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Abstract—The ElectroEncephaloGram (EEG) is useful for 

clinical diagnosis and biomedical research. EEG signals often 
contain strong ElectroOculoGram (EOG) artifacts produced 
by eye movements and eye blinks especially in EEG recorded 
from frontal channels. These artifacts obscure the underlying 
brain activity, making its visual or automated inspection 
difficult. The goal of ocular artifact removal is to remove 
ocular artifacts from the recorded EEG, leaving the underlying 
background signals due to brain activity. In recent times, 
Independent Component Analysis (ICA) algorithms have 
demonstrated superior potential in obtaining the least 
dependent source components. In this paper, the independent 
components are obtained by using the JADE algorithm (best 
separating algorithm) and are classified into either artifact 
component or neural component. Neural Network is used for 
the classification of the obtained independent components. 
Neural Network requires input features that exactly represent 
the true character of the input signals so that the neural 
network could classify the signals based on those key 
characters that differentiate between various signals. In this 
work, Auto Regressive (AR) coefficients are used as the input 
features for classification.  Two neural network approaches 
are used to learn classification rules from EEG data. First, a 
Polynomial Neural Network (PNN) trained by GMDH (Group 
Method of Data Handling) algorithm is used and secondly, 
feed-forward neural network classifier trained by a standard 
back-propagation algorithm is used for classification and the 
results show that JADE-FNN performs better than JADE-
PNN.  
 

Keywords—Auto Regressive (AR) Coefficients, Feed Forward 
Neural Network (FNN), Joint Approximation Diagonalisation of 
Eigen matrices (JADE) Algorithm, Polynomial Neural Network 
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I. INTRODUCTION 

NDEPENDENT Component Analysis (ICA) proves to be 
effective in removing the ocular artifacts from EEG 

recordings. However, while using ICA algorithms for ocular 
artifact correction, a crucial step is to correctly identify the 
artifact components among the decomposed independent 
components. The component based procedures used by 
various researchers for artifact removal [1-4] use ICA to 
separate the EEG into its constituent independent components 
(ICs) and then eliminate the ICs that are believed to contribute 
to the artifact sources. It is subjective, inconvenient and a time 
consuming process when dealing with large amount of EEG 
data.  An ICA based method for removing artifacts semi 
automatically was presented by Delorme et.al [5]. It is 
automated to flag trials as potentially contaminated, but these 
trials are still examined and rejected manually via a graphical 
interface. The automatic artifact removal system proposed in 
[6] used ICA for demixing the obtained EEG recordings and 
then a Support Vector Machine (SVM) to classify the 
separated sources into EEG and artifact signals using their 
lagged auto-correlation structure. The use of ICA as an artifact 
removal method does not result into any loss of data as only 
the artefactual components are rejected as opposed to entire 
trials, and is applicable to many artifact types. Using the SVM 
to classify the estimated sources into EEG and artifact signals 
also eliminates the need for visual inspection and brings the 
technique one step closer to online and real-time applications. 
However, one of the disadvantages of this method reported by 
the same authors is the high dimensionality of the feature 
space, and it is a contributing factor in the increase of the 
computational complexity of the method.  

Joyce et al [7] proposed an automatic method for the 
removal of eye movement and blink artifacts from the EEG 
using the second-order statistics-based blind source 
identification algorithm (SOBI).  However, this method 
requires six measured EOG channels which are not available 
if previously recorded data are to be processed.  Support 
vector machines (SVM) have been introduced into eye blink 
artifact removal by Shoker et al [8]. This method also used the 
SOBI algorithm to separate the EEG recordings into 
independent sources and then used the manually selected eye 
blink artifact components and the remaining non-eye blink 
components to train an SVM classifier, which was then used 
to automatically identify the eye blink artifact-independent 
components. The contribution of this method is that it 
introduces the machine learning method, SVM classification, 

Automatic Removal of Ocular Artifacts using 
JADE Algorithm and Neural Network  

V Krishnaveni, S Jayaraman, A Gunasekaran, K Ramadoss  

I



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1140

 

 

into the identification of the artifact component; thus it 
enables the automatic implementation of the ICA-based OA 
removal method. However, the training step in this method 
was complex, in which a lot of eye blink and non-eye blink 
artifact-independent components were needed to train an 
SVM classifier. In [9]  an automatic method for removing the 
eye blink artifact from EEG recordings by using an ICA-based 
template matching method is proposed. The limitation of this 
method is that the method could only be used for the removal 
of eye blink artifacts from EEG.  

In [10], several ICA algorithms are quantitatively compared 
and JADE algorithm has been found to be the best separating 
ICA algorithm.  In this paper, the independent components are 
obtained by using the JADE algorithm and are classified into 
either artifact component or neural component. Neural 
Network is used for the classification of the obtained 
independent components. A number of neural network 
approaches may be used to learn classification rules from EEG 
data. First, a Polynomial Neural Network (PNN) trained by 
GMDH (Group Method of Data Handling) algorithm is used 
and secondly, feed-forward neural network classifier trained 
by a standard back-propagation algorithm is used for 
classification and the results are compared and the best 
classifier is identified [11].   

A block diagram representation of the proposed work is 
shown in Figure1. EEGs are acquired and stored. Raw EEGs 
are separated into statistically independent sources using the 
JADE algorithm. Features (AR coefficients) are extracted 
from the ICs and are used to find whether the source contains 
the ocular artifact.  Finally, the sources that are identified as 
non-artifacts are used to reconstruct the artifact-free EEGs 
through reprojection. 
 

 
Fig. 1 Automatic ocular artifact removal system 

II. POLYNOMIAL NEURAL NETWORK  

Polynomial Neural Network [12,13] is a flexible neural 
network architecture whose structure (topology) is developed 
through learning. It consists of a set of middle hidden layers 
which are composed of a number of polynomial nodes. In 
particular, the number of layers of the PNN is not fixed in 
advance but becomes generated in fly. The basic structure of 
PNN is shown in Figure 2. Between the input and output,  the 
connect function and the objective function (typically mean 
square error) are determined by a training process consisting 
of three components: connective weights between nodes, 
analogous to neurons which define the relative contribution of 
the input; training laws (criteria) that determine the adjustment 

of the weights during the training; and a transfer function that 
can be determined by a number of nodes and the connected 
weights. 

 
Fig. 1  Basic structure of PNN 

The input–output relationship and training procedure of the 
PNN algorithm can be briefly described in the following 
steps: 

i) Select input variables X = {x1, x2 , …, xn} and divide the 
available data into training and testing data sets. 

ii)  Choose a pair of variables and determine the structure of 
polynomial (pair of input variables and the order). This is in 
contrast with traditional Artificial Neural Networks (ANN) 
that use single-variable nodes. 

iii) Calculate the connective weights between the nodes of  
polynomial in the training process. 

iv) Identify the contributing nodes at each hidden layer and 
select the new input variables for the next hidden layer. 

v) Check the residual error and stopping criteria, and build up 
the network relationship for prediction. 

It is clear what distinguishes PNN from traditional ANN is 
its polynomial structure in the nodes and the selection of 
nodes in the training process. By choosing the most significant 
input variables and corresponding polynomial order, the 
optimal extracted polynomial descriptions can be obtained. 
According to both the selection of nodes at each layer and the 
generation of hidden layers, the procedure leads to an optimal 
network structure of PNN. As discussed, PNN is a multi-
layered network consisting of neurons whose transfer  
function  g  is  a  short-term  polynomial.   For example, a 
non-linear polynomial is given by  

0 1 1 2 2 12 1 2( , )y g w w w x w x w x x= = + + +x  (1)  

where g is the transfer function of the neuron, 

1 2 1 2(1, , , )x x x x=x  is a input vector and 

0 1 2 1 2( , , , )w w w w w w=  are the polynomial 
coefficients or a weight vector. Eqn 1 is a polynomial 
description of a system model. However, to determine the 
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coefficients of the polynomial (1) for a general nonlinear 
system is rather difficult because they depend on not only the 
number of polynomial terms used but also the number of 
variables and data. Earlier researches have combined statistics, 
pattern recognition and least square methods to directly search 
for the best estimation of the polynomial; most of them, 
however, ran into problems with the ill conditional data 
structure and/or limited experimental data [14,15]. The 
GMDH algorithm is one of the most successful fitting 
algorithms for obtaining an approximate description of 
formula (3) by combining polynomial units of two variables in 
multiple layers and sifting these units with certain sorting 
criteria [15,16]. 

III. GROUP METHOD OF DATA HANDLING (GMDH) 
ALGORITHM 

The objective of GMDH algorithm is to build an analytical 
function (called model) which would behave itself in such a 
way that the predicted value of the output would be as close as 
possible to its actual value. The computation process 
comprises three basic steps [17]:  

Step 1 – Select input variables and divide them to pairs as a 
training set at each layer.  

Step 2 – Select new variables as input of the next middle layer 
and truncate the subsequent computation. With the 
identification of the optimal output of polynomials at each 
layer, the selection of new variables enables the network to 
quickly converge to the target solution. Once the polynomial 
equations at each unit are selected, the residual error in each 
layer is further checked to determine whether the set of 
equations of the model should be further improved within the 
subsequent computation. 

Step 3 – Build the final model and compute the predicted 
value. The final prediction model can be obtained with 
selected variables in each layer and the coefficients of  
polynomials between the connected layers. 

    The GMDH algorithm secures an optimal structure of the 
model from successive generations of polynomials after 
filtering out those intermediate variables that are insignificant 
for predicting the correct output. Most improvement of 
GMDH has focused on the generation of the polynomial, the 
determination of its structure and the selection of intermediate 
variables. GMDH  training  algorithms  are  based  on  an  
evolutionary  principle,  which  is  performed  as following 
[11]:  At the first layer r = 1, using all possible combinations 
by two from m inputs, generates the first population of 
neuron- candidates.  Since the neuron-candidates are fed by 
two different inputs, the number L1 of the combinations, or a 
size of the population at the first layer, is equal to  2mC . 

    In the first layer, the outputs of the neuron-candidates are 
(1)
1y …..

(1)
1Ly . Then an algorithm selects from this 

population of the neurons, F best ones, F < L1. The selection 

of the best neurons is performed in accordance with a 
predefined fitness function whose value depends on the 
classification accuracy of the neurons-candidates. Selection 
criterion is predefined such that when its value is decreased 
the classification accuracy of the neuron is increased. In the 
second and next layers r , the size Lr  of the population 

defined by the number F, i.e., 2L FCr = . The generation and 
selection of the neurons are again performed.  The new layers 
are created while the criterion value is decreased. In Figure 3 
an example of the polynomial network consisting of 3 layers 
the GMDH algorithm grew for m = 5 inputs and F = 4 is 
shown. 

 
Fig. 3 Polynomial Neural Network trained by GMDH Algorithm 

The neuron-candidates that are selected at each layer are 

depicted as grey boxes. A neuron 
(3)
2y  that provides the best 

classification accuracy assigns to be an output neuron. A 
resulting polynomial network, as shown in Figure 3 is a 3 
layer network   consisting of 6 neurons and 3 input nodes. 
This network is described by a set of the following 
polynomials:  
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where 1g ,….. 6g  are the transfer functions of the neurons. 
To  realize  the  selection  procedure,  a  dataset  are 
beforehand divided  into  two  subsets. The first of them is 
used to train the neuron weights and the second to evaluate the 
classification accuracy of the neuron. Thus  the value of  the 
selection  criterion  depends  on  the  behavior  of  the neuron  
on  the  examples  that  have not been  included  in  the  
training  subset. This kind of criteria called exterior allows to 
prevent GMDH type networks from over-fitting [16,18,19].  
The transfer function (1), the number of best neurons F, as 
well as the selection criterion is predefined by users. Setting 
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these parameters, the users can experimentally search for the 
best polynomial network. 
 
TRAINING OF GMDH TYPE NETWORKS: 

 The algorithm for training GMDH type networks is 
explained below [11]: Let X be a n x m matrix of input data 
that includes n training samples presented by m features, and 

0
iy  is a target vector: 0 0 0 T

i 1 ny (y ,....,y )= , 0 {0,1}iy ∈  and 

let 0( , )iD X y=  be the dataset. Let the transfer function of 

neurons be a short-term polynomial of two variables 1x  and 

2x  as given in equation 1. In  the  first  layer  r = 1,  the  
neurons  are  connected  to  the input  nodes. The neuron 
inputs are given by pairs from m variables 1,....., mx x . 

          1 2 1 2 1 2x (1 ),i i 1,...,i i i i,x ,x ,x x m= ≠ =      (3) 

 In  the next  layers r = 2, 3, …,  the input of the neurons are  
connected  to  the  outputs  1iy   and  2iy  of  the  neurons  
from  the previous (r - 1) layer.  

       i1 i2 i1 i2 1 2x (1,y ,y ,y y ),i i 1,...,F= ≠ =               (4) 

 F is the number of the best neurons selected from the 
previous layer. For the weight vector w and the k-th example 
for the input ( )kx  the output y of the neuron is given by 
equation 5.  

       ( )( , ), 1,....ky g x w k n= =                                        (5)           (3.4)                                            

 For selecting F  best  neurons,  the GMDH  uses  the  
exterior  criterion  calculated  on  the  unseen  examples  that  
have  not  been  used  for  fitting  the weights of  the neurons. 
The unseen examples are reserved by dividing the dataset D 
into two non intersecting subsets 

0

AD (X ,y )A A=  and 
0

BD (X ,y )B B=  named the training and examining datasets. 

The user defines the sizes An  and nB  of these subsets, 

usually A Bn n= , and A Bn n n+ = . A weight vector w* is 
found that minimizes the sum square error e  of the neuron is 

calculated on a subset DA . 

 ( ) 0 2( ( , ) ) , 1,....,k
k Ak

e g x w y k n= − =∑                     (6) (3.5)                                                            

 To find out a desirable minimum, the GMDH fits the 
neuron weights to a subset DA  by using a Least Square 
Method (LSM). Once a desirable weight vector w*  that 
minimizes the error e on a subset DA   is found for all Lr   

neuron candidates of  the  layer r  then the values CRi of the 
exterior criterion on a subset DB  that has not been used to fit 

the weights is calculated.                  
( ) * 0 2( ( , ) ) , 1,...., 1,...,
kCR g x w y k n i Lk i B rki ∑= − = =                     (7)                  

 The  calculated  value  of CRi   depends  on  the  behavior of 
the i-th neuron-candidate on the unseen examples  of  the  
subset DB . Therefore the value of CR   calculated on entire 
set D will be high for the neurons with small generalization 
ability.  The values CRi calculated at the r-th layer are 
arranged in ascending order:  

       .... ....1 2CR CR CR CRi i iF iL≤ ≤ ≤ ≤       (8) 

 So the first F neurons are the best.  For  each  layer  r  it  is 
defined a minimal value CRm  corresponding  to  the  best  

neuron,  i.e., 
( )

1
r

CR CRm i= . The first F best neurons are then 
used at the next r + 1 layer.  The outputs of F selected neurons 
in accordance with equation 4 feed the neuron-candidates at 
the r + 1 layer. The training and  selection  of  the  neurons  of  
this  layer  performed  with  the  equations 6, 7 and 8 are 

repeated.  The value of 
( )r

CRm  is step-by-step decreased  while  
the number  of   layers  r is  increased  and  the  network  
grows. The value of CR reaches to a minimal point at r=3 and 
then starts to increase, as shown in Figure 4. In Figure 4 the 
value of CRm  is minimum at r=3 (third layer) of the 

polynomial network, i.e., 
(1) (2) (3)

CR CR CRm m m> > . At r=3, the 

value of CRm  becomes minimum. At the next layer r=4  the 

value of 
(4)

CRm  is increased,  therefore in  accordance with  
the  exterior  criterion  the  polynomial network  has  been  
over-fitted. Since a minimum CR was reached at the third 
layer the training algorithm is stopped and concluded that a 
desirable polynomial network has been grown at the r = 3 
layer.   

 

Fig. 4 The value of criterion CRm at various layers 

IV. FEED FORWARD NEURAL NETWORK 

Feed forward neural networks (FNN) are composed of 
layers of neurons, in which the input layer of neurons are 
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connected to the output layer of neurons. The training process 
of FNN is undertaken by changing the weights such that a 
desired input-output relationship is realised. In feed forward 
architectures, the activations of the input units are set and then 
propagated through the network until the values of the output 
units are determined. The network acts as a vector-valued 
function taking one vector on the input and returning another 
vector on the output. In this network, the information moves 
only in one direction, forward, from the input nodes, through 
the hidden nodes (if any) to the output nodes. Each neuron in 
one layer is connected to every neuron on the next layer.  
There are no cycles or loops in the network. Hence 
information is constantly "fed forward" from one layer to the 
next. An example of three layer feed-forward neural network 
is shown in Figure 5. 

 
Fig. 5 Basic structure of a Feed Forward Network 

By varying the number of nodes in the hidden layer, the 
number of layers, and the number of input and output nodes, 
one can classify the given points in arbitrary dimension into 
an arbitrary number of groups. Hence feed-forward networks 
are commonly used for classification. Once the user has 
determined the number of neurons in each layer and the 
numbers of layers have been decided on, the network's 
weights must be adjusted to minimize the delta error. A 
training algorithm is used for this purpose. The most common 
and widely used algorithm for training multi-layer feed-
forward neural networks is the back-propagation algorithm. 
 
BACK PROPAGATION TRAINING ALGORITHM. 

Back propagation is a supervised learning technique used 
for training feed-forward networks. Backpropagation requires 
that the transfer function used by the artificial neurons be 
differentiable. Input vectors and the corresponding target 
vectors are used to train a network until it can approximate a 
function, associate input vectors with specific output vectors, 
or classify input vectors in an appropriate way as it is defined. 
Standard backpropagation is a gradient descent algorithm, as 
is the Widrow-Hoff learning rule, in which the network 
weights are moved along the negative of the gradient of the 
performance function. The term backpropagation refers to the 
manner in which the gradient is computed for nonlinear 
multilayer networks. There are a number of variations on the 
basic algorithm that are based on other standard optimization 
techniques, such as conjugate gradient and Newton methods. 
Backpropagation usually allows quick convergence on 

satisfactory local minima for error in the kind of networks to 
which it is suited.  

A subset of training samples is presented to the feed 
forward network. In back propagation learning, every time an 
input vector of a training sample is presented, the output 
vector o is compared to the desired value d . The comparison 
is done by calculating the squared difference of the two [20]: 
      2( )Err d o= −               (9) 

The value of Err tells us how far away obtained values are 
from the desired value for a particular input. The goal of back 
propagation is to minimize the sum of Err  for all the 
training samples, so that the network behaves in the most 
"desirable" way.  

2( )Minimize Err d o= −∑                                       (10)               

Err can be expressed in terms of the input vector (i), the 
weight vectors (w), and the threshold function of the neurons.  
Given the fact that decreasing the value of w in the direction 
of the gradient leads to the most rapid decrease in Err , the 
weight vectors can be updated every time a sample is 
presented using the following formula: 

new old
Errw w n
w

δ
δ

= −                                          (11) 

where n is the learning rate. Using this algorithm, the weight 
vectors are modified so that the value of Err  for a particular 
input sample decreases a little bit every time the sample is 
presented. When all the samples are presented in turns for 
many cycles, the sum of Err  gradually decreases to a 
minimum value, and best fitting weights are obtained for the 
samples. 

V.  FEATURE EXTRACTION  

Neural Network requires input features that exactly 
represent the true character of the input signals so that the 
neural network could classify the signals based on those key 
characters that differentiate between various signals. The main 
purpose of feature extraction is to reduce the data by 
measuring certain features that capture the relevant 
information.  So the selection of input feature to the neural 
network is an important criterion for proper classification of 
signal.   

 In this work, Auto Regressive (AR) coefficients are used as 
the input features for classification. FFT generated spectra can 
also be used for classification. However, AR coefficients 
contain most of the information of the signal that would be in 
the spectrum and therefore a classifier should be able to 
discriminate between sets of AR coefficients calculated from 
signals with different spectral properties. The advantage of 
classifying with raw AR coefficients is that one does not need 
to search for specific frequency components that contain the 
information. Not putting limitations on where in the frequency 
domain the features may be located is inherent when using the 
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raw AR coefficients. AR coefficients are the better alternative 
to FFT frequency bands for extracting features when no prior 
spectral information is assumed [21]. 

A real valued, zero mean, stationary, nondeterministic, 
autoregressive process of order p is given by                                                                           

1
( ) ( ) ( )

p

k
k

x n a x n k e n
=

= − − +∑                               (12) 

where p is the model order, ( )x n  is the signal at the 

sampled point n , ka  is the real valued AR coefficients and 

( )e n  represent  the error term independent of past samples 
[22]. The term autoregressive implies that the process 

( )x n is seen to be regressed upon previous samples of itself. 
The error term is assumed to be a zero mean noise with finite 
variance. In applications, the values of ka  have to be 
estimated from finite samples of data.  In this application AR 
coefficients are estimated using Burg’s method [23,24]. This 
method is more accurate as compared to other methods like 
Levinson-Durbin as it uses the data point directly. 
Furthermore, Burg algorithm uses more data points by 
minimizing both forward error and backward error.  So in this 
paper to classify EEG and EOG where the significant 
spectrum of both is (0-16 Hz), AR coefficient using Burg’s 
method of order 6 is used as input feature to the Neural 
Network rather than power spectrum at various bands [25]. 10 
second epochs of raw EEG data consisting of 7 frontal 
channel recordings are taken and Independent Components 
are obtained using the JADE algorithm. Each Independent 
component is divided into 1 second segments that overlap 
each ½ second. Hence totally 19 one second segments will be 
available and each one second segment is represented by 6 AR 
coefficients. Thus the number of input features for one 
independent component will be equal to 19*6 = 114. The 
calculated AR coefficients represent the feature vector and are 
used as inputs to the neural network classifier. The classifier 
operates under the feature vector and leads to reach a decision 
of classification. 

VI.  IMPLEMENTATION 
  EEG data with ocular artifacts are taken from [26] for 

testing the proposed algorithm. The scalp EEG is obtained 
using electrodes placed at locations defined by the 10-20 
system and is sampled at a rate of 128 samples/second.  EOG 
interference will be dominant in the EEG recorded from the 
electrodes F3, Fz, F4, etc., placed on the patient’s forehead. 
Hence, samples from these frontal channels FP1, FP2, F3, F4, 
F7, F8 and FZ are taken for analysis. Independent 
Components are obtained by applying the JADE algorithm to 
the blocks of data, 10 seconds in length, which gives seven 
independent components containing both ocular and neural 
components. Then the features (Auto Regressive coefficients) 
are extracted from each of the Independent Components. The 
classifier is trained using the features obtained, and it 

classifies the independent components into ocular and neural 
components.  
 
Polynomial Neural Network: 
 
    The polynomial neural network must be trained with EEG 
and EOG samples to automatically recognize the Independent 
component which corresponds to EOG. Samples are collected 
from the independent components obtained using the JADE 
algorithm and they are visually inspected by an EEG expert to 
identify the EEG and EOG Samples. GMDH algorithm 
requires two non-intersecting subsets as training dataset and 
examining dataset along with testing dataset. In this 
experiment the training set consists of 229 samples containing 
99 EOG components and 130 EEG components and 
examining set consists of 150 samples containing 65 EOG 
components and 85 EEG components and the testing set 
consists of 2154 samples containing 208 EOG samples and 
1946 EEG samples. As discussed in section V  each sample 
was represented by 114 input features i.e., AR coefficients.  
These features have been used as the input nodes of the 
Polynomial Neural Network.  

During training the weights are updated such that the sum 
of squares of error of the neuron over all training samples is   
minimum. delta rule is used for updating the weights [27]. The 
delta rule is also referred to as Widrow-Hoff rule or Least 
Mean Square (LMS) rule. According to this rule, the change 
in weight is directly proportional to the error signal and the 
input. The error signal is equal to the difference between the 
desired output value and actual output value of the neuron. 
Target for EOG is given as 0 and for EEG as 1.  Change in 
weight for the ith  input for single output neuron is given by 

 
             (13)                  

 
    (14) 

 
where 
       α  - learning rate 
        P  - number of samples  

        Pt  - target of Pth  sample 

       inPy  -  obtained input to the neuron 

       ix  - input to the neuron  
    Using this delta rule the weights for all the neurons in each 
layer is calculated and the best neurons in that layer are 
selected by simulating the neurons with examining datasets. 
With 114 input features 6441 neurons are obtained in the first 
layer. Setting F=60, sixty best neurons are selected and 
outputs of those neurons are fed as input to the next layer. The 
other layers in the network will have 1770 neurons from 60 
inputs from its previous layers. The same procedure is 
repeated for evaluating the weights and selecting the best 
neurons in the other layers with the same training and 
examining datasets. The network is grown layer by layer as 

1

2 P

i p i
P

w x
P
α δ

=

Δ = ∑

p P inPt yδ = −
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per the GMDH training algorithm. The  error value is 
decreased  step-by-step  while  the number  of  layers  is  
increased  and  the  network  grows.  In the 4th layer the error 
value becomes minimal. In the next layer the value of error  is 
increased, therefore in  accordance with  the  exterior  
criterion  the  polynomial network  has  been  over-fitted at 
layer 5.  Because  a minimum  is reached  in the 4th layer, the  
training  algorithm is stopped and  is concluded  that  a  
desirable  polynomial  network  has  been grown at the 4th 
layer.   The errors of the best neurons from layer 1 to layer 5 
are: 

 
26.354 > 22.07 > 20.273 > 18.75 < 18.76                       (15) 
 
So a desirable polynomial network for the proposed 

application has been grown at 4 layers as shown in Figure 6. 
A polynomial neural network trained by GMDH algorithm has 
learnt from the training dataset, a classification rule that is 
described by a set of 15 polynomials given below:  
 
z11=0.75827*1+ 0.50852 *X(97)+ 0.85907 *X(98)-0.10723*X (97)* X (98); 

z12=0.70742*1+1.3931 * X (2) +0.4726* X (85)  + 0.38296 * X (2)* X (85); 

z13=0.75827*1+ 0.50852 *X(97)+0.85907 *X(98)-0.10723* X (97)* X (98);                

z14=0.57238 *1+1.377 * X (2) + 0.26579 * X (61) + 0.4594 * X (2)* X (61); 

z15=0.70742*1+1.3931 * X (2) +0.4726* X (85)  + 0.38296 * X (2)* X (85); 

z16=0.65842*1+ 0.35681*X(67) +0.86528*X(92)-0.033001*X (67)* X (92); 

z17=0.73729*1+ 0.48345 *X (97)+0.96379 *X(104)-0.1949*X(97)*X (104); 

z18=0.74838*1+ 0.52138*X(25) +1.0585* X (56)- 0.11204* X (25)* X (56); 

z21= -0.17655 *1 + 0.58637 *z11 + 0.30952 *z12  + 0.70452 *z11*z12; 

z22= -0.21672 *1 + 0.64903 *z13 + 0.29864 *z14  + 0.74661 *z13*z14; 

z23= -0.20438 *1 + 0.62977 *z15 + 0.31258 *z16 + 0.71985 *z15*z16; 

z24= -0.14459 *1 + 0.55598  *z17 + 0.31728 *z18  + 0.63401 *z17*z18; 

z31=-0.019766 *1 + 0.48808  *z21 + 0.43042 *z22  +   0.18239 *z21*z22; 

z32=-0.052048 *1 + 0.47732 *z23 + 0.50716 *z24  + 0.17377 *z23*z24; 

z41(i)= -0.16397 *1 + 0.83886  *z31 + 0.75138 *z32   - 0.42587 *z31*z32; 

Figure 6 depicts an appropriate structure of the trained 
PNN, which consists of input nodes and 15 neurons whose 
transfer function is described by equation 1. Note that the 
extracted polynomial rule used only 10 from 114 input 
variables for classification.  The polynomial rule given by a 
set of 15 polynomials is used to classify the independent 
components as follows:  If the output Z < 0.5, the Independent 
Component is classified as EOG, otherwise it is EEG. The 
polynomial network is tested with a testing dataset which is an 
entirely new dataset which consists of 208 EOG samples and 
1946 EEG samples. The performance of the classifier was 
evaluated by its sensitivity, specificity and average detection 
rate [28] and is given in Table 3.1. Sensitivity is a measure of 
the ability of the classifier to detect EOG components and 
Specificity is a measure of the ability of the classifier to 
specify EEG components.   The sensitivity is very poor for 
testing dataset. The performance is very much below the 
expected level. 

 

TABLE I  
RESULTS OF POLYNOMIAL NEURAL NETWORK 

Data Set Sensitivity Specificity Average 
Detection 
Rate 

Training data       76 %        79 %    77.5 % 

Testing data       55 %        78 %     66.5 %  
 
Feed Forward  Network: 

 
The feed-forward neural network (FNN) used in this work 

contains one hidden layer and one output neuron. The transfer 
function used in the hidden layer is log-sigmoid function 
which is given in equation 3.16.  

1
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o i i
i

w w x
y

e
− −

=
∑

+

                                (16) 

where 
  ix - the ith input variable 
   y - the output of neuron 

  ow - bias term 

  iw - synaptic weights of neuron 
    m -  number of input variables 
 

The sigmoid transfer function takes the input, which may have 
any value between plus and minus infinity, and adjusts the 
output into the range 0 to 1. In the output layer a linear 
transfer function is used. The neuron weights are initialized by 
random values. A structure of fully connected FNN is defined 
by the user. The user must assign the input nodes and preset 
the number of hidden neurons h . 

Fletcher-Reeves conjugate gradient algorithm provided by 
MATLAB is used for training the network. The basic back 
propagation algorithm adjusts the weights in the steepest 
descent direction (negative of the gradient). This is the 
direction in which the performance function is decreasing 
most rapidly. It turns out that, although the function decreases 
most rapidly along the negative of the gradient, this does not 
necessarily produce the fastest convergence. In the conjugate 
gradient algorithms a search is performed along conjugate 
directions, which produces generally faster convergence than 
steepest descent directions. In conjugate gradient algorithms, 
the step size is adjusted at each iteration. A search is made 
along the conjugate gradient direction to determine the step 
size, which minimizes the performance function along that 
line. If the vicinity of the minimum has the shape of a long, 
narrow valley, the minimum is reached in far fewer steps than 
would be the case using the method of steepest descent. To 
prevent over-fitting the network used regularization method. 
This improves generalization ability of the network. This 
involves modifying the performance function, which is 
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Fig. 6   Polynomial Neural Network to classify EEG and EOG components

normally chosen to be the sum of squares of the network 
errors on the training set. The typical performance function 
that is used for training feed-forward neural networks is the 
mean sum of squares of the network errors. It is possible to 
improve generalization if the performance function is 
modified by adding a term that consists of the mean of the 
sum of squares of the network weights and biases. Using this 
performance function will cause the network to have smaller 
weights and biases, and this will force the network response to 
be smoother and less likely to over fit.  
The number of neurons in hidden layer is varied from 15 to 
30. The network is trained for various initial weights for 1000 
epochs with a training rate of 0.01. The performance ratio is 
set to 0.5, which gives equal weight to the mean square errors 
and the mean square weights for obtaining performance 
function. Significant result is obtained for neural network with 
25 neurons in the hidden layer. The dataset used for training 
and testing the PNN is used feed-forward network.  Training 
dataset consists of 164 EOG samples and 215 EEG samples 
and the testing set consists of 2154 samples containing 208 
EOG samples and 1946 EEG samples. The performance of the 
feed-forward network in classifying the independent 
components corresponding to EOG is shown in Table II.  

The results show that the Feed-Forward network performs 
better than Polynomial network. Though the structure of 
polynomial network is simpler than feed-forward network its 
successful classification rate is very less than feed-forward 
network. The performance of feed-forward network is 
acceptable level for classification of EEG and EOG 
components 
 
 
 
 

 

TABLE II 
 RESULTS OF FEED FORWARD NEURAL NETWORK 

Data Set Sensitivity Specificity Average 
Detection Rate 

Training data       96 %        98 %    97 % 

Testing data       90 %        94 %     92 %  
 

       VII. RESULTS AND DISCUSSION 

Samples of EEG data with ocular artifacts available in [26] 
are analyzed using both JADE-PNN and JADE-FNN. The 
results obtained for ‘cba1ff01.set’ file is reported in the paper.  
EEG data corrupted with ocular artifact is shown in Figure 7. 
The frontal channels FP1, FP2, F3, F4, F7, F8, and FZ are 
considered for artifact removal since ocular artifacts are 
dominant in the frontal electrodes. The independent 
components obtained from JADE algorithm are shown in 
Figure 8. Features are extracted from the Independent 
components and are given as input to the PNN and FNN and 
the component which corresponds to ocular artifact is 
identified by the neural classifier.  The ocular artifacts are then 
removed by discarding the identified artifact component and 
reconstructing the corrected EEG using the remaining 
components. Figures 9a and 9b shows a segment of EEG 
recordings contaminated by the eye blink artifact from one of 
the subjects at the selected electrodes along with the corrected 
EEG using JADE-PNN and JADE-FNN. To test the 
performance of the algorithm, the original EEG data and the 
corrected one using the proposed algorithm is compared by 
inspecting their visual appearance for each subject’s data. The 
results show that eye blink artifacts were removed with no 
obvious distortions to the original underlying brain signals 
using the JADE-FNN algorithm compared to JADE-PNN. 
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Fig. 7 10s segment of the ocular artifact contaminated EEG recordings 
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Fig. 8  independent components obtained using JADE algorithm 
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 (a)  JADE-PNN (b) JADE-FNN 
                Fig. 9 Time domain plot for F3 channel 
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(a)  JADE-PNN (b) JADE-FNN    
 Fig. 10 Power Spectral Density plot  for F3 channel 
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(a)  JADE-PNN (b) JADE-FNN    
 Fig. 11 Frequency Correlation plot for F3 channel 
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Power Spectral Density (PSD) plots are shown in Figure 
10. The power spectral density of the signals is found using 
the window Blackman-Tukey method [24].  Here periodogram 
smoothing was obtained by applying the Blackman window to 
the autocorrelation estimate and then taking Fourier transform.  
The periodogram averaging was done by segmenting the data 
to obtain several records followed by windowing spectral 
leakage and finally by averaging the periodogram to reduce 
variance.   

 Yet another performance metric for validating the noisy 
data and denoised data is correlation in the frequency domain. 
The calculation of the correlation in the frequency domain is 
equivalent to the correlation in time domain after filtering the 
time series with the corresponding frequency filter [28].  The 
frequency correlation between two signals x and y can be 
calculated using the formula given below: 
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where,   

 w1 and w2 are the window limits 

 x%  and y%  are the Fourier coefficients of x and y.  

 
*x%  and 

*y%  are the complex conjugate of  x%  and y%   

Here x and y are noisy EEG and denoised EEG signals 
respectively. It turns out, that the definition of the correlation 
of frequency filtered time series is equivalent to calculating 
the correlation between the (complex) fourier coefficients in 
the corresponding frequency window. Here the window is 
chosen with 3 Hz that covers 25 fourier transform coefficients. 
The 3 Hz window is then moved through the entire spectrum 
of 64 HZ and correlation coefficient at the corresponding 
centre frequencies (1.5, 2.5…62.5) are found. The above 
mentioned formula calculates 125% correlation coefficient 
assuming the mean of the two signals as zero. So the mean of 
EEG signal is made zero by subtracting the mean of the entire 
signal with each value of the signal. The frequency correlation 
between noisy data shown in Figure 9 and denoised data 
obtained using  JADE-PNN and JADE-FNN is found and the 
plots are shown in Figure 11. It is evident from Figure 11 that 
compared to JADE-PNN, JADE-FNN performs better in 
removing the retaining the high frequency components (13Hz-
64 Hz) at the same time removing the ocular artifacts which 
belong to low frequency range (0 Hz – 13 Hz).  Hence from  
the time domain plots, PSD’s and frequency correlation plots, 
it is clear that JADE-FNN minimizes the amplitude of the 
ocular artifact and retains the background EEG, much better 
than JADE-PNN.  

VIII.  CONCLUSION 

Considering the classification rate performance of the 
automatic detection methods is increasing in the order of 

polynomial neural network and feed-forward neural network.  
Even though the classification rate of FNN is better than PNN, 
the success of neural network based classifier solely depend 
on the training samples.  If the training samples are carefully 
selected such that those types of EEG and EOG sample 
patterns occur frequently in decomposed EEG recordings, this 
technique proves to be efficient. Hence in order to make the 
automated process independent of training samples, Kalman 
predictor can be used for classifying EEG and EOG 
components.  
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