
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

485

Abstract—The localization of software products is essential for

reaching the users of the international market. An important task for
this is the translation of the user interface into local national
languages. As graphical interfaces are usually optimized for the size
of the texts in the original language, after the translation certain user
controls (e.g. text labels and buttons in dialogs) may grow in such a
manner that they slip above each other. This not only causes an
unpleasant appearance but also makes the use of the program more
difficult (or even impossible) which implies that the arrangement of
the controls must be corrected subsequently. The correction should
preserve the original structure of the interface (e.g. the relation of
logically coherent controls), furthermore, it is important to keep the
nicely proportioned design: the formation of large empty areas
should be avoided. This paper describes an algorithm that
automatically rearranges the controls of a graphical user interface
based on the principles above. The algorithm has been implemented
and integrated into a translation support system and reached results
pleasant for the human eye in most test cases.

Keywords—Graphical user interface, GUI, natural languages,
software localization, translation support systems.

I. INTRODUCTION
HE world-wide improvement of the information
infrastructure has caused an exponential growth in the

number of computer users and significantly modified their
composition and computer using habits as well. Whereas
computer programs were basically used by researchers and
experts in the past decades (who generally spoke foreign
languages and used computers typically in the field of their
own specialties), today’s users represent a much wider range
of the population and use computers at different places (at
home, at their working place, at school or even during
traveling), for different purposes (work, education,
entertainment, searching for practical information etc.).
However it is a serious problem for many of the new users
that certain computer programs only have an interface in a
foreign language. This problem has been recognized by the
software development companies as well thus they have
realized that the only way to reach more users on the
international market is adapting their software products to the
local requirements, i.e. localizing them.

Manuscript received August 30, 2007. The authors are with the Department

of Automation and Applied Informatics, Budapest University of Technology
and Economics, 1111 Budapest, Goldmann György tér 3., Hungary (e-mail:
agoston.winkler@aut.bme.hu, sandor.juhasz@aut.bme.hu, phone: +36 (1)
463-1648, fax: +36 (1) 463-2871).

Localization is a complex process: beside the translation of
the text elements of the user interface it is often required to
modify some functions of the program as different countries
have different specialties, traditions, standards and legislation.
(As an example, an accounting program needs to comply with
the laws and regulations of the specific country.) However the
most important step is still the translation of the user interface.
Translation can be supported and even automated very
efficiently [1], [2], [3], nevertheless the localization process is
not completed with this step.

It is quite a serious problem that the size and the
arrangement of the controls (e.g. text labels, buttons, list
boxes etc.) is usually fitted to the extension of the texts in the
original language. As these sizes are subject of changing
during the translation, the localized interface may become
distorted [4]. If controls only shrink, the problem is not
significant as the original layout remains suitable for the new
language as well. On the other hand, the growth of sizes may
cause that certain controls slip above each other which results
an unpleasant appearance. Furthermore, it may make the use
of the program more difficult or even impossible.

Unfortunately, researches have found that the length of
translated texts is much more likely to increase than to
decrease. This phenomenon can be explained with more
reasons. The first one is the so-called “explicitation” that
means the process of adding information to the target text
explicitly that is only implicit in the source text [5], [6].
Explicitation can be obligatory when the grammar of the
target language forces the addition and voluntary when the
aim is to make the text easier to understand [6]. As an
example, the English version of Microsoft Internet Explorer
asks the user to “Click Custom level.” It is not explicitly told
that it is a button that should be clicked but it is not even
required in this language. On the contrary, certain languages
(like Hungarian) need to specify this piece of information as
well, for better comprehension. The English version does not
either contain the subjective of the sentence explicitly. In
some languages (for instance in German) this is also
obligatory.

There are other effects that may increase the length of
translated texts. For instance, the different average word
length results that sentences will be 19% longer after
translating from English to French [7] and 30% longer after
translating to Spanish [8].

The problem caused by the growth of text sizes can be
prevented by proper foresight. User interface designers may

Automatic Rearrangement of Localized
Graphical User Interface

Ágoston Winkler, and Sándor Juhász

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

486

measure the controls so that they fit even the longest
translation. Alternatively, modern design techniques can be
used to make the product “ready for localization” [9], [10].
Unfortunately, the international distribution of the product is
often not planned at the beginning of the development process
causing that developers do not use these techniques. As result
the problem appears only when the final product is ready.

In this case, the arrangement of the controls must be
corrected subsequently. The correction should preserve the
original structure of the interface (e.g. the relation of logically
coherent controls that are originally in one row or one column
should remain the same), furthermore, it is important to keep
the nicely proportioned design of the interface (the formation
of large empty areas should be avoided). The transformation
can be processed with human contribution, however this
solution is quite time-consuming and does not ensure the
desirable precision by all means.

This paper presents a new algorithm that automatically
rearranges the controls of a graphical user interface based on
the principles above. The organization of the paper is as
follows. Section II provides an overview of translation support
systems and places the algorithm in the localization process.
Section III presents the structure of the input data and the
basic scheme of the algorithm, and then it describes each step
in details. Section IV introduces the achieved results whereas
Section V summarizes the work and mentions some possible
ways of further improvement.

II. TRANSLATION SUPPORT SYSTEMS
As already mentioned, thanks to the repetitions and

frequently occurring expressions, user interface translation
can be automated very efficiently [1], [2], [3]. Fig. 1 presents
the process of localization.

Translation support systems are able to retrieve the resources
(dialogs, string tables etc.) from the executable program files
and libraries. Then they help users with translation memories,
dictionaries, spell checker modules and interactive interfaces
to do the translation as automatically as possible. Finally, the
translated versions of the resources are saved in a copy of the
original program file. As Fig. 1 shows, the rearrangement of
the dialog controls should be done after the translation. The
algorithm that is presented in the next section serves the
automation of this step.

III. THE REARRANGEMENT ALGORITHM
The input of the algorithm is a list of the controls that

contains their original coordinates and sizes as well as their
new sizes after the translation. The type of the controls (text
label, button, list box etc.) is not exploited by the algorithm:
although their distinction would be useful in some special
cases, the main goal is to work universally, with all kinds of
controls (even with those of the future). The output of the
algorithm is a list of the same type, of course with the
modified coordinates (and sizes).

The algorithm can be split into three main phases which is
shown in Fig. 2 [11]. As the input data contains no
information about the hierarchy of the controls, it must be
determined by the algorithm. This is the most important task
of the pre-processing phase. Furthermore, a list must be
created that contains the control pairs that overlap each other
in the original layout so that they can be handled specially
later. The next phase is the rearrangement itself that is
executed level by level, starting from the bottom of the control
hierarchy. Finally, the post-processing phase contains some
optional fine-tuning steps.

Building the hierarchy
of the controls

Searching for originally
existing overlaps

Rearrangement
level by level

Stretching controls to restore
their original relation

Stretching controls to restore
their originally equal sizes

Post-processing (optional)

Pre-processing

Fig. 2 Phases of the rearrangement algorithm

English
executable

or DLL

Resources
in English

Resource
retrieval

Translation
of the texts

Resources in
French

(original layout)

Resources in
French

(corrected layout)

French
executable

or DLL

Rearranging
controls

Fig. 1 Steps of translating resources in a program file

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

487

A. Pre-Processing
As mentioned before, the first and most important task of

the pre-processing phase is creating the hierarchy of the
controls as the input of the algorithm does not contain it
explicitly. This is required for being able to execute the
rearrangement algorithm level by level. The hierarchy tree can
be built by using the coordinates and the sizes of the controls.
In order to eliminate the incidental imprecision of the design,
a tolerance value is used during the determination of the
parent-child relations. Fig. 3 shows a sample dialog and the
hierarchy tree of its controls.

One of the basic principles of the rearrangement algorithm

is that the creation of overlaps due to the translation must be
avoided, i.e. controls that are originally isolated, should not
slip above each other. However practice shows that sometimes
the original layout contains overlaps as well. This may be
caused by the impreciseness of the designer (see Fig. 4) but it
can be intentional as well, usually when using standard
controls (e.g. panels) for reaching special graphical effects
(e.g. shadow, see Fig. 5).

Whereas the creation of new overlaps must be avoided, the
originally existing ones should be handled specially. This
implies that original overlaps should be remembered, and after
the rearrangement they must be taken in consideration.

B. Rearrangement Level by Level
The basic rule (Fig. 6) of the rearrangement is quite simple.

The algorithm iterates all the controls from top to bottom,
from left to right, starting from the top left corner (the actual
one is referred as the primary control). It calculates the
growth of each control and examines whether it causes any
new overlaps. If so, it moves all the other (so called
secondary) controls that are right from the right edge of the
primary control to the right (in case of horizontal growth),
whereas it moves the secondary ones that are below the
bottom of the primary control downwards (in case of vertical
growth), in such a measure that the formation of a new
overlap is just avoided. (A minimal distance to be kept
between controls can be specified as well.) The collective
replacement of the controls ensures that logical groups will
not be split up.

Fig. 5 Reaching a shadow effect by using overlapping panel
controls

 (a)

 (b)

Fig. 4 (a) Checkbox controls seem to be isolated when the
program is running (b) However, in design view it can be seen

that they actually overlap each other because of the
imprecision of the design

 (a)

 (b)

Fig. 3 (a) A sample dialog (b) The hierarchy tree of its controls

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

488

As already mentioned, controls that originally overlap each

other need to be handled specially. If the overlap is intentional
(like in Fig. 5), the aim is to preserve the original relation of
the controls. This implies that secondary controls overlapping
originally and being right from the left edge (or below the top)
of the primary control should be moved the same way as in
general cases, in accordance with the growth of the primary
control. Furthermore, this behaviour is suitable even if the
original overlap is the result of an imprecise design (like in
Fig. 4). This case can be considered as having no original
overlap between the controls but no additional space on the
right side (or under) the primary control either, i.e. the bottom
right corner of the primary control and the top left corner of
the secondary one move together.

As mentioned before, the rearrangement algorithm described
above is executed hierarchically level by level, from bottom to
top. While going up from smaller groups towards the
complete form, the composite objects of the previous level are
treated as single, monolithic controls the size of which was
determined by the algorithm described above.

C. Post-Processing
Although tests have shown that the presented algorithm

reaches quite good results despite its simplicity, it is possible
to provide even better results by handling some special cases.

One of these areas is the use of standard controls for
reaching special graphical effects like in Fig. 5. However,
whereas the dialog presented in Fig. 5 contains only two
overlapping controls, it is frequent that more controls are
effected. The standard algorithm presented in subsection III.B
moves only the secondary controls that are below or right
from the primary control. The position of the other secondary
controls is already fixed and should not be changed again as it
could result an infinite loop. Fig. 7 shows an example, a grid
composed by panel controls.

If the text labels “User 1” and “User 2” grow, moving the

right side panel would cause that the horizontal panels are
moved, too. However these panels would “drag” the left and
the central vertical panels as well that would slip above the
text label. To avoid the formation of the new overlap, the text
labels and the right panel would be moved again to the right,
starting the whole procedure again. In such cases it can be a
suitable solution not to move but to stretch the originally
overlapping secondary controls that are above or left from the
primary control. This restores the original relation of the
controls but does not require subsequent operations. However
as this behaviour may be undesirable because of changing the
ratio of control sizes, it is only an optional parameter of the
algorithm.

An other function that may be used particularly for
aesthetic improvements is the equalization of the sizes of
controls that have the same horizontal or vertical starting
position and originally had the same height or width as well.
Fig. 8 shows an example. This feature is optional as well as it
is not suitable in all cases: equal positions and sizes may be
the result of a simple coincidence. The decision would be
easier if the type of the controls were known as it is more
likely to have a real logical group if the type of the elements is
the same. However as it was already mentioned, this piece of
information is not exploited by the algorithm.

IV. RESULTS
The rearrangement takes O(n2) steps without the optional

post-processing features (described in subsection III.C) and
O(n3) including them (n is the number of the user controls).

Fig. 8 Restoring originally equal button sizes that were grown
in a different measure during the translation

 (a) (b)

Fig. 7 (a) Reaching a special grid effect by using 6 overlapping
panel controls (b) Restoring the original relation of the controls

by stretching the horizontal panels

Fig. 6 The basic principle of the algorithm: the primary
control, text label “ID card no” can grow by d1 without
causing a new overlap; if its growth is d2, all secondary

controls will be moved to the right by d2 - d1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

489

This implies that the algorithm can be used in practice as well
[11].

The algorithm has been implemented and tested with real
life examples. The total processing time of a test file
containing 177 dialogs was 5.22 seconds that is quite a good
result (C# implementation, Microsoft Windows XP operating
system, .NET framework 2.0, Intel Core ™ 2 CPU 6400 2,13
GHz, 2 GB RAM, 200 GB HDD).

Fig. 9 shows some detailed experimental results. Controls
were added to a simple dialog (containing only one hierarchy
level) one by one and the processing time of the dialog was
measured (with and without the post-processing steps). The
measurement has nicely justified the theoretically predicted
O(n2) and O(n3) complexity of the algorithm.

The rearranged dialogs were reviewed by a human tester

who found no significant errors.

V. CONCLUSION
This paper presented a new algorithm that supports

software localization by automatically rearranging the controls
of a graphical user interface after its translation in order to
restore its usability by keeping its nicely proportioned design.

Next to the basic tasks we also handle some special cases
like overlapping controls and visual effects achieved by using
standard controls. The algorithm is kept relatively simple, it
has a cubic complexity, but because of the low number (few
hundreds at maximum) of graphical elements in a single form,
it can be used interactively as processing of a complete form
does not take more than a few hundredths of second.

We considered it as an advantage that the algorithm does
not exploit the knowledge of the type of the controls, as this
allows a universal application of it. On the other hand, in
some special cases it would be worth using this piece of
information (of course, the basic algorithm should work
without it as well). A typical application would be the post-
processing described in subsection III.C to decide which
modifications should be applied. However this improvement
would affect only the aesthetics of the transformation as its
basic goal is already achieved by the present algorithm.

REFERENCES
[1] Passolo homepage, http://www.passolo.com/
[2] Trados homepage, http://www.trados.com/
[3] MemoQ homepage, http://www.kilgray.com/kilgray/products/memoq?

locale=en
[4] Gary F. Simons, John V. Thomson, “Multilingual data processing in the

CELLAR environment,” in Linguistic Databases, Groningen, 1995, pp.
203-234.

[5] Silvia Hansen-Schirra, “Linguistic enrichment and exploitation of the
Translational English Corpus,” in Proceedings of the Corpus Linguistics
Conference, Lancaster, 2003, pp. 288-297.

[6] Ana Frankenberg-Garcia, “Are translations longer than source texts? A
corpus-based study of explicitation,” in Third International CULT
(Corpus Use and Learning to Translate) Conference, Barcelona, 2004,
pp. 2-9.

[7] Aletta Grisay, “Translation procedures in OECD / PISA 2000
international assessment,” in Language Testing, SAGE Publications,
2003. Avaible: http://ltj.sagepub. com/cgi/content/abstract/20/2/225

[8] Diana Díaz Montón, “The Video Game Translator Wishlist,” in
Gamasutra, 15 June 2005. Avaible: http://www.gamasutra.com/
features/20050615/ monton_01.shtml

[9] Lingobit, “Preparing User Interface for Localization.” Available: http://
www.lingobit.com/solutions/preparing_gui.html

[10] “Creating a Layout That Adjusts Proportion for Localization,” in
Microsoft Developer Network, http://msdn2.microsoft.com/en-us/
library/7k9fa71y (vs.80).aspx

[11] Ágoston Winkler, “A New Auto-Layout Algorithm for GUI
Localization,” in Automation and Applied Computer Science Workshop
2007 (AACS’07), Budapest, 2007, pp. 295-300.

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

Number of GUI controls

M
ic

ro
se

co
nd

s

No post-
processing

With post-
processing

Fig. 9 Processing time of a simple dialog containing different
number of controls, with and without post-processing steps

