
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:5, 2017

621


Abstract—NASA, ESA, and NSSC space agencies have plans to

put planetary rovers on Mars in 2020. For these future planetary
rovers to succeed, they will heavily depend on sensors to detect
obstacles. This will also become of vital importance in the future, if
rovers become less dependent on commands received from earth-
based control and more dependent on self-configuration and self-
decision making. These planetary rovers will face harsh
environments and the possibility of hardware failure is high, as seen
in missions from the past. In this paper, we focus on using
Autonomic principles where self-healing, self-optimization, and self-
adaption are explored using the MAPE-K model and expanding this
model to encapsulate the attributes such as Awareness, Analysis, and
Adjustment (AAA-3). In the experimentation, a Pioneer P3-DX
research robot is used to simulate a planetary rover. The sonar
sensors on the P3-DX robot are used to simulate the sensors on a
planetary rover (even though in reality, sonar sensors cannot operate
in a vacuum). Experiments using the P3-DX robot focus on how our
software system can be adapted with the loss of sonar sensor
functionality. The autonomic manager system is responsible for the
decision making on how to make use of remaining ‘enabled’ sonars
sensors to compensate for those sonar sensors that are ‘disabled’. The
key to this research is that the robot can still detect objects even with
reduced sonar sensor capability.

Keywords—Autonomic, self-adaption, self-healing, self-

optimization.

I. INTRODUCTION

OR a mobile robot to be able to navigate within its
surrounding terrain, its sensors have to be at optimal

performance. Sensors send information, in the form of
electronic signals back to the robot controller. This information
is then processed and therefore allows the robot to make a
decision on its next command action. Sonar sensors can be
used to allow a mobile robot to detect objects within its path.
Sonar sensors usually are situated on the front and rear of the
robot. The sonar sensors are typically arranged in an ‘array’
configuration, were each sensor is angled separately so that the
sensors can cover a 180° range in front of the robot. While the
mobile robot is moving, one or more of the sonar sensors can
locate an object that may be on the robots path. However, what
if there was a hardware issue with some of the sonar sensors?
The ability to detect objects would be greatly reduced.

Planetary rovers use both cameras and sensors to navigate
the terrain of a moon or a planet. Sensor failure would mean a
severe impact on mission objectives. Experimental planetary
rovers such as the SR2 [1], use range finders to help them
detect objects. Even before the autonomic concept [2],

Martin Doran is with the Ulster University, United Kingdom (e-mail:

Doran-M18@email.ulster.ac.uk).

researchers have been looking at fault tolerance as a biological
unit, where fault detection was handled with adaptive sensor
analysis [3]. Further has also shown that by comparing the
known state and actual sensor feedback of a collection of
sensor nodes, could lead to the detection of single sensor drop-
outs. If sensor failure is identified, then compensation could be
possible by using known values instead of the measured ones
[4].

The autonomic ‘self-adaptive’ approach implies that even
with reduced sensor functionality, it is possible to carry on with
mission objectives, by making use of what sensor functionality
is still available. Autonomic ‘self-awareness can also be
employed to detect early signs of degradation in sensors. Using
knowledge gathered from previous missions, regular health
checks can detect if a particular sensor module is not
performing at an expected level. Autonomic self-adaptive
principle reacts to an unforeseen situation, like damaged caused
to sensors. The autonomic self-awareness can initiate a change
in the mission strategy, if the predicted failure could jeopardize
mission objectives.

II. PREVIOUS WORK

Previous work [5] detailed how a damaged wheel on a
mobile robot caused the robot to veer off to the left (or right),
depending on what wheel was had faulted. Policies were
initiated within the autonomic management system to
compensate for the wheel alignment problem. The mobile robot
was able to self-adapt even with the wheel fault and therefore
continuing to function. For this paper, we want to explore how
a mobile robot can detect objects after it has suffered failure to
some of its sonar sensors. Using autonomic principles, we want
to investigate how self-analyzing can detect faults within the
sonar sensor array and then employ self-configuration and self-
adjustment protocols to compensate for the limitation in sensor
detection.

III. RELATED WORK

In our research, the detection of sonar sensor faults forms
part of our experimentation into self-diagnosis. Sensors faults
do not always show themselves as simply being non-
functioning or disabled. The intermittent fault or under-
performance fault are the most difficult to detect [13]. In this
research, the authors use Evidence, Fault, and Value nodes to
recognize hardware faults by observing the change of the
sensor data over time. They described small deviation and big
deviation to evaluate the extent of the sensor error. In our
approach, we use tolerance ranges to decide if a sensor is
performing correctly.

Autonomic Sonar Sensor Fault Manager for Mobile
Robots

Martin Doran, Roy Sterritt, George Wilkie

F

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:5, 2017

622

Detection of abnormal behavior in sensors can also be
achieved by comparing sensor data with neighboring sensor
data [14]. In this research, the authors take input readings of the
sensors and subject them to a correlation test that determines
which sensors are correlated to each other. In our research, the
data from suspected sonar sensors are checked by using
adjacent sonar sensors; if the results between the sonar sensors
do no match, then we can declare the suspected sensor as being
faulty.

There have been several activities in the US regarding the
research in loss of sensor function. For example, in [12], the
authors use Organizational-based Multi-agent System model
(OMAS), to describe sonar sensor capability loss in robots. If a
sensor losses functionality, then another sensor is substituted,
that can carry out at least some or all of its predecessor
capability. Organizational rules are applied to decide which
agent roles of one sensor can be applied to another sensor.

The Related Work contributions all involve detection of
sensor failure from a fault tolerance and diagnosis approach.
Our research centers on detection, analysis, and adjustment of
sensor faults using autonomic principles; by employing
specialized algorithms, we can adapt the affected hardware
systems to continue to function even when functionality has
been greatly reduced.

IV. AUTONOMIC MODEL

In 2001, IBM made a commitment to the conceptual ideas of
autonomic computing. The main goal was to create systems
that could self-manage and take appropriate action when facing
system failure [19].

Self-diagnosis is not only concerned with the discovery of
potential fault but also the severity and consequences relating
to the fault [15]. Self-configuring has the ability for a system to
automatically adjust itself when faced with changing
conditions. Self-healing is concerned with recovery and
repairing itself when dealing with unexpected faults. Self-
optimizing has the knowledge of tolerance and performance
values. It can then use known policies to maintain optimal
performance and employ new policies to improve performance.
Self-protecting is part of the autonomic system that can detect
and mitigate possible threats. It can also establish what could
potentially be a threat and use known policies to handle this
threat [5].

The autonomic computing system requires sensor channels
to sense possible changes within the internal and external
environment; it will also require motor channels to react to
those changes [16]. Including autonomic principles in the
software design of a robotic architecture, could extent the robot
operating time in the field. The main challenge in designing an
autonomic system is that all possible fault scenarios cannot be
anticipated; rather design a system that can detect and resolve
problems at run-time [17].

The MAPE-K (Monitor-Analyze-Plan-Execute over a
knowledge base), feedback loop model is the standard model to
describe autonomic and self-adaptive systems [2]. The
Knowledge component collects and maintains data from
managed system and retains policies which can be shared with

the MAPE components (Fig. 1). The Monitor (M) takes in data
in from sensors and stores the data in Knowledge (K). The
Analyze (A) performs analysis to establish if adaptive
measures are required. If adaption is required, then the
information is passed onto Plan (P) to trigger a policy
algorithm that will compensate for the fault condition. The
Execute (E) will deliver the policy commands via the effectors
[18].

Fig. 1 MAPE-K feedback loop

The components found in the MAPE-K feedback loop can

be adapted to form the architecture of the Autonomic Sonar
Manager (Fig. 2).

Fig. 2 Sonar Manager Architecture (AAA-3)

The Sonar Manager Architecture comprises of three layers;

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:5, 2017

623

the Awareness Layer, Analysis Layer, and Adjustment Layer
(AAA-3). The AAA-3 layers are based on the MAPE-K
components from Fig. 1. The AAA-3 Layer configuration is
used to map our sonar sensor manager architecture, rather than
using the traditional MAPE configuration. However, there is
over-lapping between the MAPE and AAA-3, regarding
components such as Analyze and Execute (Fig. 2). The Main
Task loop controls the normal robot operations. The ‘health
check’ loop runs at periodic intervals, to determine the health
of the sonar sensors.

A. Awareness Layer

The Awareness Layer can only perform a limited amount of
processing. The main function of the Awareness Layer is to
decide if there is a failure within the sonar sensors. If failure is
detected, then the information is passed to the Analysis Layer
for processing. The Awareness Layer can detect if there are
unusual readings between adjacent sonar sensors; the
Awareness Layer will then record those sonar sensors under
suspicion and pass this information to the Analysis Layer.

B. Analysis Layer

The Analysis Layer uses data received from the Awareness
Layer to establish the extent of the sonar sensor failure. This
Layer will map out which sonar sensors have been disabled and
pass this information to the Adjustment Layer. The Analysis
Layer will also check those sonar sensors that have been
marked as suspicious; it will use a checking algorithm to verify
if a sonar sensor is performing within expected parameters. If a
sonar sensor reports invalid data, then that sonar sensor is
marked as being disabled.

C. Adjustment Layer

Fig. 3 Pioneer P3DX fitted with the Polaroid Sonar Array (front and
rear) and a Bumper Array at the front

Fig. 4 Polaroid Sonar Sensor Transducer is used for operations in air
at ultrasonic frequencies

The Adjustment Layer receives data from the Analysis

Layer showing which sonar sensors are currently disabled. The

Adjustment Layer will then decide which algorithm (from the
policy library) is appropriate to handle the fault condition.
When the algorithm has been executed, the instructions are
passed from the Adjustment Layer to the Effectors.

V. PIONEER P3DX ROBOT AND SONAR SENSORS

The Pioneer P3DX is a research laboratory robot that has
two independent drive systems for each wheel. The robot
contains an on-board computer that can be uploaded with user
defined programs such as a Microsoft Windows operating
systems and .Net application. The P3DX is equipped with two
sets of Polaroid sonar sensors arrays. The Polaroid sonar sensor
array comprises of eight electrostatic transducers and a sonar
ranging module (Figs. 3 and 4). The individual transducers are
controlled by the ranging module. The ‘echo’ signals captured
by the transducers, allow the ranging module to calculate
ranges from 6” to 35ft [6].

The Sonar sensor array is manufactured in such a way that
each of the sonar transducers is set at different angles from the
center of the robot (Fig. 5). This allows for maximum detection
of the surrounding terrain and obstacles within the robots path.
Each sonar sensor is allocated a number; 0-7 for the front array
and 8-15 for the rear array.

Fig. 5 The sonar sensors are arranged at different angles from the
center of the P3DX robot, so that maximum detection coverage is

achieved

VI. SONAR SENSOR PROBLEMS

Ranging sensors like sonar are widely used in research and
industrial robotics. They allow a robot to see an object without
actually coming into contact with it. However, sonar sensors
are limited in range and can also suffer from ‘Ghost’ echoes,
where there is dense obstacle distribution and complex surfaces
on objects [10]. In this paper, we are concerned only with sonar
sensors detecting objects rather than the performance level of
sonar sensors detecting obstacles of different shape and texture,
located in varying environments.

If sensor hardware fails (or loses its calibration), then there is
no choice but to abandon the sensor [8]. When a sonar
sensor(s) becomes faulty, it can impact the robots ability to
navigate in various ways. A single sonar sensor fault would
only result in a minor reduction in the robots object detecting
ability. The faulty sensor can then be compensated for, if
necessary, by a neighboring ‘working’ sensor. Detection of a
faulty sonar sensor on the P3-DX is typically discovered by
reading a value of ‘5000’, from the sonar array readings. This
can be a result in the failure of the sonar micro-controller or
where the physical connection to the sonar has been severed

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:5, 2017

624

[11]. However, a more difficult sonar fault to detect is where
the sonar is reporting some data but this data is inaccurate, due
to an impact (from the surrounding terrain) on the sensor itself,
which has distorted the readings. Fig. 6 shows how we classed
various sonar sensors failures (states), for the P3-DX robot.

Fig. 6 Failure states for the Sonar Sensors on the P3-DX Robot. (a)
IsNormal – all sonar sensors are working as expected. (b) IsMinor –
one or two sonars are either disabled or reporting erroneous data. (c)

IsMajor – a loss of 3 or more (but not all) sonars, providing only
limited sensing ability. (d) IsCatatrosphic – all forward facing sonars

are disabled. No ability to detect objects on immediate path

VII. SOFTWARE FRAMEWORK

Software Development for this paper is carried using the
MRDS (Microsoft Robotics Developer Studio). MRDS is a
.Net based programming environment for building robotic
applications. Code development was implemented using C# in
Microsoft’s Visual Studio environment [7].

To create robot movement commands and sonar sensor
readings, it required implementation of event driven commands
that are integrated into state-based processing behaviors using a
standard state machine concept [7]. The user Interface provides
a means of controlling the movement of the robot and also
monitoring the sonar values from the front and back sonar
arrays. The user interface also provides error reporting for any
faulty sonar sensors; this includes sonar sensors that are not
showing any readings – (total failure) or sonar sensors that are
not reporting data as expected.

VIII. SONAR SENSOR FAULT EVALUATION

From the failure states shown in Section VII, we will
evaluate states IsNormal, IsMinor and IsMajor. The states
IsMinor and IsMajor both involve sonar sensor faults but these
states are recoverable, in that, it is still possible to detect
objects even if some of the sonar sensors are disabled.

A. Frontal Sonar Sensor Test (IsNormal)

In the first experiment, we tested the effectiveness of the
sonar sensor array to detect objects. A regular object was
placed at different angles from the robot; these angles were
calculated using the fixed position of each of the sonars on the
robot (Fig. 5.). Sonars 1-6 on the sonar array are only used, as
they are the forward facing sensors. As the robot moves, sonar
data are analyzed; when the data reported back from the sonar
sensors reaches an object range value, then the robot is issued a
STOP command. In this experiment, the object range value
was set at 250 mm. Even with a STOP command, there is some
additional forward moment due to the robots momentum before
it comes to a complete stop. Table I shows the values for each
of the sonar sensors as they detect the object in their path.

TABLE I

FRONTAL SONAR SENSOR TEST (NO SONAR FAULTS)
Angle of the
Object to the

Robot

Sonar Position on the array

1 2 3 4 5 6

50° 983 982 982 983 983 232

30° 817 818 817 817 237 818

10° 711 712 712 238 714 713

-10° 703 704 242 704 704 704

-30° 783 240 784 784 784 784

-50° 241 989 987 988 987 987

The grey cells denote the value of the sonar

readings in mm, when an object has been detected.

B. Single Sonar Sensor Evaluation (IsMinor)

Fig. 7 shows how the Sonar sensor tolerance range is calculated.
This calculation is used when comparing the distances between

neighboring sonar sensors and an object – show as (d)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:5, 2017

625

TABLE II
(ALGORITHM 1) - HIGHLIGHT DISPARATE READINGS

1: sr[] = sonarReadings[] (readings from P3-DX sonars 1-6)

2: tr = tolerance range

3: sonarCheck[][] (write sonar position and distance reading)

4: x = 0

5: sn = 1

6: for (sn < number of sonars) do

7: if (sn is == 1) then

8: differenceValue = (sr[sn+1] – (sr[sn]

9: else if (sn is == 6)

10: differenceValue = (sr[sn-1] – (sr[sn]

11: else (sn is > 1 && sn is < 6)

12: adjacentDiffValue = (sr[sn-1] – (sr[sn + 1])

13: if (adjacentDiffValue is < tr) then

14: differenceValue = (sr[sn+1] – sr[sn]

15: end if

16: end if

17: Check the differenceValue a greater than the tolerance range

18: If it is greater, then that sonar will need checking

19: if (differenceValue > tr)

20: sonarCheck[x][0]= sn

21: sonarCheck[x][1]= sr[sn]

22: end if

23: x = x + 1

24: end for

25: return (sonarCheck)

If a sonar sensor has become disabled, due to an internal

electrical fault or an impact from an object in the surrounding
environment, this is reported to the system ‘manager’ as a
reading of ‘5000’. However, in some cases, the sonar sensor is
reporting what looks like a valid reading (not 5000), but in fact,
this reading could be false. The sonar may have received some
slight damage or there could be a possibility of electrical data
transmission becoming unstable.

The Awareness Layer, discussed in Section IV, is
responsible for investigating suspicious readings reported from
the sonar array. While the robot is performing its allotted tasks,
a ‘health check’ loop is performed to assess the data reported
by the sonar sensors; for example, Sonar 4 in the array is
reporting value of 415, Sonar 5 a value of 245 and Sonar 6 a
value of 417; then Sonar 5 may need checking, as its value is
considerably lower than Sonar 4 and Sonar 6. However, Sonar
5 could be detecting an object and reporting a correct reading;
this can be verified by using the adjacent sensors to check the
reading is valid.

When comparing the values of neighboring sonar sensors,
we need to take into account the location of the sonar sensors
on the P3-DX robot. The forward facing sensors on the sonar
array (1-6), are arranged as part of an octadecagon design.
Therefore, if a particular sonar sensor has detected an object
square-on, then the neighboring sensor can also detect this
object but at extended distance value. Fig. 7 shows how the
difference value between two sonar sensors, looking at the
same object, is calculated. The value is described as the
tolerance range.

TABLE III
(ALGORITHM 2) – CHECK SONAR READINGS

1: sonarCheck[][] contains the sonar position and readings

2: sr[] = sonarReadings[] (readings from P3-DX sonars 1-6)

3: sc = 0

4: col = 0

5: ra = 20°

6: for (sc < number of sonarCheck rows) do

7: if (sonarCheck[sc][col] == 1) then

8: RotateRobot(-ra)

9: checkReading = sr[sc+1]

10: end if

11: if (sonarCheck[sc][col]== 6) then

12: RotateRobot(ra)

13: checkReading = sr[sc-1]

14: end if

15: if (sonarCheck[sc][col] > 1 && sonarCheck[sc][col] < 6) then

16: RotateRobot(-ra)

17: SonarReadingA = sr[sc-1]

18: RotateRobot(ra)

19: SonarReadingB = sr[sc-1]

20: checkReading = SonarReadingA + SonarReadingB / 2

21: end if

22: diffValue = (checkingReading – sonarCheck[sc][col +1]

23: if (diffValue > tr) then

24: sonarCheck[sc][col] = disabled

24: end if

26: sc = sc + 1

27 end for

28: return (disabled Sonars)

ܾ ൌ ቀ
௔ଵା௔ଶ

஼௢௦ሺఈሻቁ						(1)

ݎݐ ൌ ሺܾ െ ܽ1ሻ െ ሺܽ2ሻ		(2)

The tolerance range value can now be applied to Algorithm

1 (Table II), where all the sonar sensors are checked for any
unusual values. In Fig. 7, Sonar 5 has detected object (d), we
therefore can use Sonar 4 and Sonar 6 to check the distance
value reported by Sonar 5 is indeed correct. The Highlight
Disparate Readings algorithm can identify what readings are
significantly different from their immediate neighbors – see
Table II (Algorithm 1). The Highlight Disparate Readings
algorithm is contained in the Awareness Layer. If a sonar
sensor requires checking, then this information is passed to the
Analysis Layer for processing (see Table III).

If during the Highlight Disparate Readings process, a sonar
sensor is identified for checking, i.e. sonarCheck[x], the
Checking Sonar Readings algorithm is then deployed. The
Checking Sonar Readings is contained in the Analysis Layer
and will issue commands to the robot to use the neighboring
sonar sensors adjacent to ‘sonarCheck[x]’ to check if the
reading reported by sonarCheck[x] was indeed correct.

The process performed by Algorithm 2 (Table III), involves
using two neighboring sonar sensors to be rotated to the
original position of ‘sonarCheck[x]’. If the readings reported
by both sonar sensors are different from ‘sonarCheck[x]’, then
‘sonarCheck[x]’ will be tagged as being disabled. If

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:5, 2017

626

‘sonarCheck[x]’ is at position one or six, then it will have only
one neighboring sonar sensor available for checking. If the
reading reported by this one sonar is different from
‘sonarCheck[x]’, then ‘sonarCheck[x]’ will be tagged as being
disabled. All sonar sensors tagged as being disabled will be
handled in Section IX.

C. Frontal Sonar Sensor Evaluation (IsMajor)

If a sonar sensor becomes disabled, it returns a value of
‘5000’ as a default to the sonar reader. Sonars sensors can also
become disabled if, when processed through Algorithm 2, their
distance readings proved to be unreliable. To emulate sonar
sensor failure, rubber caps can be placed over the transducer to
disable it. If the robot loses 50 percent of the sonar sensors, it
can be completely blind on one side. For the robot to detect an
object on its now ‘blind’ side, it will have to rotate on its center
and use those remaining sonar sensors to locate the object. The
amount of rotation required depends on the number of sonar
sensors that have become disabled and the location of each
sensor on the sonar array (see Fig. 5). We use the Awareness
Layer to establish if there is a problem with one or more of the
sonar sensors. If a reading of ‘5000’ is reported by one or more
of the sonar sensors, the P3-DX is issued a STOP command;
likewise, if the bumper sensor on the P3-DX robot is also
triggered, this action will also issue a STOP command. The
Analysis Layer is then notified that there is a fault with one or
more of the sonar sensors. Analysis is then performed to
establish which sonars are disabled and their position on the
sonar array. Each sonar position on the sonar array also carries
an angle value relative to the center of the P3-DX (See Fig. 5).
This information is then passed to the Adjustment Layer, so
that calculations can be performed to establish how the
remaining enabled sonars sensors can be used to compensate
for the disabled sonar sensors.

IX. SONAR SENSOR FAULT COMPENSATION

A. Frontal Sonar Sensor Compensation (Handling Disabled
Sonar Sensors)

The compensation policy deals with faults for the six
forward facing sonar sensors. The two side sonar sensors zero
and seven (see Fig. 5), are not required for this demonstration.

Compensation for the faulty sonar sensor will require a
deliberate ‘stop’ and ‘rotate’ strategy. The fully working sonar
sensors will need to be rotated to a position where they can
replace the faulty sonar sensor(s). The more sonar sensors that
are lost, then the more rotation commands by the robot are
required to locate an object. Using the six sonar sensors in an
array, there can be 64 possible combinations using binary
notation. Combination ‘1’ = 000000, all sonars are working
correctly (no action required) and combination ‘64’ = 111111,
all sonars sensors are disabled (the robot has no ability to detect
an object); this leaves 62 possible fault combinations. Table IV
shows an example of how much the robot needs to rotate
(clockwise or anti-clockwise) in-order to compensate for the
loss of some sonar sensors. A single sonar fault will only
require one rotation of the robot, whereas a loss of three or

more sonar sensors could require the robot to rotate at three
different stages. It must be noted that if, for example, the robot
is required to rotate +20 degrees to compensate for a disabled
sonar sensor: after the compensation reading has been checked,
the robot will be rotated back to its original position. This
guarantees that the robot is always pointing to its original
heading angle.

Fig. 8 shows Scenario 4 (from Table IV), how the robot is
rotated to compensate for the disabled sonar sensors.

TABLE IV

FRONTAL SONAR SENSOR FAULT
Enabled sonar

sensor position used
to compensate

Angle of enabled
sensor on the
sonar array

Disabled Sonar
Sensor position

(and angle).

Rotation(s)
required

Scenario 1 – the sonar sensor at position 3 has become disabled

2 30° 3 (10°) -20°

Scenario 2 – the sonar sensor at position 3 and 2 have become disabled

4 -10° 3 (10°) +20°

1 50° 2 (30°) -20°
Scenario 3 – the sonar sensor at position 2, 4, 5 and 6 have become

disabled
1, 3 10°, 50° 2(30°), 4 (-10°) -20°

3 10° 5 (-30°) -40°

3 10° 6 (-50°) -60°

Scenario 4 – the sonar sensor at position 1, 2, 3 have become disabled

4, 5, 6 -10°, -30°, -50°
3 (10°), 2(30°), 1

(50°)
+60°

Fig. 8 Sonar sensors (1-3) as disabled (a); they are ‘blind’ to object
OB. The Compensation Policy is used to establish that a 60° clock-

wise rotation (b), can allow the P3-DX robot to detect object OB

B. Frontal Sonar Sensor Compensation (Algorithm)

When disabled sonar sensors are first discovered, the P3-DX
robot is stopped and analysis takes places to evaluate the extent
of the fault. Table IV showed examples of which rotation
commands are required for various sonar fault scenarios. The
62 possible sonar sensor fault combinations will require
different robot rotation calculations, so that the P3-DX robot
can utilize the remaining enabled sonar sensors to compensate
for the disabled sonar sensors. Algorithm 3 (Table V) shows
the rotation angles which are calculated for any of the 62
possible sonar sensors fault scenarios.

When Algorithm 3 has been executed, it will return the
rotation values required to compensate for the fault (depending

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:5, 2017

627

on the number of sonar sensors that are disabled).

TABLE V
ALGORITHM 3 - COMPENSATION FOR DISABLED SONAR SENSORS

1: sonarArray[6] enabled/disabled sonar sensor positions
2: disabledArray[] disabled sonar angle position values
3: enabledArray[] enabled sonar angle position values
4: lsa = -50° lowest sonar sensor angle
5: hsa = 50° highest sonar sensor angle
6: ia = 20° incremental angle
7: av = 0 angle value for each sonar sensor
8: Calculate the array angle position for enabled/disabled sensors
9: i = 0
10: for (av = lsa ; av < hsa + 1; av = av + ia) do
11: if (sonarArray[i] == disabled) then
12: disabledArray[i]= av
13: end if
14: if (sonarArray[i] == enabled) then
15: enabledArray[i]= av
16: end if
17: i = i + 1
18: end for
19: Combine disabledArray[] and enabledArray[] values to establish
20: the difference value required for an enabled sonar array to take
21: the place of a disabled sonar array
22: combinationArray[] combined disabled/enabled array values
23: ii = 0 inner index
24: oi = 0 outer index
25: av = 0 reset angle value
26: for (da < number in disabledArray) do
27: for (av = ia ; av < hsa + 1; av = av + ia) do
28: if (enabledArray[ii] == (disabledArray[oi] + (-av))) then
29: combinationArray[ii] = av
30: end if
31: if (enabledArray[ii] == (disabledArray[oi] + (av))) then
32: combinationArray[ii] =- av
33: end if
34: ii = ii + 1
35: end for
36 oi = oi + 1
37: end for
38: Sort the CombinationArray[] according to the values closest to
39: Zero (The Robot centre line 0°). This ensures the robot will rotate
40: the minimum of times in-order to compensate for the disabled
41: sonar sensors. Store the results in the calcArray[]
42: calcArray[] sorted angle values needed for compensation
43: for (ca < number in combinationArray) do
44: var nearest = ca.OrderBy (x => math.abs(long) x-0)).First()
45: Remove the nearest value found from the combinationArray[]
46: combinationArray.RemoveAll(item => item == nearest
47: calcArray.Add(nearest)
48: end for
49: Use the calcArray[] to work out the rotationCommand values
50: foreach(int calc in calcArray) do
51: ii = 0 inner index
52: for(ea < number in enabledArray) do
53: if(disabledArray.Contains (ea[ii] + calc) then
54: disabledArray.Remove(ea[ii] + calc)
55: rotationCommand.Add = calc
56: end if
57: i = i + 1
58: end for

C. Frontal Sonar Sensor Compensation (Rotation Patterns)

Fig. 9 shows a chart plotting the number of robot rotations
required for a particular sonar sensors fault scenarios. Fig. 9
shows 31 sonar sensor fault combinations (alternate
combinations from the 62 possible sonar fault combinations on

the P3-DX robot sonar array). The position of the disabled
sonars sensors on the robots’ sonar array can result in different
rotation requirements. For example, in Fig. 9, scenario 11 has
three disable sonar sensors and scenario 13 has also three
disabled sonars; however, it only requires one robot rotation to
compensate for scenario 11, whereas it takes two rotations to
compensate for scenario 13.

Fig. 9 How the increased number of disabled sonars sensors will also
result in an increased in robot rotations to compensate for the fault

Fig. 10 When the robot has entered sonar failure mode; the robot is
stopped and rotated at specific intervals during its task; an object OB

can be discovered during a rotation event

Discovery of a sonar sensor fault causes the robot to stop
and triggers an evaluation process to establish the extent of the
fault. When the fault has been analyzed and the compensation
policy has calculated the robot rotation(s) (see Algorithm 3)
required, the robot can continue its allocated task. However,
because the P3-DX robot is in a failure mode, the robot is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:5, 2017

628

stopped at pre-defined intervals to check if there any obstacles
in its path. Fig. 10 shows that the P3-DX robot is stopped every
200 mm intervals; this is to ensure the robot does not strike an
object while in sonar failure mode. When the robot is stopped,
it then rotates on its axis according to the rotation instructions
established from using the compensation algorithm (see
Algorithm 3, Table V). The robot will only declare an object
has been detected, if that object is within a certain threshold
distance. If, after a robot rotation has been executed and an
object detected, then the robot can apply its Obstacle
Avoidance policy. The robot will have to maintain the sonar
sensor fault compensation policy for the remainder of its task
while the sonar sensors are reporting a fault condition.
Extensive sonar sensors faults will result in multiple rotations
by the robot at each STOP interval and consequently result in
the task taking a longer time to complete. On a shorter journey,
this may not present any issues but if the robot is executing a
task involving a long distance, then this could have an impact
on resources like power consumption.

X. CONCLUSION AND FUTURE WORK

The purpose of this research paper was to apply autonomic
principles to the problem of managing sonar sensor hardware
failures. In our approach, we extended the current autonomic
MAPE architecture by introducing the AAA-3 layered
architecture. This approach gave us the ability to detect sonar
sensor faults, process the extent of the fault and finally make
the necessary adjustments to allow the P3-DX robot to detect
objects, even with reduced functionality. However, our
experiments showed that as the number of disabled sonar
sensors increased, then the time for the robot to complete its
task greatly increased. Recording the journey time and power
usage, was not part of this research paper but they would have
to be seriously considered if the experiment was extended for
real-time tasks.

An important lesson learned during this research is that
hardware failure cannot always be observed by the User,
especially those in sub-systems [9], as we found in sonar
sensors that reported inconsistent data.

In the future, we would like to adapt our Sonar Sensor
framework architecture to other mobile robot sensors,
including laser and stereo cameras. In the past we have
experimented with mobile robot wheel faults [5]. Our main
goal is to develop an autonomic generic framework that can
handle varying types of sensor and effector faults.

REFERENCES
[1] D. P. Miller, T. Hunt, M. Roman, S. Swindell, L. Tan and A.

Winterholler, “Experiments With a Long-Range Planetary Rover,”
University of Oklahoma Norman, OK, 73019 USA.

[2] D. M. Chess, A. Segal, I. Whalley, and S. R. White, “An architectural
blueprint for autonomic computing,” IBM Corporation, 2004.

[3] T. Huntsberger, “Fault Tolerant Action Selection for Planetary Rover
Control,” University of South Carolina, Columbia, SC 29208, USA.

[4] T. Kohler, E. Berghofer, “Sensor Fault Detection and Compensation in
Lunar/Plantary Robot Missions,” University of Bremen, 28359,
Germany

[5] M. Doran, R. Sterritt, G. Wilkie, “Self-Adaptive Wheel Alignment For
Mobile Robots,” IARIA Conference, Rome, 2016.

[6] Adept Mobile Robots. Pioneer 3 Operations Manual, Version 6, 2010.
[7] Microsoft. Microsoft Robotics Developer Studio. (Online). Available

from: http://www.microsoft.com/robotics/ (Accessed 10 September
2016).

[8] N. K. Melchior and W. D. Smart, “Autonomic Systems for Mobile
Robots.” Department of Computer Science and Engineering,
Washington University, MO, 63130 USA.

[9] D. Crestani, K. Godary-Dejean, “Fault Tolerance in Control
Architectures for Mobile Robots: Fantasy or Reality?,” Laboratoire
Informatique Robotique Microélectronique de Montpellier Université
Montpellier Sud de France.

[10] M. K. Habib, “Real Time Mapping and Dynamic Navigation for Mobile
Robots,” International Journal of Advanced Robotic Systems, Vol. 4,
No. 3 (2007) ISSN 1729-8806, pp. 323-338.

[11] Sensor failure detection through introspection. (Online). Available from:
http://hdl.handle.net/10945/3518 (Accessed 3 September 2016).

[12] E. Matson, S DeLoach, “Enabling Intra-Robotic Capabilities Adaptation
Using An Organization-Based Multiagent System,” IEEE International
Conference on Robotics and Automation (IEEE ICRA 04) on, May
2004, pp 2135-2140.

[13] O. Zweigle, B. Keil, M. Wittlinger, K. Haussermann and P. Levi,
“Recognizing Hardware Faults on Mobile Robots Using Situation
Analysis Techniques,” International Conference IAS-12 on, June 2012,
pp 397-409.

[14] E. Khalastchi, M. Kalech, L. Rokach, Y Shicel and G. Bodek, “Sensor
Fault Detection and Diagnosis for Autonomous Systems,” 22nd
International Workshop on Principles of Diagnosis, October, 2011.

[15] Y. Dai, Y. Xiang and G. Zhang, “Self-healing and Hybrid Diagnosis in
Cloud Computing,” DBLP Conference: Cloud Computing, First
International Conference, CloudCom, December, 2009, pp. 45 – 56.

[16] M. Parashar and S. Hariri, “Autonomic Computing: an Overview,”
Proceedings of the 2004 international conference on Unconventional
Programming Paradigms, September 2004, pp. 257 – 269.

[17] M. Scheutz and J. Kramer, “Reflection and Reasoning Mechanisms for
Failure Detection and Recovery in a Distributed Robotic Architecture
for Complex Robots,” in Robotics and Automation, 2007 IEEE
International Conference on, April 2007, pp. 3699-3704.

[18] P. Arcaini, E Riccobene and P Scandurra, “Modeling and Analyzing
MAPE-K Feedback Loops for Self-adaptation,” Proceedings of the 10th
International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, June 2015, pp. 13 – 23.

[19] Computerworld. IBM Adds Autonomic Tools to Speed Up Error
Detection. (Online) Available from:
http://www.computerworld.com/article/2557731/networking/ibm-adds-
autonomic-tools-to-speed-up-error-detection.html (Accessed 27
September 2016).

