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Abstract—Automatic reusability appraisal could be helpful in 

evaluating the quality of developed or developing reusable software 
components and in identification of reusable components from 
existing legacy systems; that can save cost of developing the software 
from scratch. But the issue of how to identify reusable components 
from existing systems has remained relatively unexplored. In this 
paper, we have mentioned two-tier approach by studying the 
structural attributes as well as usability or relevancy of the 
component to a particular domain. Latent semantic analysis is used 
for the feature vector representation of various software domains. It 
exploits the fact that FeatureVector codes can be seen as documents 
containing terms -the idenifiers present in the components- and so 
text modeling methods that capture co-occurrence information in 
low-dimensional spaces can be used. Further, we devised Neuro-
Fuzzy hybrid Inference System, which takes structural metric values 
as input and calculates the reusability of the software component. 
Decision tree algorithm is used to decide initial set of fuzzy rules for 
the Neuro-fuzzy system. The results obtained are convincing enough 
to propose the system for economical identification and retrieval of 
reusable software components.  
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I. INTRODUCTION 
HE demand for new software applications is currently 
increasing at the exponential rate, as is the cost to develop 
them. The numbers of qualified and experienced 

professionals required for this extra work are not increasing 
commensurably [1]. Software professionals have recognized 
reuse as a powerful means of potentially overcoming the 
above said software crisis [2], [3]  and it promises significant 
improvements in software productivity and quality [4], [5]. 
There are two approaches for reuse of code: develop the 
reusable code from scratch or identify and extract the reusable 
code from already developed code. The organization that has 
experience in developing software, but not yet used the 
software reuse concept, there exists extra cost to develop the 
reusable components from scratch to build and strengthen 
their reusable software reservoir [4]. The cost of developing 
the software from scratch can be saved by identifying and 
extracting the reusable components from already developed  
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and existing software systems or legacy systems [6]. But the 
issue of how to identify reusable components from existing 
systems has remained relatively unexplored. In both the cases, 
whether we are developing software from scratch or reusing  
code from already developed projects, there is a need of 
evaluating the quality of the potentially reusable piece of 
software.  

Tracz observed that for programmers to reuse software they 
must first find it useful [7]. Experimental results confirm that 
prediction of reusability is possible but it involves more than 
the set of metrics that are being used [8]. According to [9], in 
some sense, researchers have fully explored most traditional 
methods of measuring reusability: complexity, module size, 
interface characteristics, etc., but the ability to reuse a 
software also depends on domain characteristics. It means we 
should concentrate on evaluating the software in terms of its 
relevancy to a particular domain.  

The contribution of metrics to the overall objective of the 
software quality is understood and recognized [10]-[12]. But 
how these metrics collectively determine reusability of a 
software component is still at its naïve stage. A neural 
Network approach could serve as an economical, automatic 
tool to generate reusability ranking of software [13]. But, 
when one designs with Neural Networks alone, the network is 
a black box that needs to be defined, which is a highly 
compute-intensive process. One must develop a good sense, 
after extensive experimentation and practice, of the 
complexity of the network and the learning algorithm to be 
used. Fuzzy systems, on the other hand, require a thorough 
understanding of the fuzzy variables and membership 
functions, of the input-output relationships, as well as the good 
judgment to select the fuzzy rules that contribute the most to 
the solution of the application. As for the Fuzzy inference 
system there is a need of membership rules for fuzzy 
categories. It is difficult to deduce these membership rules 
with a given set of complex data. Neural nets and fuzzy 
systems, although very different, have close relationship: they 
work with impression in a space that is not defined by crisp, 
deterministic boundaries [14]. Neural network can be used to 
define fuzzy rules for the fuzzy inference system. A neural 
network is good at discovering relationships and pattern in the 
data, so neural network can be used to preprocess data in the 
fuzzy system. Furthermore, neural network that can learn new 
relationships with new input data can be used to refine fuzzy 
rules to create fuzzy adaptive system. With the objective of 
taking advantage of the features of the both, we proposed 
Neuro-Fuzzy based approach to identify reusable components 
in existing systems. 

T 
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 In the second section we have given details of the 
methodology followed. Third and fourth section is devoted to 
LSA and Neuro-fuzzy architecture. Fifth section discusses the 
implementation and results obtained. In Last section 
conclusion is made. 

II. METHODOLOGIES FOLLOWED 
A two-tier approach is proposed for evaluation of the 

domain-specific reusable code. In the first Tier, we tried to 
find the Domain-Relevancy of the Component and in the 
second tier Neuro-fuzzy system can be used to evaluate the 
software component’s code reusability by analyzing structural 
properties of the component.  

 A. Domain-Relevancy Appraisal 
We proposed an approach that allows to automatically 

cluster feature-vector (FV) codes, extracted from different 
domnains, into meaningful categories. It exploits the fact that 
FV codes can be seen as documents containing terms - the 
idenifiers present in the components- and so text modeling 
methods that capture co-occurrence information in low-
dimensional spaces can be used. The FV code derived 
descriptions are computed by Latent Semantic Analysis (LSA) 
using Singular Value Decomposition (SVD) technique. The 
FV code representation of clusters is used to find the domain-
relevancy (DR-value) of the software components using 
simialrity analysis.  
1) Construction of Feature Vector (FV) of Domains   

Following steps are proposed to find the FV of the different 
domains using training software components: 

a) Extract identifiers  
First, extract all identifiers  from Training software 

belonging to different domains. Identifiers include function 
names, constant names and variable-names used in the 
software.  From identifiers, exclude reserved because they 
have no relation with software features. We also cut out 
comments. The reason is that amount and quality of comments 
in each software system vary widely, and many software 
systems have copyright notice or license terms in comments. 

b) Create identifier-by-software matrix 
c) Remove useless identifiers and perform Normalization. 
Before performing LSA, remove identifiers that appear in 

only one software system, or in more than half of software 
systems. Identifiers appearing in only one software system are 
not meaningful in LSA. And, identifiers appearing in more 
than half of software systems are probably a general term. 
After that Normalization of the matrix is performed. 

d) Apply LSA for decomposition and Dimensionality 
Reduction  

e) Perform Cluster Analysis  
Cluster analysis is performed to form the FV of the cluster 

or domain of the software that can be used in the calculation 
of the domain relevancy of software. The clustering results 
and FV of each software Domain are saved in excel database 
sheets for future use.  

 
2)  Estimating Domain Relevancy value (DR-value)  

 Following steps can be taken to calculate DR-value of a 
potential reusable Component: 

a) Extract the structural features  
Features are extracted from the potential reusable 

component and FV is formed as discussed in section-1a and 
FV is mapped according to occurrence matrix’s keyword list 
using “folding-in” process [15]. 

b) Perform Similarity Analysis 
Similarity analysis between FV of the potential reusable 

component and the FV of different domains is performed and 
the similarity vector tells the relevancy level with existing 
domains. Here we are taking the assumption that the input 
software might belong to a number of domains with different 
extent.  

 
B. Structural Analysis 
 Structural Analysis of the query component is performed 

using Neuro-fuzzy Inference system to evaluate the software 
component’s code reusability using following steps: 
1) Deciding the set of Metrics that are able to express the 
structural attributes helpful in evaluating reusability of 
software. We have used following set of metrics: 

 Cyclometric Complexity Using Mc Cabe’s Measure [16] 
[17] 
 Regularity Metric[6] 
 Halstead Software Science Indicator[18] 
 Reuse Frequency Metric[6]. 
 Coupling Metric[12] [17] 

let 
ai = number of functions called and Data Coupled with 

function “i”  
bi = number of functions called and Stamp Coupled with 

function “i”  
ci = number of functions called by function “i” and Control 

Coupled with function “i” 
di = number of functions Common Coupled with function 

“i”  
Then total lack of coupling measure mc for function “i” can 

be calculated as shown in (1). 
 

dwcwbwaw
K

m
iiii

c
4321 +++

=  (1) 

 
As lack of coupling(mc) decreases, there is decrease in 

understandability and maintainability, so there should be some 
maximum value of the coupling associated with a software 
component, beyond which the component becomes non-
reusable i.e. there should be minimum value for the lack of 
coupling measure(mc). 
2) Parse the software code to generate the Meta information 
related to the Software Metrics decided in previous step. 
3) Calculated values of the metrics are forwarded as input to 
the trained Neuro-Fuzzy inference Engine. 
4) Neuro-Fuzzy inference system, which is already trained, 
will get the metric values from the earlier stages and estimate 
the reusability value of the software components based on the 
structural attributes.   

Considering the reusability value generated in last step 
along with the DR-value, the component can be extracted and 
put into the Reusable Software Reservoir for future reuse. 
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III. LATENT SEMANTIC ANALYSIS 
Latent Semantic Analysis (LSA) can be applied to induce 

and represent aspects of the meaning of words [19], [20]. LSA 
is a variant of the vector space model that converts a 
representative sample of documents to a term-by-document 
matrix in which each cell indicates the frequency with which 
each term (rows) occurs in each document (columns). Thus a 
document becomes a column vector and can be compared 
with a user's query represented as a vector of the same 
dimension. 

LSA extends the vector space model by modeling term-
document relationships using a reduced approximation for the 
column and row space computed by the singular value 
decomposition of the term by document matrix. SVD is one 
technique being used in LSA.   

1) Singular Value Decomposition (SVD)  
SVD is a form of factor analysis, or more properly, the 

mathematical generalization of which factor analysis is a 
special case [19]. It constructs an n dimensional abstract 
semantic space in which each original term and each original 
(and any new) document are presented as vectors. In SVD a 
rectangular term-by-document matrix X is decomposed into 
the product of three other matrices W, S, and PT  as shown in 
(2). 

PSWX T
K =      (2) 

Where W is a orthonormal matrix and its rows correspond 
to the rows of X, but it has m columns corresponding to new, 
specially derived variables such that there is no correlation 
between any two columns; i.e., each is linearly independent of 
the others. P is an orthonormal matrix and has columns 
corresponding to the original columns but m rows composed 
of derived singular vectors. The third matrix S is an m by m 
diagonal matrix with non-zero entries (called singular values) 
only along one central diagonal. A large singular value 
indicates a large effect of this dimension on the sum squared 
error of the approximation. The role of these singular values is 
to relate the scale of the factors in the other two matrices to 
each other such that when the three components are matrix 
multiplied, the original matrix is reconstructed. 

Following the decomposition by SVD, the k most important 
dimensions (those with the highest singular values in S) are 
selected as shown in (3). All other factors are omitted, i.e., the 
other singular values in the diagonal matrix along with the 
corresponding singular vectors of the other two matrices are 
deleted. The reduced dimensionality solution then generates a 
vector of n real values to represent each document. The 
reduced matrix ideally represents the important and reliable 
patterns underlying the data in X. It corresponds to a least-
squares best approximation to the original matrix X [20]. 

PSWX T
KKKK =  (3) 

The Xk matrix should now contain the major associational 
structure in the matrix and has left out the noise. In this 
reduced model, the overall pattern of term usage determines 

how close the documents will be located, regardless of the 
precise words in the documents [21]. 

Document query similarity can be measured by calculating 
the cosine between the document vectors, xk and a query 
vector, qk as shown in (4)-(6).  

AqS T ~~
=  (4) 

Where  

PSA T
KK

α−= 1~
 (5) 

And according to [13], the query vector is projected into the 
same k-dimensional space by (6). 

 

SWqq KK
T α=

~
 (6) 

The performance of queries generally improves as k 
increases, but will decrease past a threshold. It is possible for 
an SVD based system to locate terms which do not even 
appear in a document. Documents which are located in a 
similar part of the concept space (i.e. which have a similar 
meaning) are retrieved, rather than only matching keywords. 
By using a concept space, Polysemy and Synonymy based 
problems can be solved. 

2) Data Clustering 
Nearest-neighbor-based, agglomerative, hierarchical, 

unsupervised conceptual clustering is proposed to create a 
hierarchy of clusters grouping of software of similar semantic 
structure. Clustering starts with a set of singleton clusters, 
each containing a single software  di Є D, where i =1, ..., N, 
where D equals the entire set of documents and N equals the 
number of all software. The two most similar clusters over the 
entire set D are merged to form a new cluster that covers both. 
This process is repeated for each of the remaining N-1 
software components. A complete linkage algorithm is 
applied to determine the overall similarity of document 
clusters based on the document similarity matrix. Merging of 
document clusters continues until a single, all-inclusive 
cluster remains. At termination, a uniform, binary hierarchy of 
document clusters is produced.  

IV. NEURO-FUZZY SYSTEM’S ARCHITECTURE 
The fuzzy logic approach is beneficial for measuring the 

reusability of a software component as the conventional model 
based approaches are difficult to be implemented. 
Unfortunately, with the increase in the complexity of the 
problem being modeled and unavailability of the precise 
relationship among various constituents for measuring the 
reusability, has led to rely on another approach which is 
mostly known as neuro-fuzzy or fuzzy-neuro approach. It has 
the benefits of both neural networks and fuzzy logic. The 
neuro-fuzzy hybrid system combines the advantages of fuzzy 
logic system, which deal with explicit knowledge that can be 
explained and understood, and neural networks, which deal 
with implicit knowledge, which can be acquired by learning. 
According to [22], A fuzzy system can be considered to be a 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2542

parameterized nonlinear map, called f, which can be expressed 
as (7). 
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where yl is a place of output singleton, if Mamdani 

reasoning is applied or a constant, if Sugeno reasoning is 
applied. The membership function µAi

l(xi) corresponds to the 
input x=[ x1, x2, x3,… xm] of the rule l . The “and” connective 
in the premise is carried out by a product and defuzzification 
by the center-of-gravity method. Consider a Sugeno type of 
fuzzy system having the rule base 

 
Rule1:  If x is A1 and y is B1, then f1= p1x + q1y + 1 
Rule2:  If x is A2 and y is B2, then f2= p2x+ q2y + r2 
 

Let the membership functions of fuzzy sets Ai, Bi, i=1,2, be , 
µAi , µBi . 
-Evaluating the rule premises results in wi =µAi(x) * µBi (y) 
where i = 1,2 for the rule rules stated above. 
-Evaluating the implication and the rule consequences gives 
(8). 
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Then  f can be written as (10). 
 

fwfwf 2211 +=  
 

(10) 

 
In the neuro-fuzzy inference system using a given 

input/output data set, we have constructed a fuzzy inference 
system (FIS)  whose membership function parameters are 
tuned (adjusted) using stochastic gradient descent rule with 
momentum for the parameters associated with the input 
membership functions. The initial rule-base for the Neuro-
fuzzy system can be obtained using of the ID3 decision tree 
Generation algorithm. As a result, the training error decreases, 
at least locally, throughout the learning process.  

V. EXPERIMENTATION AND RESULTS 
We developed deployable Component Object Model 

(COM) based Component, which is Microsoft's binary 
standard for object interoperability. The developed 
component’s objects can be accessible through Visual Basic, 
C++, or any other language that supports COM. We collected 
sample data from various Reusable Repositories of C 
components then we ran the program for the 21 components. 
The Clustering module of the program produces occurrence 

matrix and clustering results as shown in fig. 1 and fig. 2 
respectively. 

 

 
Fig. 1 Snapshot of Occurrence Matrix formed after the SVD 

decomposition 
 
 

 
 

Fig. 2 Clusters formed using Hierarchical Clustering 
 

Dendrogram plots the hierarchical tree information as a 
graph is shown in fig. 3, where the numbers along the 
horizontal axis represent the indices of the objects or 
components in the original data set and  the links between 
objects are represented as upside-down U-shaped lines. The 
height of the U indicates the distance between the objects. 
This height is known as the cophenetic distance between the 
two objects or components. 

 

 
 

Fig. 3 Dendrogram showing the Distance between the Components 
 

When the Domain-Relevancy module is run to determine  
DR-value of the input software component then the results of 
fig. 4 shows that the similarity level is highest with the 1st 
component already existing in the repository.  
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Fig. 4: Bar chart showing the extent of similarity of the input 

software with existing software 
 
We tried to evaluate the system using Evaluation of precision 
and recall. Let S be a set of all software systems contained in a 
repository. Precision and recall are defined in (11)-(14). 
 

Precision = 
||

)(
S

sprecisionSs soft∑ ε  

 
(11) 
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And 
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where Cactual(s) is a set of clusters containing software “s”, 
generated by our software and CIdeal(s) is a set of clusters 
containing input software “s”, determined manually by the 
Domain Experts. Using Precision and Recall values we have 
calculated F-value as a measure of performance evaluation as 
shown in (15). 

F-Value =  
rp

pr
+

2  

 
(15) 

Where p is the Precision and r is the Recall of the system. 
The best F-Value for our system is 0.7. 

The Neuro-fuzzy approach based Inference Engine is 
implemented that takes values from the Metrics and calculates 
the Reusability Index of the Components after performing the 
domain-relevancy phase. A network-type structure similar to 
that of a neural network, which maps inputs through input 

membership functions and associated parameters, and then 
through output membership functions and associated 
parameters to outputs, can be used to interpret the input/output 
map is shown in the fig. 5.  
 The parameters associated with the membership functions 
will change through the learning process. The computation of 
these parameters (or their adjustment) is facilitated by a 
gradient vector, which provides a measure of how well the 
fuzzy inference system is modeling the input/output data for a 
given set of parameters. Once the gradient vector is obtained, 
any of several optimization routines could be applied in order 
to adjust the parameters so as to reduce some error measure. 
The Error Tolerance is used to create a training stopping 
criterion, which is related to the error size. The training will 
stop after the training data error remains within this tolerance. 
This is set to 0 as we don’t know how training error is going 
to behave. 
 

 
Fig. 5  Neural Network incorporating the fuzzy inference system 

 
In the fuzzy Inference system Linguistic variables are then 

assigned to the input parameters based on their values. The 
assignment of the linguistic variables depends on the range of 
the input measurement. 

Values to the linguistic variables of Complexity are assigned 
in terms of complexity of the software component. Cyclometric 
Complexity is assigned three linguistic variables “low”, 
“medium” and “high” in the range of 0 to 10. The plot is also 
shown in fig. 6. 

Values to the linguistic variables of Regularity are assigned 
in terms of level of regularity for the software component under 
consideration. Regularity is assigned two linguistic variables 
“yes” and “no” in the range of 0 to 1. The plot is also shown in 
fig. 6. 

Values to the linguistic variables of Volume are assigned in 
terms of volume of the software module. Quality attribute 
Volume is assigned three linguistic variables “low”, “medium” 
and “high” in the range of 0 to 10. The plot is also shown in fig. 
6. 

Values to the linguistic variables of Reuse-Frequency are 
assigned in terms of number of times the software module is 
reused. Reuse-Frequency is assigned two linguistic variables 
“Low” and “High” in the range of 0 to 10. The plot is also 
shown in fig. 6. 
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 Fig. 6 Initial membership- functions for Fuzzy System 

   
Values to the linguistic variables of coupling are assigned in 

terms of level of coupling of the software module with other 
modules or the level of dependency of the software module on 
other modules. Coupling is assigned three linguistic variables 
“low”, “medium” and “high”  in the range of 0 to 10. The plot 
is also shown in fig. 6. 

Values to the linguistic variables of Reusability are assigned 
in terms of “how reusable the software module is?”  As the 
output membership functions are only linear or constant for 
sugeno-type fuzzy inference. Reusability is assigned six 
linguistic variables PERFECT, HIGH, MEDIUM, LOW, 
VERY-LOW and NIL as constants in the range of 0-100.   
 

 
Fig. 7 Plot of Training error V/s Epochs 

 
The training of the NEURO-FUZZY SYSTEM is 

performed using training data for 2000 iterations and the 
training error reduces after each iteration, as shown by the fig. 
7 and stabilities at the error value of 0.33591, so at this point 
the network is said to be converged. 

During the testing phase, when NEURO-FUZZY SYSTEM 
is tested against the testing data and the Average Testing error 
obtained equal to 0.41318. The plot between the actual testing 
output versus the expected testing output is shown in fig. 8.  

 

 
Fig. 8 Plot between the actual output and expected output for Testing 

data  
 

VI. CONCLUSION 
As the actual outputs produced by the Domain Relevancy 

module and neuro-fuzzy inference system are close to the 
expected output, so the above developed deployable COM 
based Component system, can be recommended for Automatic 
identification potential reusable components from the legacy 
systems and evaluating the quality of developed or developing 
reusable components for better productivity and quality.  
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