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Automatic map simplification for visualization on
mobile devices

Hang Yu

Abstract—The visualization of geographic information on mobile
devices has become popular as the widespread use of mobile Internet.
The mobility of these devices brings about much convenience to
people’s life. By the add-on location-based services of the de-
vices, people can have an access to timely information relevant to
their tasks. However, visual analysis of geographic data on mobile
devices presents several challenges due to the small display and
restricted computing resources. These limitations on the screen size
and resources may impair the usability aspects of the visualization
applications. In this paper, a variable-scale visualization method is
proposed to handle the challenge of small mobile display. By merging
multiple scales of information into a single image, the viewer is
able to focus on the interesting region, while having a good grasp
of the surrounding context. This is essentially visualizing the map
through a fisheye lens. However, the fisheye lens induces undesirable
geometric distortion in the peripheral, which renders the information
meaningless. The proposed solution is to apply map generalization
that removes excessive information around the peripheral and an
automatic smoothing process to correct the distortion while keeping
the local topology consistent. The proposed method is applied on
both artificial and real geographical data for evaluation.
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I. INTRODUCTION

THE explosive growth of mobile Internet devices such
as PDAs or smart phones brings about revolutionary

changes for the lifestyle of people. These devices provide
much convenience to people wherever they are and whenever
they want. From the Internet they can obtain timely informa-
tion on events relevant to their locations, such as finding the
restaurants nearby or the nearest parking spaces when they
are driving. Although these mobile devices quickly gained
access to the Internet applications, there are some typical
characteristics of the devices that they usually have restricted
computing resources and small displays. These characteristics
may reduce the likelihood of these devices being popularly
applied. Let us take an example of car navigation system
as one of the location-based services. In this scenario, the
driver may only have very short time on checking the route
map before making any decision. If a large area is entirely
presented on the small display, the driver may only see an
overview of his/her location without sufficient details. While
a zoom-in function can give a remedy, the driver may lost the
context information regarding to the environment. This leads
to a challenge: how to render large data-set in a relatively
small display. This is known as the “maximize the usage of
screen real estate problem” in visualization.
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To deal with the issue of small displays, an effective solution
is to represent geographical information in multiple scales,
with finer scale at the point of interest. When merging vari-
able scaled geographical information into a single image, the
viewer is able to focus on the interesting region, while having
a good grasp of the surrounding context. This is essentially
visualizing a map through a fisheye lens. Usually the regions
near the location of viewers are shown in a larger scale and
those far away are shown in a decreased scale. By this means,
the information from different scopes is fitted together as a
single event for viewers.

However there is a disadvantage for the method that the
map may be filled with excessive information on a small
display which may disturb viewer to grasp the most relevant
knowledge. For example, in driving navigation, the sinuosities
along the route, although reflecting the actual roads condition,
may cause information clutter to the viewer.

As for the problem on information cluttering, simplification
techniques, including distortion and abstraction, are designed
to improve the readability of the map [10], [11]. For most work
in this field, the main objective is to remove less important de-
tails while salient features are retained. One drawback of such
simplification is that it usually lacks aesthetic consideration
as sharp turns may appear. Thus it is expected that the map
is represented by a set of succinct and smooth curves with
topological fidelity.

The paper is organized as follows. Section II reviews related
work about analysis and visualization on mobile devices.
Section III gives the proposed method which consists of three
steps. Step 3 is the focus of the method, thus the detailed
explanation is given in section IV. The implementation and
experimental results are given in section V. Section VI con-
cludes the paper.

II. RELATED WORK

Much research work has been devoted in the field on
employing geographic information on small mobile displays.
Generally, these work can be divided into three categories:
visualization by interactive queries; visualization by map gen-
eralization and visualization by variable-scale representation.

Some researchers have proposed approaches for exploratory
analysis of geographic data on mobile devices. These ap-
proaches is inspired by a method called dynamic queries [2],
[13] which are typically applied in desktop PCs. The main
idea is that by specifying desired values, viewers can have
a fast and easy way to learn the interesting properties of
the data. An initial query can be incrementally revised by
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interactively imposing constraints on the results. However this
approach has some disadvantages when applying on mobile
devices with small displays [14]. Without showing objects
whose attributes are not within viewers’ constraints, viewers
may lose context information regarding to the queries. To
counter this problem, Burigat et al. [5] gave a visualization
technique to help viewers to obtain contextual information. In
their work, icons representing the degree that the results satisfy
viewers’ queries are placed on a map. By this way, viewers
may have a more comprehensive view of the explored dataset.

Generalization is a common technique used in geovisualiza-
tion to create appropriate views of a map for different scales.
This technique has been applied in spatial data visualization
on small mobile devices [4], [7]. The purpose is to remove
excessive information or simplify objects so that viewers will
have an easy access to relevant information to support their
tasks. However, a generalized map at a fixed scale still may
not meet the requirements for small device display as the
generalized geographic objects may be too large to display
such as a long and straight road. To solve this problem, shape
simplification and distortion methods are employed. In the
work by Agrawala et al. [1], geographic objects are generalized
differently based on cognitive psychology research. For e.g.,
all the turning points on a route are more important than the
exact length, angle and shape of the route. Similar techniques
can be found in the work by Dong et al. [6]

Besides these achievements, there is research work specif-
ically focused on the representation of geographic data on
mobile displays. To adapt the content of maps onto the small
mobile devices, Harrie et al. [8] presented a variable-scale
method based on the principles of the Fisheye view [12]. The
contents close to viewers’ location are displayed in a larger
scale with greater detail while others are in less detail. For
the small scale part of the map, some operation is needed
to increase the readability as there might be geometrical
distortion due to the uneven distribution of the data objects. A
map generalization method including building simplification
and selection was employed that selected spatial objects were
simplified while others were rejected. In the work by Li [9],
the contents of a map are divided into different groups which
are called regions of interests (ROIs). Geographic objects are
selected from these ROIs by certain rules to present at different
levels of details to viewers.

III. PROPOSED METHOD

In this paper, instead of working on various objects rep-
resentation, polygonal line or polyline is explored, which
represents road or coastline. Other objects like labels, county
boundaries, buildings, etc are not considered.

The following steps are taken to generalize a map and the
map is rendered in a small display.

• Step 1: Objects outside of the ROI that have no relation-
ship with objects in the ROI are discarded.

• Step 2: A fisheye lens transformation is applied on the
retained objects from previous step.

• Step 3: The fisheye transformed map is smoothed.
The focus of the proposed work is on step 3. Given a

collection of polylines L, the intention is to find smoothed

lines that achieve optimality while satisfying topographic con-
straints. The optimality lies in two aspects: to smooth the lines,
and to reduce the derivation from the original. Formally, the
optimization process is measured by a score function subjected
to certain constraint as follows:

min : E =
∑
l⊂L

(Es(l) + Ed(l)) (1)

where Es(l) is the sum of curvature along a polyline l and
Ed(l) is the derivation of smoothed l from its original.

The curvature of a smooth curve can be defined as the
inverse of the radius of the inscribed circle at each point
along the curve. For the definition of curvature on polyline
by the connection of discrete data points, one possible way
to estimate the curvature of a point is to compute the inverse
of the radius of the circle passing through the point and its
two neighbours. As shown in Figure 1 (a), the curvature of a
point Pi in the polyline can be given as k(Pi) = 1/r where
r is the radius of the circle that passes through 3 consecutive
points Pi−1, Pi and Pi+1. In the implementation, the length
of the polyline is simply used to represent the sum of the
curvature along the polyline as intuitively the length can reflect
the bending extent of the polyline.

The other item Ed(l) can be measured using Hausdorff
distance. However, due to the large number of points involved
in the computation, Ed(l) is approximated by the area ex-
changed between two polylines. For example, in Figure 1
(b), the derivation between the polyline and the smooth curve
represented by dotted line is measured by the area difference
under these two.

(b)(a)

k(Pi) =  1/r

r

Pi+1

Pi−1

Pi

y

x

Fig. 1. (a): Curvature of a point in a polyline. (b):Derivation between a
polyline and the smooth curve.

The topological constraint is:

• C: the areas enclosed by polylines are preserved.

Note that C implies that no intersection or self-intersection
among the polylines are created or removed.

In the following, a brief description of step 1 and step 2 are
given. In Section IV, a detailed description of step 3 is given.

A. Objects filtering and fisheye transformation (Step 1 and 2)

1) Filtering non-related objects: In this step, the map
objects having relationship with ROI are retained and the rest
are discarded. In the implementation, the ROI is denoted as
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a circular region. If an object has overlapped with the ROI,
it is considered to be relevant to current navigation task. For
example, in Figure 8 (a) an example is given showing a route
map marked with a ROI.

2) Fisheye view mapping function: There are two main
variations of fisheye view mapping: Cartesian and Polar trans-
formation. Cartesian transformation is applied in rectangular
coordinates while Polar transformation is applied in polar
coordinates. The difference is that the former transforms
data independently on X and Y directions while the latter
transforms data in the radial direction originating from the
focus.

Normalized polar fisheye transformation is employed as the
distortion technique. Under this variation, a point p(x, y) in
rectangular coordinates is represented by its normal coordi-
nates (rnorm, θ) with the focus pf (xf , yf) as the origin where
rnorm = ||p − pf || and θ = atan( y−yf

x−xf
). The relationship

between a point’s polar coordinates (rnorm, θ) and its fisheye
coordinates (rfeye, θ) is given according to the following
distortion function:

rfeye = rmax ∗ G(z, d); (2)

where G(z, d) = (d+1)∗z

d∗z+1 and z = rnorm

rmax
. d is the distortion

factor that controls the intensity of the distortion and can be
controlled through input from viewer. rmax is the maximum
bounding value of radius rnorm along the direction of θ. θ
remains constant during the transformation.

IV. LINE SMOOTHING (STEP 3)

A. Main idea

Finding the global optimal solution of E.q. 1 seems to
be difficult. Instead, a heuristic is given that iteratively local
smoothing is performed. Each “local smoothing” essentially
finds two Bézier curves that satisfy the constraint C.

The set of polylines is smoothed one by one. For each
polyline, it is randomly divided into sub-polylines. The sub-
polylines are divided in a way that the smoothing problem on
the set of polylines can be reduced to a sequence of simplified
instances. To ensure that there is a smooth transition from a
sub-polyline to the next one, during the smoothing of a sub-
polyline, additional constraints are included on the tangent of
the starting and ending points of the sub-polylines.

A complication appears to process open curves. Note that
there is no “enclosed area” under an open curve, and it is not
clear on how to impose the area preserving constraint on it.
This will be discussed in Section IV-D.

B. Algorithm flow

The overall flow of the algorithm is as follow:

1) Pick a non-smoothed polyline l from the collection L.

a) Randomly pick a point pc from l. Noted that the pc

is either the node of the l or the intersection point
resided in the l. Find a circle with pc as the center
that the set of sub-polylines S from L covered by
the boundary of the circle should all pass through

pc. The radius of the circle is obtained to the largest
extent. The relationship between S and the circle
belongs to the following two cases:

• Case 1: The center of the circle pc is the node
point of the polyline. There is only one sub-
polyline in S.

• Case 2: The center of the circle pc is the
intersection point of polylines. There are more
than one sub-polylines in S that pass through the
center pc. In the current implementation, only
two sub-polylines are considered. It can be easily
extended to more sub-polylines passing through
the intersection point.

These two cases are illustrated in Figure 2. Figure
3 gives a snapshot of the moving circle along two
polylines. The radius of the black moving circle is
obtained at the largest extent.

(b) Case 2(a) Case 1

Fig. 2. The relationship between the line segments and the circle. The center
of the circle is marked by a triangle symbol.

b) For each sub-polyline si ⊂ S, perform a sub-
problem to find the smoothed curve.

2) Process next polyline which is not smoothed.

C. Local smoothing in the sub-problem

The sub-problem is to find the smoothed curve(s) which
minimize E.q. 1 under the constraint C for the two cases
given above. Area-preserving Bézier curve fitting is employed
for the smoothing process. Generally, a Bézier curve can be

(a) (b)

Fig. 3. The snapshot of the moving circle along two polylines. The yellow
dots represent the intersection points of the two polylines. The red triangle
represents the center of the moving circle.
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determined by a number of control points. It is very convenient
to adjust the shape of the curve by moving these control points.
The advantage is that it is easy to regulate the area under the
curve.

Figure 2 (a) shows the smoothing process for case 1. The
process consists of the following three steps.

1) Locating the control points.
Four control points P1(Ax, Ay), P2(Bx, By),
P3(Cx, Cy), P4(Dx, Dy) are used to determine a
Bézier curve. Parametrically, the Bézier curve is
represented as follow:

x(u) = Ax(1 − u)3 + 3Bx(1 − u)2u +
3Cx(1 − u)u2 + Dxu3

y(u) = Ay(1 − u)3 + 3By(1 − u)2u +
3Cy(1 − u)u2 + Dyu

3

u ⊂ [0, 1]
(3)

The coefficients in the equation represent the coordinates
of the control points. Points P1 and P4 are the two
end points of the Bézier curve and are obtained as the
intersection points between the polyline and the circle.
Points P2 and P3 are the two intermediate points. The
adjustment of these two points will affect the overall
shape of the obtained Bézier curve. These two points are
obtained by extending the line segment from the polyline
that intercepts the circle until getting another intersection
with the circle. These extended line segments are marked
as red and blue in Figure 2 (a). The intersection points
are represented as a square with solid line and dashed
line separately. Noted that the dashed-line square is
obtained from the extension. For the solid-line squares,
they are fixed as control points and decide the tangent
vector at the two ends. The other two control points are
chosen from the red and blue lines by some sampling
interval.

2) Obtaining Bézier curve under constraints.
The obtained Bézier curve through fitting on the control
points located in the first step should not cross over the
circle and the new partition made on the area of the
circle should be the same as that divided by the original
line segments. The first requirement has insured that no
imported intersection points occur and the second one is
for the area preserving constraint. In the implementation,
it is considered to be acceptable if a enclosed area is
not altered substantially. Thus a threshold γ is set as the
limitation for the percentage of area difference between
a smoothed polyline and its original.

3) Finding the optimal solution.
There may be more than one Bézier curve obtained in
step 2. These curves are the candidates for choosing
the optimal solution judged by E.q. 1. Considering the
relatively small parameter space, exhaustive search is
applied to find the optimal Bézier curve.

(b) Case 2

III

Fig. 4. The smoothing on Case 2. It is referred to as Case (b) in Figure 2.

For smoothing on case 2 that there are two sub-polylines in
the safe region, following algorithm is given.

There are two steps for the algorithm. First step is to process
one sub-polyline with the whole circle as the boundary. The
problem can be reduced to case 1. As shown in Figure 4,
the blue dotted line represents the Bézier curve fitting for the
dotted polyline in Case 2. The following step is to process the
two parts of the other sub-polyline. The smoothing of each part
can also be reduced to case 1. To handle multiple polylines,
the center needs to be fixed after the first step.

D. Area-preserving on open curves

To handle the area-preserving constraint on open curves,
the idea of “diff-area model” in the work by Bose et al. [3] is
adopted. This model gives a solution to simplify a polygonal
path with the objective that the area above (or below) the path
changed by the approximation is preserved. However their
work is constrained to handle x-monotone polygonal path.
Here a simple overview of the model is given.

Problem definition. Suppose P and Q are two x-monotone
polygonal paths where Q is the approximating one of P . Let
ΩA(Q) be the area above P and below Q, and ΩB(Q) be the
vice versa.

Diff-area model. To measure the quality of the approxima-
tion by Q, diff-area model suggests that the cost function is
|ΩA(Q)−ΩB(Q)| which is the area exchange above (or below)
P and Q. This model implies that the area is “exchangeable”,
that is, area loss at one location can be redeemed from another
location.

In the algorithm, each polyline has been divided into a set
of sub-polylines such that the smoothing problem is easy to
handle for each sub-polyline. This division has also created
the flexibility to apply diff-area model in each sub-polyline.
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As each sub-polyline is smoothed in a circle locally found,
applying diff-area model is identical to preserve area of
the circle partitioned by the sub-polyline. The overall area-
preserving constraint is satisfied while the local smoothing
process is performed iteratively.

V. IMPLEMENTATION AND EXPERIMENTS

The proposed algorithm is implemented on a synthetic data-
set and a real map data-set.

Figure 5 (a) gives the full view of the synthetic data-set with
9 polylines in ROI are highlighted. The ROI is simply denoted
by a black circle. All the polylines outside the ROI or the black
circle are regarded as non-related to current navigation interest
and filtered. The retained 9 polylines are depicted by different
colors in Figure 5 (b). For the purpose of easy illustration,
each route is marked by a sequence number at one end of the
route.

Figure 6 gives the experimental results of the algorithm
with different parameters. Figure 6 (a) and Figure 6 (b) give
the fisheye transformation with different focus of interest. The
distortion factor d is 3 and the focus is marked as a red dot.
Figure 6 (c) and Figure 6 (d) give the smoothing results on
Figure 6 (a) and Figure 6 (b). The threshold γ for measuring
the area difference is set as 0.01. Figure 6 (e) and Figure 6
(f) have the same parameters as Figure 6 (c) and Figure 6 (d)
except that γ is set as 0.3.

Note that the routes after smoothing have much less sin-
uosities comparing to their original counterparts. Meanwhile,
the area enclosed by the routes are not changed drastically.
Although the proposed algorithm performs smoothing locally,
the global smoothness for the routes are achieved. Taking
polyline 8 in Figure 6 (e) as an example, the 8 segments
partitioned by the 7 intersection points not only stay smooth
separately but also keep continuous on the conjunction points.
Increasing γ may achieves better smoothing effect while the
enclosed area is altered significantly.

Figure 7 gives the overall score function E for polyline 1
in Figure 6 (c). As the area difference is considered to be
negligible, this curve reflects the curvature variation at each
iteration. It shows that the solution provided by the proposed
algorithm always improves the optimality of the route.

The real map data-set is extracted from a simple represen-
tation of the major roads in the state of Connecticut, US. It
depicts the highway network in the state at 1:250,000 scale.
Figure 8 gives the results on the algorithm.

VI. CONCLUSION

In this work, a map generalization algorithm is designed
to handle visualization of vector-based map on devices with
small display window. The algorithm firstly filters out non-
related information for current navigation task. The following
steps are applying fisheye lens to exaggerate objects in the
ROI and smoothing the lines to remove clutter caused by the
distortion. The main focus is on the line smoothing part. An al-
gorithm is presented to formulate the smoothing process as an
optimization problem which minimizes the overall curvature
while preserving the enclosed area by the lines. A heuristic

method is given to find the optimal solution by dividing the
problem into the combination of a set of sub-problems. For
each sub-problem, the objective is to find at most two Bézier
curves given at most two polygonal lines which intersect at
most once in a circular region, meanwhile the partitioned area
of the region by the two lines are preserved. Experimental
study demonstrates that the proposed algorithm achieves the
approximation of global optimality for the generalized map.

There are three aspects to extend current work.

1) In each sub-problem, the Bézier fitting for each polygo-
nal segment is determined by a small number of param-
eters. Thus the whole polyline could be represented by
a compact format. This could be used in remote visu-
alization by transmitting only the compact format of a
map thus improving the efficiency. However, as the sub-
problems are independent for each other, consideration
should be given on how to reconstruct the correct final
presentation upon receiving the transmitted parameters.

2) Currently, consideration is only given on the geometric
features of a vector-based map. Generalization may
become complex when the other features are considered,
for example, the labeling of map objects. The position-
ing of the label will be a challenging issue when the
corresponding object is relocated.

3) The efficiency of the algorithm can be improved if the
process of choosing segments to smooth is controlled.
There are a few crucial points on each polyline that dom-
inant the major bending energy. The detection of these
points is critical to accelerate the smoothing iteration.
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Fig. 5. The synthetic data with 9 polylines in ROI. The 9 polylines are
depicted as red color while the rest are in blue. The ROI is denoted as the
black circle.
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Fig. 6. Fisheye view transformation plus line smoothing on 9 polylines. Distortion factor d = 3. Area difference threshold γ = 0.01 for (c) and (d). γ = 0.3
for (e) and (f).
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Fig. 7. Overall energy of a polyline 1 in Figure 6 (c) versus the iteration number.
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Fig. 8. The route map data-set is extracted from a simple representation of the major roads in the state of Connecticut, US. It depicts the highway network
in the state at 1:250,000 scale. The black circle in (a) indicates the ROI with 4 routes depicted as red color. Fisheye view distortion factor d = 3 for (c). Area
difference threshold γ = 0.01 for (d).


