
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2539

Automatic Reusability Appraisal of Software
Components using Neuro-fuzzy Approach

Parvinder S. Sandhu and Hardeep Singh

Abstract—Automatic reusability appraisal could be helpful in

evaluating the quality of developed or developing reusable software
components and in identification of reusable components from
existing legacy systems; that can save cost of developing the software
from scratch. But the issue of how to identify reusable components
from existing systems has remained relatively unexplored. In this
paper, we have mentioned two-tier approach by studying the
structural attributes as well as usability or relevancy of the
component to a particular domain. Latent semantic analysis is used
for the feature vector representation of various software domains. It
exploits the fact that FeatureVector codes can be seen as documents
containing terms -the idenifiers present in the components- and so
text modeling methods that capture co-occurrence information in
low-dimensional spaces can be used. Further, we devised Neuro-
Fuzzy hybrid Inference System, which takes structural metric values
as input and calculates the reusability of the software component.
Decision tree algorithm is used to decide initial set of fuzzy rules for
the Neuro-fuzzy system. The results obtained are convincing enough
to propose the system for economical identification and retrieval of
reusable software components.

Keywords— Clustering, ID3, LSA, Neuro-fuzzy System, SVD

I. INTRODUCTION
HE demand for new software applications is currently
increasing at the exponential rate, as is the cost to develop
them. The numbers of qualified and experienced

professionals required for this extra work are not increasing
commensurably [1]. Software professionals have recognized
reuse as a powerful means of potentially overcoming the
above said software crisis [2], [3] and it promises significant
improvements in software productivity and quality [4], [5].
There are two approaches for reuse of code: develop the
reusable code from scratch or identify and extract the reusable
code from already developed code. The organization that has
experience in developing software, but not yet used the
software reuse concept, there exists extra cost to develop the
reusable components from scratch to build and strengthen
their reusable software reservoir [4]. The cost of developing
the software from scratch can be saved by identifying and
extracting the reusable components from already developed

The Manuscript was submitted for review on April 15, 2006.
Parvinder S. Sandhu is Assistant Professor with Computer Science &

Engineering Department, Guru Nanak Dev Engineering College,
Ludhiana(Punjab)-141006 INDIA(Phone: +91-98555-32004; Fax: +91161-
2490339; Email: parvinder.sandhu@gmail.com, parvsandhu@yahoo.co.in)

Hardeep Singh is Profssor and Head with Computer Science &
Engineering Department, Guru Nanak Dev University, Amritsar (Punjab)
INDIA.

and existing software systems or legacy systems [6]. But the
issue of how to identify reusable components from existing
systems has remained relatively unexplored. In both the cases,
whether we are developing software from scratch or reusing
code from already developed projects, there is a need of
evaluating the quality of the potentially reusable piece of
software.

Tracz observed that for programmers to reuse software they
must first find it useful [7]. Experimental results confirm that
prediction of reusability is possible but it involves more than
the set of metrics that are being used [8]. According to [9], in
some sense, researchers have fully explored most traditional
methods of measuring reusability: complexity, module size,
interface characteristics, etc., but the ability to reuse a
software also depends on domain characteristics. It means we
should concentrate on evaluating the software in terms of its
relevancy to a particular domain.

The contribution of metrics to the overall objective of the
software quality is understood and recognized [10]-[12]. But
how these metrics collectively determine reusability of a
software component is still at its naïve stage. A neural
Network approach could serve as an economical, automatic
tool to generate reusability ranking of software [13]. But,
when one designs with Neural Networks alone, the network is
a black box that needs to be defined, which is a highly
compute-intensive process. One must develop a good sense,
after extensive experimentation and practice, of the
complexity of the network and the learning algorithm to be
used. Fuzzy systems, on the other hand, require a thorough
understanding of the fuzzy variables and membership
functions, of the input-output relationships, as well as the good
judgment to select the fuzzy rules that contribute the most to
the solution of the application. As for the Fuzzy inference
system there is a need of membership rules for fuzzy
categories. It is difficult to deduce these membership rules
with a given set of complex data. Neural nets and fuzzy
systems, although very different, have close relationship: they
work with impression in a space that is not defined by crisp,
deterministic boundaries [14]. Neural network can be used to
define fuzzy rules for the fuzzy inference system. A neural
network is good at discovering relationships and pattern in the
data, so neural network can be used to preprocess data in the
fuzzy system. Furthermore, neural network that can learn new
relationships with new input data can be used to refine fuzzy
rules to create fuzzy adaptive system. With the objective of
taking advantage of the features of the both, we proposed
Neuro-Fuzzy based approach to identify reusable components
in existing systems.

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2540

 In the second section we have given details of the
methodology followed. Third and fourth section is devoted to
LSA and Neuro-fuzzy architecture. Fifth section discusses the
implementation and results obtained. In Last section
conclusion is made.

II. METHODOLOGIES FOLLOWED
A two-tier approach is proposed for evaluation of the

domain-specific reusable code. In the first Tier, we tried to
find the Domain-Relevancy of the Component and in the
second tier Neuro-fuzzy system can be used to evaluate the
software component’s code reusability by analyzing structural
properties of the component.

 A. Domain-Relevancy Appraisal
We proposed an approach that allows to automatically

cluster feature-vector (FV) codes, extracted from different
domnains, into meaningful categories. It exploits the fact that
FV codes can be seen as documents containing terms - the
idenifiers present in the components- and so text modeling
methods that capture co-occurrence information in low-
dimensional spaces can be used. The FV code derived
descriptions are computed by Latent Semantic Analysis (LSA)
using Singular Value Decomposition (SVD) technique. The
FV code representation of clusters is used to find the domain-
relevancy (DR-value) of the software components using
simialrity analysis.
1) Construction of Feature Vector (FV) of Domains

Following steps are proposed to find the FV of the different
domains using training software components:

a) Extract identifiers
First, extract all identifiers from Training software

belonging to different domains. Identifiers include function
names, constant names and variable-names used in the
software. From identifiers, exclude reserved because they
have no relation with software features. We also cut out
comments. The reason is that amount and quality of comments
in each software system vary widely, and many software
systems have copyright notice or license terms in comments.

b) Create identifier-by-software matrix
c) Remove useless identifiers and perform Normalization.
Before performing LSA, remove identifiers that appear in

only one software system, or in more than half of software
systems. Identifiers appearing in only one software system are
not meaningful in LSA. And, identifiers appearing in more
than half of software systems are probably a general term.
After that Normalization of the matrix is performed.

d) Apply LSA for decomposition and Dimensionality
Reduction

e) Perform Cluster Analysis
Cluster analysis is performed to form the FV of the cluster

or domain of the software that can be used in the calculation
of the domain relevancy of software. The clustering results
and FV of each software Domain are saved in excel database
sheets for future use.

2) Estimating Domain Relevancy value (DR-value)

 Following steps can be taken to calculate DR-value of a
potential reusable Component:

a) Extract the structural features
Features are extracted from the potential reusable

component and FV is formed as discussed in section-1a and
FV is mapped according to occurrence matrix’s keyword list
using “folding-in” process [15].

b) Perform Similarity Analysis
Similarity analysis between FV of the potential reusable

component and the FV of different domains is performed and
the similarity vector tells the relevancy level with existing
domains. Here we are taking the assumption that the input
software might belong to a number of domains with different
extent.

B. Structural Analysis
 Structural Analysis of the query component is performed

using Neuro-fuzzy Inference system to evaluate the software
component’s code reusability using following steps:
1) Deciding the set of Metrics that are able to express the
structural attributes helpful in evaluating reusability of
software. We have used following set of metrics:

 Cyclometric Complexity Using Mc Cabe’s Measure [16]
[17]
 Regularity Metric[6]
 Halstead Software Science Indicator[18]
 Reuse Frequency Metric[6].
 Coupling Metric[12] [17]

let
ai = number of functions called and Data Coupled with

function “i”
bi = number of functions called and Stamp Coupled with

function “i”
ci = number of functions called by function “i” and Control

Coupled with function “i”
di = number of functions Common Coupled with function

“i”
Then total lack of coupling measure mc for function “i” can

be calculated as shown in (1).

dwcwbwaw
K

m
iiii

c
4321 +++

= (1)

As lack of coupling(mc) decreases, there is decrease in

understandability and maintainability, so there should be some
maximum value of the coupling associated with a software
component, beyond which the component becomes non-
reusable i.e. there should be minimum value for the lack of
coupling measure(mc).
2) Parse the software code to generate the Meta information
related to the Software Metrics decided in previous step.
3) Calculated values of the metrics are forwarded as input to
the trained Neuro-Fuzzy inference Engine.
4) Neuro-Fuzzy inference system, which is already trained,
will get the metric values from the earlier stages and estimate
the reusability value of the software components based on the
structural attributes.

Considering the reusability value generated in last step
along with the DR-value, the component can be extracted and
put into the Reusable Software Reservoir for future reuse.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2541

III. LATENT SEMANTIC ANALYSIS
Latent Semantic Analysis (LSA) can be applied to induce

and represent aspects of the meaning of words [19], [20]. LSA
is a variant of the vector space model that converts a
representative sample of documents to a term-by-document
matrix in which each cell indicates the frequency with which
each term (rows) occurs in each document (columns). Thus a
document becomes a column vector and can be compared
with a user's query represented as a vector of the same
dimension.

LSA extends the vector space model by modeling term-
document relationships using a reduced approximation for the
column and row space computed by the singular value
decomposition of the term by document matrix. SVD is one
technique being used in LSA.

1) Singular Value Decomposition (SVD)
SVD is a form of factor analysis, or more properly, the

mathematical generalization of which factor analysis is a
special case [19]. It constructs an n dimensional abstract
semantic space in which each original term and each original
(and any new) document are presented as vectors. In SVD a
rectangular term-by-document matrix X is decomposed into
the product of three other matrices W, S, and PT as shown in
(2).

PSWX T
K = (2)

Where W is a orthonormal matrix and its rows correspond
to the rows of X, but it has m columns corresponding to new,
specially derived variables such that there is no correlation
between any two columns; i.e., each is linearly independent of
the others. P is an orthonormal matrix and has columns
corresponding to the original columns but m rows composed
of derived singular vectors. The third matrix S is an m by m
diagonal matrix with non-zero entries (called singular values)
only along one central diagonal. A large singular value
indicates a large effect of this dimension on the sum squared
error of the approximation. The role of these singular values is
to relate the scale of the factors in the other two matrices to
each other such that when the three components are matrix
multiplied, the original matrix is reconstructed.

Following the decomposition by SVD, the k most important
dimensions (those with the highest singular values in S) are
selected as shown in (3). All other factors are omitted, i.e., the
other singular values in the diagonal matrix along with the
corresponding singular vectors of the other two matrices are
deleted. The reduced dimensionality solution then generates a
vector of n real values to represent each document. The
reduced matrix ideally represents the important and reliable
patterns underlying the data in X. It corresponds to a least-
squares best approximation to the original matrix X [20].

PSWX T
KKKK = (3)

The Xk matrix should now contain the major associational
structure in the matrix and has left out the noise. In this
reduced model, the overall pattern of term usage determines

how close the documents will be located, regardless of the
precise words in the documents [21].

Document query similarity can be measured by calculating
the cosine between the document vectors, xk and a query
vector, qk as shown in (4)-(6).

AqS T ~~
= (4)

Where

PSA T
KK

α−= 1~
 (5)

And according to [13], the query vector is projected into the
same k-dimensional space by (6).

SWqq KK
T α=

~
 (6)

The performance of queries generally improves as k
increases, but will decrease past a threshold. It is possible for
an SVD based system to locate terms which do not even
appear in a document. Documents which are located in a
similar part of the concept space (i.e. which have a similar
meaning) are retrieved, rather than only matching keywords.
By using a concept space, Polysemy and Synonymy based
problems can be solved.

2) Data Clustering
Nearest-neighbor-based, agglomerative, hierarchical,

unsupervised conceptual clustering is proposed to create a
hierarchy of clusters grouping of software of similar semantic
structure. Clustering starts with a set of singleton clusters,
each containing a single software di Є D, where i =1, ..., N,
where D equals the entire set of documents and N equals the
number of all software. The two most similar clusters over the
entire set D are merged to form a new cluster that covers both.
This process is repeated for each of the remaining N-1
software components. A complete linkage algorithm is
applied to determine the overall similarity of document
clusters based on the document similarity matrix. Merging of
document clusters continues until a single, all-inclusive
cluster remains. At termination, a uniform, binary hierarchy of
document clusters is produced.

IV. NEURO-FUZZY SYSTEM’S ARCHITECTURE
The fuzzy logic approach is beneficial for measuring the

reusability of a software component as the conventional model
based approaches are difficult to be implemented.
Unfortunately, with the increase in the complexity of the
problem being modeled and unavailability of the precise
relationship among various constituents for measuring the
reusability, has led to rely on another approach which is
mostly known as neuro-fuzzy or fuzzy-neuro approach. It has
the benefits of both neural networks and fuzzy logic. The
neuro-fuzzy hybrid system combines the advantages of fuzzy
logic system, which deal with explicit knowledge that can be
explained and understood, and neural networks, which deal
with implicit knowledge, which can be acquired by learning.
According to [22], A fuzzy system can be considered to be a

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2542

parameterized nonlinear map, called f, which can be expressed
as (7).

()

()∑ ⎟
⎠
⎞

⎜
⎝
⎛
∏

∑ ⎟
⎠
⎞

⎜
⎝
⎛
∏

=

= =

= =
m

l
i

n

i

m

l
i

n

i

l

x

xy
xf

A

A

l
i

l
i

1 1

1 1)(
µ

µ
 (7)

where yl is a place of output singleton, if Mamdani

reasoning is applied or a constant, if Sugeno reasoning is
applied. The membership function µAi

l(xi) corresponds to the
input x=[x1, x2, x3,… xm] of the rule l . The “and” connective
in the premise is carried out by a product and defuzzification
by the center-of-gravity method. Consider a Sugeno type of
fuzzy system having the rule base

Rule1: If x is A1 and y is B1, then f1= p1x + q1y + 1
Rule2: If x is A2 and y is B2, then f2= p2x+ q2y + r2

Let the membership functions of fuzzy sets Ai, Bi, i=1,2, be ,
µAi , µBi .
-Evaluating the rule premises results in wi =µAi(x) * µBi (y)
where i = 1,2 for the rule rules stated above.
-Evaluating the implication and the rule consequences gives
(8).

ww
fwfwf

21

2211

+
+

= (8)

Let

ww
w

w
i

i
21+

= (9)

Then f can be written as (10).

fwfwf 2211 +=

(10)

In the neuro-fuzzy inference system using a given

input/output data set, we have constructed a fuzzy inference
system (FIS) whose membership function parameters are
tuned (adjusted) using stochastic gradient descent rule with
momentum for the parameters associated with the input
membership functions. The initial rule-base for the Neuro-
fuzzy system can be obtained using of the ID3 decision tree
Generation algorithm. As a result, the training error decreases,
at least locally, throughout the learning process.

V. EXPERIMENTATION AND RESULTS
We developed deployable Component Object Model

(COM) based Component, which is Microsoft's binary
standard for object interoperability. The developed
component’s objects can be accessible through Visual Basic,
C++, or any other language that supports COM. We collected
sample data from various Reusable Repositories of C
components then we ran the program for the 21 components.
The Clustering module of the program produces occurrence

matrix and clustering results as shown in fig. 1 and fig. 2
respectively.

Fig. 1 Snapshot of Occurrence Matrix formed after the SVD

decomposition

Fig. 2 Clusters formed using Hierarchical Clustering

Dendrogram plots the hierarchical tree information as a
graph is shown in fig. 3, where the numbers along the
horizontal axis represent the indices of the objects or
components in the original data set and the links between
objects are represented as upside-down U-shaped lines. The
height of the U indicates the distance between the objects.
This height is known as the cophenetic distance between the
two objects or components.

Fig. 3 Dendrogram showing the Distance between the Components

When the Domain-Relevancy module is run to determine
DR-value of the input software component then the results of
fig. 4 shows that the similarity level is highest with the 1st
component already existing in the repository.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2543

Fig. 4: Bar chart showing the extent of similarity of the input

software with existing software

We tried to evaluate the system using Evaluation of precision
and recall. Let S be a set of all software systems contained in a
repository. Precision and recall are defined in (11)-(14).

Precision =
||

)(
S

sprecisionSs soft∑ ε

(11)

Where

|)(|

|)()(|)(
sC

sCsCsprecision
Actual

IdealActual
soft

∩
=

(12)

And

Recall =
||

)(
S

srecallSs soft∑ ε

(13)

Where

)(srecallsoft =
|)(|

|)()(|
sC

sCsC

Ideal

IdealActual ∩

(14)

where Cactual(s) is a set of clusters containing software “s”,
generated by our software and CIdeal(s) is a set of clusters
containing input software “s”, determined manually by the
Domain Experts. Using Precision and Recall values we have
calculated F-value as a measure of performance evaluation as
shown in (15).

F-Value =
rp

pr
+

2

(15)

Where p is the Precision and r is the Recall of the system.
The best F-Value for our system is 0.7.

The Neuro-fuzzy approach based Inference Engine is
implemented that takes values from the Metrics and calculates
the Reusability Index of the Components after performing the
domain-relevancy phase. A network-type structure similar to
that of a neural network, which maps inputs through input

membership functions and associated parameters, and then
through output membership functions and associated
parameters to outputs, can be used to interpret the input/output
map is shown in the fig. 5.
 The parameters associated with the membership functions
will change through the learning process. The computation of
these parameters (or their adjustment) is facilitated by a
gradient vector, which provides a measure of how well the
fuzzy inference system is modeling the input/output data for a
given set of parameters. Once the gradient vector is obtained,
any of several optimization routines could be applied in order
to adjust the parameters so as to reduce some error measure.
The Error Tolerance is used to create a training stopping
criterion, which is related to the error size. The training will
stop after the training data error remains within this tolerance.
This is set to 0 as we don’t know how training error is going
to behave.

Fig. 5 Neural Network incorporating the fuzzy inference system

In the fuzzy Inference system Linguistic variables are then

assigned to the input parameters based on their values. The
assignment of the linguistic variables depends on the range of
the input measurement.

Values to the linguistic variables of Complexity are assigned
in terms of complexity of the software component. Cyclometric
Complexity is assigned three linguistic variables “low”,
“medium” and “high” in the range of 0 to 10. The plot is also
shown in fig. 6.

Values to the linguistic variables of Regularity are assigned
in terms of level of regularity for the software component under
consideration. Regularity is assigned two linguistic variables
“yes” and “no” in the range of 0 to 1. The plot is also shown in
fig. 6.

Values to the linguistic variables of Volume are assigned in
terms of volume of the software module. Quality attribute
Volume is assigned three linguistic variables “low”, “medium”
and “high” in the range of 0 to 10. The plot is also shown in fig.
6.

Values to the linguistic variables of Reuse-Frequency are
assigned in terms of number of times the software module is
reused. Reuse-Frequency is assigned two linguistic variables
“Low” and “High” in the range of 0 to 10. The plot is also
shown in fig. 6.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2544

 Fig. 6 Initial membership- functions for Fuzzy System

Values to the linguistic variables of coupling are assigned in

terms of level of coupling of the software module with other
modules or the level of dependency of the software module on
other modules. Coupling is assigned three linguistic variables
“low”, “medium” and “high” in the range of 0 to 10. The plot
is also shown in fig. 6.

Values to the linguistic variables of Reusability are assigned
in terms of “how reusable the software module is?” As the
output membership functions are only linear or constant for
sugeno-type fuzzy inference. Reusability is assigned six
linguistic variables PERFECT, HIGH, MEDIUM, LOW,
VERY-LOW and NIL as constants in the range of 0-100.

Fig. 7 Plot of Training error V/s Epochs

The training of the NEURO-FUZZY SYSTEM is

performed using training data for 2000 iterations and the
training error reduces after each iteration, as shown by the fig.
7 and stabilities at the error value of 0.33591, so at this point
the network is said to be converged.

During the testing phase, when NEURO-FUZZY SYSTEM
is tested against the testing data and the Average Testing error
obtained equal to 0.41318. The plot between the actual testing
output versus the expected testing output is shown in fig. 8.

Fig. 8 Plot between the actual output and expected output for Testing

data

VI. CONCLUSION
As the actual outputs produced by the Domain Relevancy

module and neuro-fuzzy inference system are close to the
expected output, so the above developed deployable COM
based Component system, can be recommended for Automatic
identification potential reusable components from the legacy
systems and evaluating the quality of developed or developing
reusable components for better productivity and quality.

ACKNOWLEDGMENT
The authors like to expree their gratitude towards Dr. S. B.
Singh (Principal, G.N.D.E.C., Ludhiana) and Dr. H. K.
Grewal, HOD (CSE & IT), G.N.D.E.C, Ludhiana for
provision of laboratory facilities.

REFERENCES
[1] E. Smith, A. Al-Yasiri, and M. Merabti, “A Multi-Tiered Classification

Scheme For Component Retrieval,” Proc. Euromicro Conference, 1998,
24th Volume 2, 25-27 Aug. 1998, pp. 882 – 889.

[2] V.R. Basili, “Software Development: A Paradigm for the Future,” Proc.
COMPAC ‘89, Los Alamitos, Calif.: IEEE CS Press, 1989, pp. 471-
485.

[3] B.W. Boehm and R. Ross, “Theory-W Software Project Management:
Principles and Examples,” IEEE Trans. Software Eng., vol.15, no. 7,
1989, pp. 902.

[4] W. Lim, “Effects of Reuse on Quality, Productivity, and Economics,”
IEEE Software, vol. 11, no. 5, Oct. 1994, pp. 23-30.

[5] H. Mili, F. Mili and A. Mili, "Reusing Software: Issues And Research
Directions," IEEE Transactions on Software Engineering, Volume 21,
Issue 6, June 1995, pp. 528 - 562.

[6] G. Caldiera and V. R. Basili, “Identifying and Qualifying Reusable
Software Components”, IEEE Computer, February 1991, pp. 61-70.

[7] W. Tracz, “A Conceptual Model for Megaprogramming,” SIGSOFT
Software Engineering Notes, Vol. 16, No. 3, July 1991, pp. 36-45.

[8] Stephen R. Schach and X. Yang, "Metrics for targeting candidates for
reuse: an experimental approach," ACM, SAC 1995, pp. 379-383.

[9] J. S. Poulin, Measuring Software Reuse–Principles, Practices and
Economic Models, Addison-Wesley, 1997.

[10] W. Humphrey, Managing the Software Process, SEI Series in Software
Engineering, Addison-Wesley, 1989.

[11] L. Sommerville, Software Engineering, Addision-Wesley, 4th Edition,
1992.

[12] R. S. Pressman, Software Engineering: A Practitioner’s Approach,
McGraw-Hill Publications, 5th edition, 2005.

[13] G. Boetticher and D. Eichmann, “A Neural Network Paradigm for
Characterising Reusable Software,” Proceedings of the 1st Australian
Conference on Software Metrics, 18-19 November 1993.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2545

[14] S. V. Kartalopoulos, Understanding Neural Networks and Fuzzy Logic-
Basic Concepts and Applications, IEEE Press, 1996, pp. 153-160.

[15] T. Hofmann., “Probabilistic latent semantic indexing,” In Proceedings of
SIGIR'99, 1999.

[16] T. MaCabe, “A Software Complexity measure,” IEEE Trans. Software
Engineering, vol. SE-2, December 1976, pp. 308-320.

[17] Richard W. Selby, "Enabling Reuse-Based Software Development of
Large-Scale Systems", IEEE IEEE Trans. Software Engineering, VOL.
31, NO. 6, June 2005, pp. 495-510.

[18] Maurice H. Halstead, Elements of Software Science, Elsevier North-
Holland, New York, 1977.

[19] M. Berry, S.T. Dumais, and G.W. O'Brien, “Using Linear Algebra For
Intelligent Information Retrieval,” SIAM: Review, 37(4), 1995, pp.
573-595.

[20] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer and R.
Harshman, “Indexing By Latent Semantic Analysis,” Journal of the
American Society For Information Science, 41, 1990, pp. 391-407.

[21] S. T. Dumais, “LSI meets TREC: A status report,” Text Retrieval
Conference, 1992, pp. 137-152.

[22] J-S. R. Jang and C.T. Sun, “Neuro-fuzzy Modeling and Control,”
Proceeding of the IEEE, March 1995.

