper was to apply autonomic 
principles to the problem of managing sonar sensor hardware 
failures. In our approach, we extended the current autonomic 
MAPE architecture by introducing the AAA-3 layered 
architecture. This approach gave us the ability to detect sonar 
sensor faults, process the extent of the fault and finally make 
the necessary adjustments to allow the P3-DX robot to detect 
objects, even with reduced functionality. However, our 
experiments showed that as the number of disabled sonar 
sensors increased, then the time for the robot to complete its 
task greatly increased. Recording the journey time and power 
usage, was not part of this research paper but they would have 
to be seriously considered if the experiment was extended for 
real-time tasks. 

An important lesson learned during this research is that 
hardware failure cannot always be observed by the User, 
especially those in sub-systems [9], as we found in sonar 
sensors that reported inconsistent data. 

In the future, we would like to adapt our Sonar Sensor 
framework architecture to other mobile robot sensors, 
including laser and stereo cameras. In the past we have 
experimented with mobile robot wheel faults [5]. Our main 
goal is to develop an autonomic generic framework that can 
handle varying types of sensor and effector faults.  
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