
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1139

Abstract—The ElectroEncephaloGram (EEG) is useful for

clinical diagnosis and biomedical research. EEG signals often
contain strong ElectroOculoGram (EOG) artifacts produced
by eye movements and eye blinks especially in EEG recorded
from frontal channels. These artifacts obscure the underlying
brain activity, making its visual or automated inspection
difficult. The goal of ocular artifact removal is to remove
ocular artifacts from the recorded EEG, leaving the underlying
background signals due to brain activity. In recent times,
Independent Component Analysis (ICA) algorithms have
demonstrated superior potential in obtaining the least
dependent source components. In this paper, the independent
components are obtained by using the JADE algorithm (best
separating algorithm) and are classified into either artifact
component or neural component. Neural Network is used for
the classification of the obtained independent components.
Neural Network requires input features that exactly represent
the true character of the input signals so that the neural
network could classify the signals based on those key
characters that differentiate between various signals. In this
work, Auto Regressive (AR) coefficients are used as the input
features for classification. Two neural network approaches
are used to learn classification rules from EEG data. First, a
Polynomial Neural Network (PNN) trained by GMDH (Group
Method of Data Handling) algorithm is used and secondly,
feed-forward neural network classifier trained by a standard
back-propagation algorithm is used for classification and the
results show that JADE-FNN performs better than JADE-
PNN.

Keywords—Auto Regressive (AR) Coefficients, Feed Forward
Neural Network (FNN), Joint Approximation Diagonalisation of
Eigen matrices (JADE) Algorithm, Polynomial Neural Network
(PNN).

V Krishnaveni and S Jayaraman are with Department of Electronics &
Communication Engineering, PSG College of Technology, Coimbatore – 641
004 India as Senior Lecturer and Professor & Head (corresponding author e-
mail: venimurthy@hotmail.com, jayaramathreya@yahoo.com.
 A Gunasekaran is with Cognizant Technology Solution, Chennai, India as
Program Analyst Trainee.
 K Ramadoss is with Department of Neurology, PSG Institute of Medical
Sciences and Research, Coimbatore - 641 004 India as Professor & Head.

I. INTRODUCTION

NDEPENDENT Component Analysis (ICA) proves to be
effective in removing the ocular artifacts from EEG

recordings. However, while using ICA algorithms for ocular
artifact correction, a crucial step is to correctly identify the
artifact components among the decomposed independent
components. The component based procedures used by
various researchers for artifact removal [1-4] use ICA to
separate the EEG into its constituent independent components
(ICs) and then eliminate the ICs that are believed to contribute
to the artifact sources. It is subjective, inconvenient and a time
consuming process when dealing with large amount of EEG
data. An ICA based method for removing artifacts semi
automatically was presented by Delorme et.al [5]. It is
automated to flag trials as potentially contaminated, but these
trials are still examined and rejected manually via a graphical
interface. The automatic artifact removal system proposed in
[6] used ICA for demixing the obtained EEG recordings and
then a Support Vector Machine (SVM) to classify the
separated sources into EEG and artifact signals using their
lagged auto-correlation structure. The use of ICA as an artifact
removal method does not result into any loss of data as only
the artefactual components are rejected as opposed to entire
trials, and is applicable to many artifact types. Using the SVM
to classify the estimated sources into EEG and artifact signals
also eliminates the need for visual inspection and brings the
technique one step closer to online and real-time applications.
However, one of the disadvantages of this method reported by
the same authors is the high dimensionality of the feature
space, and it is a contributing factor in the increase of the
computational complexity of the method.

Joyce et al [7] proposed an automatic method for the
removal of eye movement and blink artifacts from the EEG
using the second-order statistics-based blind source
identification algorithm (SOBI). However, this method
requires six measured EOG channels which are not available
if previously recorded data are to be processed. Support
vector machines (SVM) have been introduced into eye blink
artifact removal by Shoker et al [8]. This method also used the
SOBI algorithm to separate the EEG recordings into
independent sources and then used the manually selected eye
blink artifact components and the remaining non-eye blink
components to train an SVM classifier, which was then used
to automatically identify the eye blink artifact-independent
components. The contribution of this method is that it
introduces the machine learning method, SVM classification,

Automatic Removal of Ocular Artifacts using
JADE Algorithm and Neural Network

V Krishnaveni, S Jayaraman, A Gunasekaran, K Ramadoss

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1140

into the identification of the artifact component; thus it
enables the automatic implementation of the ICA-based OA
removal method. However, the training step in this method
was complex, in which a lot of eye blink and non-eye blink
artifact-independent components were needed to train an
SVM classifier. In [9] an automatic method for removing the
eye blink artifact from EEG recordings by using an ICA-based
template matching method is proposed. The limitation of this
method is that the method could only be used for the removal
of eye blink artifacts from EEG.

In [10], several ICA algorithms are quantitatively compared
and JADE algorithm has been found to be the best separating
ICA algorithm. In this paper, the independent components are
obtained by using the JADE algorithm and are classified into
either artifact component or neural component. Neural
Network is used for the classification of the obtained
independent components. A number of neural network
approaches may be used to learn classification rules from EEG
data. First, a Polynomial Neural Network (PNN) trained by
GMDH (Group Method of Data Handling) algorithm is used
and secondly, feed-forward neural network classifier trained
by a standard back-propagation algorithm is used for
classification and the results are compared and the best
classifier is identified [11].

A block diagram representation of the proposed work is
shown in Figure1. EEGs are acquired and stored. Raw EEGs
are separated into statistically independent sources using the
JADE algorithm. Features (AR coefficients) are extracted
from the ICs and are used to find whether the source contains
the ocular artifact. Finally, the sources that are identified as
non-artifacts are used to reconstruct the artifact-free EEGs
through reprojection.

Fig. 1 Automatic ocular artifact removal system

II. POLYNOMIAL NEURAL NETWORK

Polynomial Neural Network [12,13] is a flexible neural
network architecture whose structure (topology) is developed
through learning. It consists of a set of middle hidden layers
which are composed of a number of polynomial nodes. In
particular, the number of layers of the PNN is not fixed in
advance but becomes generated in fly. The basic structure of
PNN is shown in Figure 2. Between the input and output, the
connect function and the objective function (typically mean
square error) are determined by a training process consisting
of three components: connective weights between nodes,
analogous to neurons which define the relative contribution of
the input; training laws (criteria) that determine the adjustment

of the weights during the training; and a transfer function that
can be determined by a number of nodes and the connected
weights.

Fig. 1 Basic structure of PNN

The input–output relationship and training procedure of the
PNN algorithm can be briefly described in the following
steps:

i) Select input variables X = {x1, x2 , …, xn} and divide the
available data into training and testing data sets.

ii) Choose a pair of variables and determine the structure of
polynomial (pair of input variables and the order). This is in
contrast with traditional Artificial Neural Networks (ANN)
that use single-variable nodes.

iii) Calculate the connective weights between the nodes of
polynomial in the training process.

iv) Identify the contributing nodes at each hidden layer and
select the new input variables for the next hidden layer.

v) Check the residual error and stopping criteria, and build up
the network relationship for prediction.

It is clear what distinguishes PNN from traditional ANN is
its polynomial structure in the nodes and the selection of
nodes in the training process. By choosing the most significant
input variables and corresponding polynomial order, the
optimal extracted polynomial descriptions can be obtained.
According to both the selection of nodes at each layer and the
generation of hidden layers, the procedure leads to an optimal
network structure of PNN. As discussed, PNN is a multi-
layered network consisting of neurons whose transfer
function g is a short-term polynomial. For example, a
non-linear polynomial is given by

0 1 1 2 2 12 1 2(,)y g w w w x w x w x x= = + + +x (1)

where g is the transfer function of the neuron,

1 2 1 2(1, , ,)x x x x=x is a input vector and

0 1 2 1 2(, , ,)w w w w w w= are the polynomial
coefficients or a weight vector. Eqn 1 is a polynomial
description of a system model. However, to determine the

Decomposed
into

independent
components
using Jade
Algorithm

Feature
Extraction and

Neural Network
Classifier

Removal
of ocular
artifacts

Remixing
of EEG

Components

Raw EEG Independent
Components

Only EEG
Components

Pure EEG

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1141

coefficients of the polynomial (1) for a general nonlinear
system is rather difficult because they depend on not only the
number of polynomial terms used but also the number of
variables and data. Earlier researches have combined statistics,
pattern recognition and least square methods to directly search
for the best estimation of the polynomial; most of them,
however, ran into problems with the ill conditional data
structure and/or limited experimental data [14,15]. The
GMDH algorithm is one of the most successful fitting
algorithms for obtaining an approximate description of
formula (3) by combining polynomial units of two variables in
multiple layers and sifting these units with certain sorting
criteria [15,16].

III. GROUP METHOD OF DATA HANDLING (GMDH)
ALGORITHM

The objective of GMDH algorithm is to build an analytical
function (called model) which would behave itself in such a
way that the predicted value of the output would be as close as
possible to its actual value. The computation process
comprises three basic steps [17]:

Step 1 – Select input variables and divide them to pairs as a
training set at each layer.

Step 2 – Select new variables as input of the next middle layer
and truncate the subsequent computation. With the
identification of the optimal output of polynomials at each
layer, the selection of new variables enables the network to
quickly converge to the target solution. Once the polynomial
equations at each unit are selected, the residual error in each
layer is further checked to determine whether the set of
equations of the model should be further improved within the
subsequent computation.

Step 3 – Build the final model and compute the predicted
value. The final prediction model can be obtained with
selected variables in each layer and the coefficients of
polynomials between the connected layers.

 The GMDH algorithm secures an optimal structure of the
model from successive generations of polynomials after
filtering out those intermediate variables that are insignificant
for predicting the correct output. Most improvement of
GMDH has focused on the generation of the polynomial, the
determination of its structure and the selection of intermediate
variables. GMDH training algorithms are based on an
evolutionary principle, which is performed as following
[11]: At the first layer r = 1, using all possible combinations
by two from m inputs, generates the first population of
neuron- candidates. Since the neuron-candidates are fed by
two different inputs, the number L1 of the combinations, or a
size of the population at the first layer, is equal to 2mC .

 In the first layer, the outputs of the neuron-candidates are
(1)
1y …..

(1)
1Ly . Then an algorithm selects from this

population of the neurons, F best ones, F < L1. The selection

of the best neurons is performed in accordance with a
predefined fitness function whose value depends on the
classification accuracy of the neurons-candidates. Selection
criterion is predefined such that when its value is decreased
the classification accuracy of the neuron is increased. In the
second and next layers r , the size Lr of the population

defined by the number F, i.e., 2L FCr = . The generation and
selection of the neurons are again performed. The new layers
are created while the criterion value is decreased. In Figure 3
an example of the polynomial network consisting of 3 layers
the GMDH algorithm grew for m = 5 inputs and F = 4 is
shown.

Fig. 3 Polynomial Neural Network trained by GMDH Algorithm

The neuron-candidates that are selected at each layer are

depicted as grey boxes. A neuron
(3)
2y that provides the best

classification accuracy assigns to be an output neuron. A
resulting polynomial network, as shown in Figure 3 is a 3
layer network consisting of 6 neurons and 3 input nodes.
This network is described by a set of the following
polynomials:

),,()2(
3

)2(
11

)3(
2 yygy =

),,()1(
3

)1(
22

)2(
1 yygy =

),,()1(
2

)1(
13

)2(
3 yygy = (2)

),,(214
)1(

1 xxgy =

),,(415
)1(

2 xxgy =

),,(426
)1(

3 xxgy =

where 1g ,….. 6g are the transfer functions of the neurons.
To realize the selection procedure, a dataset are
beforehand divided into two subsets. The first of them is
used to train the neuron weights and the second to evaluate the
classification accuracy of the neuron. Thus the value of the
selection criterion depends on the behavior of the neuron
on the examples that have not been included in the
training subset. This kind of criteria called exterior allows to
prevent GMDH type networks from over-fitting [16,18,19].
The transfer function (1), the number of best neurons F, as
well as the selection criterion is predefined by users. Setting

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1142

these parameters, the users can experimentally search for the
best polynomial network.

TRAINING OF GMDH TYPE NETWORKS:

 The algorithm for training GMDH type networks is
explained below [11]: Let X be a n x m matrix of input data
that includes n training samples presented by m features, and

0
iy is a target vector: 0 0 0 T

i 1 ny (y ,....,y)= , 0 {0,1}iy ∈ and

let 0(,)iD X y= be the dataset. Let the transfer function of

neurons be a short-term polynomial of two variables 1x and

2x as given in equation 1. In the first layer r = 1, the
neurons are connected to the input nodes. The neuron
inputs are given by pairs from m variables 1,....., mx x .

 1 2 1 2 1 2x (1),i i 1,...,i i i i,x ,x ,x x m= ≠ = (3)

 In the next layers r = 2, 3, …, the input of the neurons are
connected to the outputs 1iy and 2iy of the neurons
from the previous (r - 1) layer.

 i1 i2 i1 i2 1 2x (1,y ,y ,y y),i i 1,...,F= ≠ = (4)

 F is the number of the best neurons selected from the
previous layer. For the weight vector w and the k-th example
for the input ()kx the output y of the neuron is given by
equation 5.

 ()(,), 1,....ky g x w k n= = (5) (3.4)

 For selecting F best neurons, the GMDH uses the
exterior criterion calculated on the unseen examples that
have not been used for fitting the weights of the neurons.
The unseen examples are reserved by dividing the dataset D
into two non intersecting subsets

0

AD (X ,y)A A= and
0

BD (X ,y)B B= named the training and examining datasets.

The user defines the sizes An and nB of these subsets,

usually A Bn n= , and A Bn n n+ = . A weight vector w* is
found that minimizes the sum square error e of the neuron is

calculated on a subset DA .

 () 0 2((,)) , 1,....,k
k Ak

e g x w y k n= − =∑ (6) (3.5)

 To find out a desirable minimum, the GMDH fits the
neuron weights to a subset DA by using a Least Square
Method (LSM). Once a desirable weight vector w* that
minimizes the error e on a subset DA is found for all Lr

neuron candidates of the layer r then the values CRi of the
exterior criterion on a subset DB that has not been used to fit

the weights is calculated.
() * 0 2((,)) , 1,...., 1,...,
kCR g x w y k n i Lk i B rki ∑= − = = (7)

 The calculated value of CRi depends on the behavior of
the i-th neuron-candidate on the unseen examples of the
subset DB . Therefore the value of CR calculated on entire
set D will be high for the neurons with small generalization
ability. The values CRi calculated at the r-th layer are
arranged in ascending order:

 1 2CR CR CR CRi i iF iL≤ ≤ ≤ ≤ (8)

 So the first F neurons are the best. For each layer r it is
defined a minimal value CRm corresponding to the best

neuron, i.e.,
()

1
r

CR CRm i= . The first F best neurons are then
used at the next r + 1 layer. The outputs of F selected neurons
in accordance with equation 4 feed the neuron-candidates at
the r + 1 layer. The training and selection of the neurons of
this layer performed with the equations 6, 7 and 8 are

repeated. The value of
()r

CRm is step-by-step decreased while
the number of layers r is increased and the network
grows. The value of CR reaches to a minimal point at r=3 and
then starts to increase, as shown in Figure 4. In Figure 4 the
value of CRm is minimum at r=3 (third layer) of the

polynomial network, i.e.,
(1) (2) (3)

CR CR CRm m m> > . At r=3, the

value of CRm becomes minimum. At the next layer r=4 the

value of
(4)

CRm is increased, therefore in accordance with
the exterior criterion the polynomial network has been
over-fitted. Since a minimum CR was reached at the third
layer the training algorithm is stopped and concluded that a
desirable polynomial network has been grown at the r = 3
layer.

Fig. 4 The value of criterion CRm at various layers

IV. FEED FORWARD NEURAL NETWORK

Feed forward neural networks (FNN) are composed of
layers of neurons, in which the input layer of neurons are

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1143

connected to the output layer of neurons. The training process
of FNN is undertaken by changing the weights such that a
desired input-output relationship is realised. In feed forward
architectures, the activations of the input units are set and then
propagated through the network until the values of the output
units are determined. The network acts as a vector-valued
function taking one vector on the input and returning another
vector on the output. In this network, the information moves
only in one direction, forward, from the input nodes, through
the hidden nodes (if any) to the output nodes. Each neuron in
one layer is connected to every neuron on the next layer.
There are no cycles or loops in the network. Hence
information is constantly "fed forward" from one layer to the
next. An example of three layer feed-forward neural network
is shown in Figure 5.

Fig. 5 Basic structure of a Feed Forward Network

By varying the number of nodes in the hidden layer, the
number of layers, and the number of input and output nodes,
one can classify the given points in arbitrary dimension into
an arbitrary number of groups. Hence feed-forward networks
are commonly used for classification. Once the user has
determined the number of neurons in each layer and the
numbers of layers have been decided on, the network's
weights must be adjusted to minimize the delta error. A
training algorithm is used for this purpose. The most common
and widely used algorithm for training multi-layer feed-
forward neural networks is the back-propagation algorithm.

BACK PROPAGATION TRAINING ALGORITHM.

Back propagation is a supervised learning technique used
for training feed-forward networks. Backpropagation requires
that the transfer function used by the artificial neurons be
differentiable. Input vectors and the corresponding target
vectors are used to train a network until it can approximate a
function, associate input vectors with specific output vectors,
or classify input vectors in an appropriate way as it is defined.
Standard backpropagation is a gradient descent algorithm, as
is the Widrow-Hoff learning rule, in which the network
weights are moved along the negative of the gradient of the
performance function. The term backpropagation refers to the
manner in which the gradient is computed for nonlinear
multilayer networks. There are a number of variations on the
basic algorithm that are based on other standard optimization
techniques, such as conjugate gradient and Newton methods.
Backpropagation usually allows quick convergence on

satisfactory local minima for error in the kind of networks to
which it is suited.

A subset of training samples is presented to the feed
forward network. In back propagation learning, every time an
input vector of a training sample is presented, the output
vector o is compared to the desired value d . The comparison
is done by calculating the squared difference of the two [20]:
 2()Err d o= − (9)

The value of Err tells us how far away obtained values are
from the desired value for a particular input. The goal of back
propagation is to minimize the sum of Err for all the
training samples, so that the network behaves in the most
"desirable" way.

2()Minimize Err d o= −∑ (10)

Err can be expressed in terms of the input vector (i), the
weight vectors (w), and the threshold function of the neurons.
Given the fact that decreasing the value of w in the direction
of the gradient leads to the most rapid decrease in Err , the
weight vectors can be updated every time a sample is
presented using the following formula:

new old
Errw w n
w

δ
δ

= − (11)

where n is the learning rate. Using this algorithm, the weight
vectors are modified so that the value of Err for a particular
input sample decreases a little bit every time the sample is
presented. When all the samples are presented in turns for
many cycles, the sum of Err gradually decreases to a
minimum value, and best fitting weights are obtained for the
samples.

V. FEATURE EXTRACTION

Neural Network requires input features that exactly
represent the true character of the input signals so that the
neural network could classify the signals based on those key
characters that differentiate between various signals. The main
purpose of feature extraction is to reduce the data by
measuring certain features that capture the relevant
information. So the selection of input feature to the neural
network is an important criterion for proper classification of
signal.

 In this work, Auto Regressive (AR) coefficients are used as
the input features for classification. FFT generated spectra can
also be used for classification. However, AR coefficients
contain most of the information of the signal that would be in
the spectrum and therefore a classifier should be able to
discriminate between sets of AR coefficients calculated from
signals with different spectral properties. The advantage of
classifying with raw AR coefficients is that one does not need
to search for specific frequency components that contain the
information. Not putting limitations on where in the frequency
domain the features may be located is inherent when using the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1144

raw AR coefficients. AR coefficients are the better alternative
to FFT frequency bands for extracting features when no prior
spectral information is assumed [21].

A real valued, zero mean, stationary, nondeterministic,
autoregressive process of order p is given by

1
() () ()

p

k
k

x n a x n k e n
=

= − − +∑ (12)

where p is the model order, ()x n is the signal at the

sampled point n , ka is the real valued AR coefficients and

()e n represent the error term independent of past samples
[22]. The term autoregressive implies that the process

()x n is seen to be regressed upon previous samples of itself.
The error term is assumed to be a zero mean noise with finite
variance. In applications, the values of ka have to be
estimated from finite samples of data. In this application AR
coefficients are estimated using Burg’s method [23,24]. This
method is more accurate as compared to other methods like
Levinson-Durbin as it uses the data point directly.
Furthermore, Burg algorithm uses more data points by
minimizing both forward error and backward error. So in this
paper to classify EEG and EOG where the significant
spectrum of both is (0-16 Hz), AR coefficient using Burg’s
method of order 6 is used as input feature to the Neural
Network rather than power spectrum at various bands [25]. 10
second epochs of raw EEG data consisting of 7 frontal
channel recordings are taken and Independent Components
are obtained using the JADE algorithm. Each Independent
component is divided into 1 second segments that overlap
each ½ second. Hence totally 19 one second segments will be
available and each one second segment is represented by 6 AR
coefficients. Thus the number of input features for one
independent component will be equal to 19*6 = 114. The
calculated AR coefficients represent the feature vector and are
used as inputs to the neural network classifier. The classifier
operates under the feature vector and leads to reach a decision
of classification.

VI. IMPLEMENTATION
 EEG data with ocular artifacts are taken from [26] for

testing the proposed algorithm. The scalp EEG is obtained
using electrodes placed at locations defined by the 10-20
system and is sampled at a rate of 128 samples/second. EOG
interference will be dominant in the EEG recorded from the
electrodes F3, Fz, F4, etc., placed on the patient’s forehead.
Hence, samples from these frontal channels FP1, FP2, F3, F4,
F7, F8 and FZ are taken for analysis. Independent
Components are obtained by applying the JADE algorithm to
the blocks of data, 10 seconds in length, which gives seven
independent components containing both ocular and neural
components. Then the features (Auto Regressive coefficients)
are extracted from each of the Independent Components. The
classifier is trained using the features obtained, and it

classifies the independent components into ocular and neural
components.

Polynomial Neural Network:

 The polynomial neural network must be trained with EEG
and EOG samples to automatically recognize the Independent
component which corresponds to EOG. Samples are collected
from the independent components obtained using the JADE
algorithm and they are visually inspected by an EEG expert to
identify the EEG and EOG Samples. GMDH algorithm
requires two non-intersecting subsets as training dataset and
examining dataset along with testing dataset. In this
experiment the training set consists of 229 samples containing
99 EOG components and 130 EEG components and
examining set consists of 150 samples containing 65 EOG
components and 85 EEG components and the testing set
consists of 2154 samples containing 208 EOG samples and
1946 EEG samples. As discussed in section V each sample
was represented by 114 input features i.e., AR coefficients.
These features have been used as the input nodes of the
Polynomial Neural Network.

During training the weights are updated such that the sum
of squares of error of the neuron over all training samples is
minimum. delta rule is used for updating the weights [27]. The
delta rule is also referred to as Widrow-Hoff rule or Least
Mean Square (LMS) rule. According to this rule, the change
in weight is directly proportional to the error signal and the
input. The error signal is equal to the difference between the
desired output value and actual output value of the neuron.
Target for EOG is given as 0 and for EEG as 1. Change in
weight for the ith input for single output neuron is given by

 (13)

 (14)

where
 α - learning rate
 P - number of samples

 Pt - target of Pth sample

 inPy - obtained input to the neuron

 ix - input to the neuron
 Using this delta rule the weights for all the neurons in each
layer is calculated and the best neurons in that layer are
selected by simulating the neurons with examining datasets.
With 114 input features 6441 neurons are obtained in the first
layer. Setting F=60, sixty best neurons are selected and
outputs of those neurons are fed as input to the next layer. The
other layers in the network will have 1770 neurons from 60
inputs from its previous layers. The same procedure is
repeated for evaluating the weights and selecting the best
neurons in the other layers with the same training and
examining datasets. The network is grown layer by layer as

1

2 P

i p i
P

w x
P
α δ

=

Δ = ∑

p P inPt yδ = −

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1145

per the GMDH training algorithm. The error value is
decreased step-by-step while the number of layers is
increased and the network grows. In the 4th layer the error
value becomes minimal. In the next layer the value of error is
increased, therefore in accordance with the exterior
criterion the polynomial network has been over-fitted at
layer 5. Because a minimum is reached in the 4th layer, the
training algorithm is stopped and is concluded that a
desirable polynomial network has been grown at the 4th
layer. The errors of the best neurons from layer 1 to layer 5
are:

26.354 > 22.07 > 20.273 > 18.75 < 18.76 (15)

So a desirable polynomial network for the proposed

application has been grown at 4 layers as shown in Figure 6.
A polynomial neural network trained by GMDH algorithm has
learnt from the training dataset, a classification rule that is
described by a set of 15 polynomials given below:

z11=0.75827*1+ 0.50852 *X(97)+ 0.85907 *X(98)-0.10723*X (97)* X (98);

z12=0.70742*1+1.3931 * X (2) +0.4726* X (85) + 0.38296 * X (2)* X (85);

z13=0.75827*1+ 0.50852 *X(97)+0.85907 *X(98)-0.10723* X (97)* X (98);

z14=0.57238 *1+1.377 * X (2) + 0.26579 * X (61) + 0.4594 * X (2)* X (61);

z15=0.70742*1+1.3931 * X (2) +0.4726* X (85) + 0.38296 * X (2)* X (85);

z16=0.65842*1+ 0.35681*X(67) +0.86528*X(92)-0.033001*X (67)* X (92);

z17=0.73729*1+ 0.48345 *X (97)+0.96379 *X(104)-0.1949*X(97)*X (104);

z18=0.74838*1+ 0.52138*X(25) +1.0585* X (56)- 0.11204* X (25)* X (56);

z21= -0.17655 *1 + 0.58637 *z11 + 0.30952 *z12 + 0.70452 *z11*z12;

z22= -0.21672 *1 + 0.64903 *z13 + 0.29864 *z14 + 0.74661 *z13*z14;

z23= -0.20438 *1 + 0.62977 *z15 + 0.31258 *z16 + 0.71985 *z15*z16;

z24= -0.14459 *1 + 0.55598 *z17 + 0.31728 *z18 + 0.63401 *z17*z18;

z31=-0.019766 *1 + 0.48808 *z21 + 0.43042 *z22 + 0.18239 *z21*z22;

z32=-0.052048 *1 + 0.47732 *z23 + 0.50716 *z24 + 0.17377 *z23*z24;

z41(i)= -0.16397 *1 + 0.83886 *z31 + 0.75138 *z32 - 0.42587 *z31*z32;

Figure 6 depicts an appropriate structure of the trained
PNN, which consists of input nodes and 15 neurons whose
transfer function is described by equation 1. Note that the
extracted polynomial rule used only 10 from 114 input
variables for classification. The polynomial rule given by a
set of 15 polynomials is used to classify the independent
components as follows: If the output Z < 0.5, the Independent
Component is classified as EOG, otherwise it is EEG. The
polynomial network is tested with a testing dataset which is an
entirely new dataset which consists of 208 EOG samples and
1946 EEG samples. The performance of the classifier was
evaluated by its sensitivity, specificity and average detection
rate [28] and is given in Table 3.1. Sensitivity is a measure of
the ability of the classifier to detect EOG components and
Specificity is a measure of the ability of the classifier to
specify EEG components. The sensitivity is very poor for
testing dataset. The performance is very much below the
expected level.

TABLE I
RESULTS OF POLYNOMIAL NEURAL NETWORK

Data Set Sensitivity Specificity Average
Detection
Rate

Training data 76 % 79 % 77.5 %

Testing data 55 % 78 % 66.5 %

Feed Forward Network:

The feed-forward neural network (FNN) used in this work

contains one hidden layer and one output neuron. The transfer
function used in the hidden layer is log-sigmoid function
which is given in equation 3.16.

1

1

m

o i i
i

w w x
y

e
− −

=
∑

+

 (16)

where
 ix - the ith input variable
 y - the output of neuron

 ow - bias term

 iw - synaptic weights of neuron
 m - number of input variables

The sigmoid transfer function takes the input, which may have
any value between plus and minus infinity, and adjusts the
output into the range 0 to 1. In the output layer a linear
transfer function is used. The neuron weights are initialized by
random values. A structure of fully connected FNN is defined
by the user. The user must assign the input nodes and preset
the number of hidden neurons h .

Fletcher-Reeves conjugate gradient algorithm provided by
MATLAB is used for training the network. The basic back
propagation algorithm adjusts the weights in the steepest
descent direction (negative of the gradient). This is the
direction in which the performance function is decreasing
most rapidly. It turns out that, although the function decreases
most rapidly along the negative of the gradient, this does not
necessarily produce the fastest convergence. In the conjugate
gradient algorithms a search is performed along conjugate
directions, which produces generally faster convergence than
steepest descent directions. In conjugate gradient algorithms,
the step size is adjusted at each iteration. A search is made
along the conjugate gradient direction to determine the step
size, which minimizes the performance function along that
line. If the vicinity of the minimum has the shape of a long,
narrow valley, the minimum is reached in far fewer steps than
would be the case using the method of steepest descent. To
prevent over-fitting the network used regularization method.
This improves generalization ability of the network. This
involves modifying the performance function, which is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1146

Fig. 6 Polynomial Neural Network to classify EEG and EOG components

normally chosen to be the sum of squares of the network
errors on the training set. The typical performance function
that is used for training feed-forward neural networks is the
mean sum of squares of the network errors. It is possible to
improve generalization if the performance function is
modified by adding a term that consists of the mean of the
sum of squares of the network weights and biases. Using this
performance function will cause the network to have smaller
weights and biases, and this will force the network response to
be smoother and less likely to over fit.
The number of neurons in hidden layer is varied from 15 to
30. The network is trained for various initial weights for 1000
epochs with a training rate of 0.01. The performance ratio is
set to 0.5, which gives equal weight to the mean square errors
and the mean square weights for obtaining performance
function. Significant result is obtained for neural network with
25 neurons in the hidden layer. The dataset used for training
and testing the PNN is used feed-forward network. Training
dataset consists of 164 EOG samples and 215 EEG samples
and the testing set consists of 2154 samples containing 208
EOG samples and 1946 EEG samples. The performance of the
feed-forward network in classifying the independent
components corresponding to EOG is shown in Table II.

The results show that the Feed-Forward network performs
better than Polynomial network. Though the structure of
polynomial network is simpler than feed-forward network its
successful classification rate is very less than feed-forward
network. The performance of feed-forward network is
acceptable level for classification of EEG and EOG
components

TABLE II
 RESULTS OF FEED FORWARD NEURAL NETWORK

Data Set Sensitivity Specificity Average
Detection Rate

Training data 96 % 98 % 97 %

Testing data 90 % 94 % 92 %

 VII. RESULTS AND DISCUSSION

Samples of EEG data with ocular artifacts available in [26]
are analyzed using both JADE-PNN and JADE-FNN. The
results obtained for ‘cba1ff01.set’ file is reported in the paper.
EEG data corrupted with ocular artifact is shown in Figure 7.
The frontal channels FP1, FP2, F3, F4, F7, F8, and FZ are
considered for artifact removal since ocular artifacts are
dominant in the frontal electrodes. The independent
components obtained from JADE algorithm are shown in
Figure 8. Features are extracted from the Independent
components and are given as input to the PNN and FNN and
the component which corresponds to ocular artifact is
identified by the neural classifier. The ocular artifacts are then
removed by discarding the identified artifact component and
reconstructing the corrected EEG using the remaining
components. Figures 9a and 9b shows a segment of EEG
recordings contaminated by the eye blink artifact from one of
the subjects at the selected electrodes along with the corrected
EEG using JADE-PNN and JADE-FNN. To test the
performance of the algorithm, the original EEG data and the
corrected one using the proposed algorithm is compared by
inspecting their visual appearance for each subject’s data. The
results show that eye blink artifacts were removed with no
obvious distortions to the original underlying brain signals
using the JADE-FNN algorithm compared to JADE-PNN.

X(97)

X(98)

X(2)

X(85)

X(61)

X(67)

X(92)

X(104)

X(25)

X(56)

Z11

Z12

Z13

Z14

Z15

Z16

Z17

Z18

Z21

Z22

Z23

Z24

Z31

Z32

Z41

INPUT LAYER 1 LAYER 2 LAYER 3 LAYER 4

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1147

 FP1

 FP2

 F3

 F4

 F7

 F8

 FZ

Fig. 7 10s segment of the ocular artifact contaminated EEG recordings

 IC1

 IC2

 IC3

 IC4

 IC5

 IC6

 IC7

Fig. 8 independent components obtained using JADE algorithm

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1148

 (a) (b)

 (a) JADE-PNN (b) JADE-FNN
 Fig. 9 Time domain plot for F3 channel

 (a) (b)

(a) JADE-PNN (b) JADE-FNN
 Fig. 10 Power Spectral Density plot for F3 channel

 (a) (b)

(a) JADE-PNN (b) JADE-FNN
 Fig. 11 Frequency Correlation plot for F3 channel

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1149

Power Spectral Density (PSD) plots are shown in Figure
10. The power spectral density of the signals is found using
the window Blackman-Tukey method [24]. Here periodogram
smoothing was obtained by applying the Blackman window to
the autocorrelation estimate and then taking Fourier transform.
The periodogram averaging was done by segmenting the data
to obtain several records followed by windowing spectral
leakage and finally by averaging the periodogram to reduce
variance.

 Yet another performance metric for validating the noisy
data and denoised data is correlation in the frequency domain.
The calculation of the correlation in the frequency domain is
equivalent to the correlation in time domain after filtering the
time series with the corresponding frequency filter [28]. The
frequency correlation between two signals x and y can be
calculated using the formula given below:

2
* *

1
, 2 2

* *

1 1

.5*

*

w

w
x y w w

w w

x y xy
C

xx yy

+
=

∑

∑ ∑

% % %%

% % % %

 (17)

where,

 w1 and w2 are the window limits

 x% and y% are the Fourier coefficients of x and y.

*x% and

*y% are the complex conjugate of x% and y%

Here x and y are noisy EEG and denoised EEG signals
respectively. It turns out, that the definition of the correlation
of frequency filtered time series is equivalent to calculating
the correlation between the (complex) fourier coefficients in
the corresponding frequency window. Here the window is
chosen with 3 Hz that covers 25 fourier transform coefficients.
The 3 Hz window is then moved through the entire spectrum
of 64 HZ and correlation coefficient at the corresponding
centre frequencies (1.5, 2.5…62.5) are found. The above
mentioned formula calculates 125% correlation coefficient
assuming the mean of the two signals as zero. So the mean of
EEG signal is made zero by subtracting the mean of the entire
signal with each value of the signal. The frequency correlation
between noisy data shown in Figure 9 and denoised data
obtained using JADE-PNN and JADE-FNN is found and the
plots are shown in Figure 11. It is evident from Figure 11 that
compared to JADE-PNN, JADE-FNN performs better in
removing the retaining the high frequency components (13Hz-
64 Hz) at the same time removing the ocular artifacts which
belong to low frequency range (0 Hz – 13 Hz). Hence from
the time domain plots, PSD’s and frequency correlation plots,
it is clear that JADE-FNN minimizes the amplitude of the
ocular artifact and retains the background EEG, much better
than JADE-PNN.

VIII. CONCLUSION

Considering the classification rate performance of the
automatic detection methods is increasing in the order of

polynomial neural network and feed-forward neural network.
Even though the classification rate of FNN is better than PNN,
the success of neural network based classifier solely depend
on the training samples. If the training samples are carefully
selected such that those types of EEG and EOG sample
patterns occur frequently in decomposed EEG recordings, this
technique proves to be efficient. Hence in order to make the
automated process independent of training samples, Kalman
predictor can be used for classifying EEG and EOG
components.

REFERENCES
[1] Lagerlund TD, Sharbrough FW, Busacker NE, "Spatial filtering of

multichannel electroencephalographic recordings through principal
component analysis by singular value decomposition”, Clinical
Neurophysiology, 14(1), 1997, pp 73 – 82.

[2] Scott Makeig, Tzyy-Ping Jung, Anthony J Bell, Terrence J Sejnowski,
“Independent Component Analysis of Electroencephalographic data”,
Advances in Neural Information Processing Systems 8 MIT Press,
Cambridge MA, Vol (8), 1996, pp 145-151.

[3] Tzyy-Ping Jung, Scott Makeig, Colin Humphries, Te-won Lee, Martin J
Mckeown, Vincent Iragui and Terrence J Sejnowski, “Extended ICA
removes Artifacts from Electroencephalographic recordings”, Advances
in Neural Information Processing Systems 10, MIT Press, Cambridge,
MA, 1998, pp 894-900.

[4] Vigario R, Jaakko Sarela, Veikko Jousmaki, Matti Hamalainen, Erkki
Oja, “Independent Component Approach to the Analysis of EEG and
MEG Recordings”, IEEE Transactions on Biomedical Engineering, Vol
47, No.5, May 2000 pp 589-593.

[5] Delorme.A, Makeig.. S & Sejnowski T, “Automatic artifact rejection for
EEG data using high-order statistics and independent component
analysis”, Proceedings of the Third International ICA Conference, 2001,
pp 9-12 .

[6] N.Nicolaou and S.J.Nasuto, “Temporal Independent Component
Analysis for automatic artefact removal from EEG”, 2nd International
Conference on Medical Signal and Information Processing, Malta,
2004, pp 5-8.

[7] Carrie A.Joyce, Irina F Gorodnitsky and Marta Kutas, “Automatic
removal of eye movement and blink artifacts from EEG data using blind
component separation”, Psychophysiology, 41 Issue 2, 2004, pp 313-
325

[8] Shoker L, Sanei S and Chambers J, “Artifact removal from
electroencephalograms using a hybrid BSS–SVM algorithm” IEEE
Signal Process. Lett. 12, 2005 pp 721–4

[9] Yandong Li, Zhongwei Ma, Wenkai Lu and Yanda Li, “Automatic
removal of the eye blink artifact from EEG using an ICA-based template
matching approach” Physiological Measurement 27, 2006, pp 425-436

[10] V Krishnaveni, S Jayaraman, Chaitanya Mathi, N Malmurugan, K
Ramadoss, “Quantitative Evaluation of Signal Separation Algorithms for
removal of ocular artifacts from EEG”, National Journal of Technology,
No.2, Vol.1, 2005, pp 47-53.

[11] Vitaly Schetinin Theorie Labor, Friedrich-Schiller, “Polynomial Neural
Networks Learnt to Classify EEG Signals,” NIMIA-SC October 2001.

[12] S.C Satapathy, P.K. Dash, G.Panda, B.B.Mishra, “Polynomial Neural
Swarm Classifier” MMU International Symposium on Information and
Communication Technologies MUSIC 2004.

[13] X.Wang, L.Li, D.Lockington, D.Pullar, D.S.Jeng, “Self-Organizing
Polynomial Neural Network for Modelling Complex Hydrological
Processes” Research Report No R861, University of Sydney, December
2005.

[14] Nalimov V.C. and Chernova N. A., “Statistical methods of planning the
extremum experiments, Moscow, 1965.

[15] Ivakheneko A G, “Polynomial Theory of Complex System, IEEE
Transactions on Systems, Man, and Cybernetics, SMC-1(4), 1971, pp
364-378.

[16] Farlow, S.J., “Self-organizing Methods in Modeling: GMDH Type
Algorithms”, Marcel Dekker, New York, 1984.

[17] Chang, F. J. and Hwang, Y.Y., “A self-organization algorithm for real-
time flood forecast, Hydrological processes”, 13, 1999, pp 123-138.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1150

[18] H.R. Madala, A.G. Ivakhnenko. “Inductive Learning Algorithms for
Complex Systems Modeling,” 1994

[19] J.A. Müller, F. Lemke, A.G. Ivakhnenko., “GMDH Algorithms for
Complex Systems Modeling. Mathematical and Computer Modeling of
Dynamical Systems,” Vol. 4, 1998, pp. 275-315.

[20] http://cse.stanford.edu/class/sophomorecollege/projects00/neural/networ
ks/Architecture /feedforward/html

[21] Mark Polak Aleksandar Kostov, “Feature extraction in development of
brain-computer feature extraction in development of brain-computer,”
Proceedings of the 20th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, Vol. 20, No.4 1998.

[22] Nai-Jen, Huan and Ramaswamy Palaniappan , “Classification of mental
tasks using fixed and adaptive autoregressive models of EEG signals,”
Proceedings of the 26th Annual International Conference of the IEEE
EMBS, September 2004.

[23] Burg, J.P., “A new analysis technique for time series data,” NATO Adv.
Study Inst. Signal Processing With Emphasis on Underwater Acoust.,
Aug. 1968

[24] Monson H Hayes, “Statistical Digital Signal Processing and Modeling”
John Wiley & Sons, Inc, 1996

[25] Keirn, Z.A., and Aunon, J.I, “A new mode of communication between
man and his surroundings,” IEEE Transactions on Biomedical
Engineering, Vol. 37, No.12 December 1990, pp. 1209-1214.

[26] http://www.sccn.ucsd.edu/~arno/famzdata/publicly_available_EEG_data
.html

[27] Sivanandam S.N. Paulraj M., “Introduction to artificial neural
networks,” Vikas publishers, 2004, pp. 39-41.

[28] L. Tarassenko, Y.U.Khan, M.R.G Holt, “Identification of inter-ictal
spikes in the EEG using neural network analysis” Inst. Elect. Eng._Proc.
Sci Meas. Technol., Vol 145, No.6, 1998, pp 270-278.

[29] Andreas Jung, Dissertation on “Statistical analysis of biomedical data”
University of Regensburg, 2003.

