
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:11, 2017

1215

Automated Java Testing: JUnit versus AspectJ
Manish Jain, Dinesh Gopalani

Abstract—Growing dependency of mankind on software
technology increases the need for thorough testing of the software
applications and automated testing techniques that support testing
activities. We have outlined our testing strategy for performing
various types of automated testing of Java applications using
AspectJ which has become the de-facto standard for Aspect Oriented
Programming (AOP). Likewise JUnit, a unit testing framework is
the most popular Java testing tool. In this paper, we have evaluated
our proposed AOP approach for automated testing and JUnit on
various parameters. First we have provided the similarity between
the two approaches and then we have done a detailed comparison
of the two testing techniques on factors like lines of testing code,
learning curve, testing of private members etc. We established that
our AOP testing approach using AspectJ has got several advantages
and is thus particularly more effective than JUnit.

Keywords—Aspect oriented programming, AspectJ, Aspects,
JUnit, software testing.

I. INTRODUCTION

SOFTWARE testing is of utmost importance in the software

development life cycle for several reasons. Most important

reason being that software have become an inevitable part of

human life. Statistically looking at all the known utilisation of

software in the human life, there have been remarkable aid in

the way we can communicate, transact business, and carry out

scientific and engineering work. Besides, it is paramount to

ensure that a software does not lead to failures because such

failures can prove to be very expensive in future and become

a cause of rework in the later stages of software development.

In this direction in order to facilitate the process of software

testing, various automated testing tools have been developed

by the researchers and developers. For example, for the testing

of Java applications, we have number of testing tools available

like JUnit, TestNG, Mockito, Selenium, Arquillian, JMeter etc.

However, the most popularly recognised automated testing tool

for testing Java applications is JUnit [1], [2]. Moreover in our

previous papers [3]-[6], we have established the use of aspects

in AspectJ, which has become the de-facto standard for Aspect

Oriented Programming (AOP) [7], for the purpose of carrying

out different types of testing of Java applications. We have

also used aspects in AspectJ to test well known open source

Java applications like Netc, JFreeChart, JDownloader, JGAP

etc. and detected remarkable bugs into them.

AOP is a new methodology that provides a mechanism for

separation of crosscutting concerns from the core concern. A

concern is actually a functionality necessary in a software

system. Any software system is thus a realisation of

Manish Jain is with the Department of Computer Science,
Malaviya National Institute of Technology, Jaipur, India (e-mail:
halomanish@gmail.com).

Dinesh Gopalani is with the Department of Computer Science,
Malaviya National Institute of Technology, Jaipur, India (e-mail:
dgopalani.cse@mnit.ac.in).

one or more concerns. For e.g. for a banking system,

the concerns could be Saving Account management, ATM

management, Current Account management, Internet Banking,

Fixed Deposit management, Customer Care and many more.

There are two types of concerns:

• Primary Concern: These are the business logic concerns

also called the core concerns

• Secondary Concerns: These are the system level concerns

which are called the crosscutting concerns

Crosscutting represents a situation when a particular

requirement of the software is met by placing code into

objects (code structures) throughout the system but this code

doesn’t directly relate to the functionality defined for those

objects. In AOP, a new unit of modularisation - an aspect
- is introduced within which we implement the crosscutting

concerns instead of fusing them into the core modules. In our

proposed methodology, we used these aspects for the purpose

of test automation.

Our AOP based methodology can be used to automate the

generation of test cases, write the test script, execute the test

cases and further compare the results with the expected results

and prepare a test report. Using aspect oriented languages, the

testing code can be written in the form of before, after or

around advices within the aspects. The aspect weaver weaves

the testing code with the source code under test as shown in

Fig. 1. Further this instrumented source code is executed and

the actual results obtained are compared with the expected

results as specified by the tester. Based on this comparison, a

test report giving details about the failed and successful tests

is prepared.

Fig. 1 Role of Aspect Weaver

On the other hand, JUnit which is the most popular unit

testing framework for Java applications has played a very

important role in the test-driven development. JUnit belongs

to xUnit family of unit-testing frameworks [8] which are used

for developing and executing unit test cases, and for regression

testing. JUnit has been designed for the purpose of writing and

running tests in Java and to ensure that the code is validated



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:11, 2017

1216

and functions as per the requirement specification. For testing

a piece of code using JUnit, a class which extends the TestCase
class is created and then the various test methods are added to

it. JUnit is annotation based. Annotations are actually syntactic

metadata that are added to the testing code for achieving better

readability and structure.

In this paper, we shall discuss the resemblances between

AspectJ and JUnit which make AspectJ a compelling tool

for performing testing of Java applications. Further, we shall

compare the two approaches and establish the benefits of using

our AOP based approach. We have used AspectJ version 1.8.10

and JUnit 4 in our work.

The paper is organised as follows: in Section II, we provide

a list of the related work done in this field. In Section III, we

have discussed the resemblances between AspectJ and JUnit

frameworks of testing. Section IV provides a comparative

analysis of the two approaches on various parameters. At the

end, Section V is used to specify the conclusion and future

work. References are enumerated at last.

II. RELATED WORK

Li and Xie [9] in their paper have claimed that aspects

make good stubs and drivers. We evaluated this assertion

and used this property of aspects for performing integration

testing. JUnit though most popular Java testing tool does

not have necessary features for performing integration testing

of Java applications. Duclos et al. [10] used AspectC++ for

carrying out certain basic testings of C++ programs. Sioud

[11] implemented the missing garbage collection in C++ using

AspectC++. Java has its own garbage collection mechanism in

place but still there are possibilities of memory leakages like

buffer overflows and null pointer exceptions which we could

test using AspectJ. Sokenou and Herrmann [12] used AOP

to test programs written in AOP languages. They stated that

aspects seem worthy for testing the aspect-oriented systems.

Copty et. al [13] have used AspectJ to implement the certain

functionalities of the concurrency testing tool ConTest. We

enhanced their idea by using aspects to discover bugs like race

conditions or deadlocks which generally occur in concurrency

based programs. Pesonen et al. [14] applied aspect orientation

to the production testing framework for Symbian OS which

contained embedded programs only. We experimented with

aspects to use these for testing non-embedded Java programs.

Moreover, in this paper we have established various benefits

of using AspectJ over JUnit for testing Java applications.

III. RESEMBLANCE OF ASPECTJ WITH JUNIT

Our proposed AOP approach for testing Java applications

using AspectJ has got profound resemblances with JUnit on

many facets and as such covers all sort of testing functionality

provided by JUnit. In JUnit, the tester creates the test classes
within which the testing code is written. Similarly when using

our approach for testing, the tester writes the testing code

within the aspects in AspectJ which is quite a class-like

concept [15].

JUnit provides with annotations which are like meta-tags

that can be added to the testing code. JUnit annotations are

@Before
public void doBefore()
{

s.setMarks1(5);
s.setMarks2(6);
s.setMarks3(7);

}

@Test
public void test()
{

double avg = s.getAverage();
assertEquals(6.0, avg, 0);

}

Fig. 2 Testing a method in Student Class using JUnit

meant to identify when or in which order the various methods

in the test class are to be executed. For example, the @Test
annotation is used to specify the test method that has to be run

as a test case. In AspectJ, the same functionality is achieved

by the around advice in which the method to be tested can be

instrumented & tested with desired input values.

The annotations @Before and @BeforeClass in JUnit

indicate the methods which setup the necessary pre-conditions

for the execution of the test methods. The @Before annotation

is used with a method that has to run before every test

case in the test class. We have before advice in AspectJ that

serves the same purpose like @Before annotation as shown

in Figs. 2 and 3. Code written within a before advice with

appropriate pointcuts that capture the methods to be tested

shall be executed before the testing code written within the

around advices. Similarly, the method marked with annotation

@BeforeClass in JUnit is executed before the test class. To

achieve the same functionality, we use the within pointcut with

the testing aspect name along with a before advice that shall

capture all the joinpoints within the scope of the testing aspect

and execute the code written inside advice before these.

Likewise, JUnit annotations @After and @AfterClass are

used to indicate the methods which gets executed after

execution of the tests methods and perform certain cleanup

tasks like delete temporary variables, reset variable, disconnect

from database etc. These annotations can be directly mapped

onto the after advices available in AspectJ along with

appropriate pointcuts, on the same lines as discussed for

@Before and @BeforeClass.

The annotations @Before, @BeforeClass, @After,
@AfterClass, @Test are the most important annotations

in JUnit which form the basis of writing testing code in

JUnit. Likewise, the before, after and around advices in

AspectJ are the most important action and decision part that

form the dynamic crosscutting rules [16].

The functionality of @Ignore annotation in JUnit can be

implemented in AspectJ by adding a simple “&& if(false)”

to the pointcut so that the corresponding advice shall not be

executed [16] as shown hereunder:

pointcut selectedJoinpoints() : within(package.*) && if(false);

Thus, as discussed above, all the annotations in JUnit can



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:11, 2017

1217

before() : execution(public double Student.getAverage())
{

s.setMarks1(5);
s.setMarks2(6);
s.setMarks3(7);

}

double around(Student st) : execution(public double Student.getAverage()) && this(st)
{

double x = proceed(s);
if (x!=6.0)

System.out.println("Error");
return proceed(st); //do original processing

}

Fig. 3 Testing a method in Student Class using AspectJ

be equated with one of the available constructs in AspectJ. In

view of the same, all the functionality and the types of testing

of Java applications that can be carried out using JUnit are

equally possible with AspectJ. Moreover, both AspectJ and

JUnit can be easily integrated with Eclipse, the development

environment for Java. AspectJ Development Tools for Eclipse

(AJDT) provides the requires tooling support to develop and

run AspectJ applications on Eclipse [17]. Similarly, JUnit

plug-in is available for Eclipse which comes built in with most

of the latest versions of Eclipse [18].

IV. COMPARISON OF ASPECTJ AND JUNIT FRAMEWORKS

OF AUTOMATED TESTING

As we have explained in our previous papers [3]-[6],

AspectJ has all necessary features and constructs that make

it suitable to be used as a testing framework for testing

Java applications. In this section, we shall outline a thorough

comparison of our proposed testing approach with JUnit,

which is the most popular testing tool for Java applications. In

order to compare the two approaches, we shall mainly focus on

parameters like lines of testing code, possibility of carrying out

various types of testing, testing of fields with private access,

learning curve and others.

A. Lines of Testing Code

During our research, we observed that using aspects in

AspectJ for writing the test cases, the number of lines in the

testing code is reduced considerably. For example, when we

tested a simple average function, which takes three variables

and calculates their average, with multiple input values for the

three variables, the testing program could be written with only

18 lines with AspectJ whereas the same required 34 lines of

code when written using JUnit. A comparison of number of

lines of testing code for testing of three different methods is

shown in Fig. 4. It is evident from Fig. 4 that use of AspectJ

reduces the number of lines of testing code and thus save

the tester’s valuable time which can further accelerate the bug

discovery.

We would also like to state here that the number of lines

of testing code are also reduced by the use of wildcard
pointcuts which are available in AspectJ. For example, the

simple pointcut execution(* *(..)) shall capture the execution of

Fig. 4 Number of lines of testing code is reduced using AspectJ

any method regardless of return or parameter types. Thus if we

want to test for the condition whether any of the methods in the
whole program returns null, which can lead to a null pointer

exception, this single pointcut would be sufficient. Similarly,

wild card pointcuts can be used to capture joinpoints that share

common characteristics and then can be tested all at once.

However, there is no such mechanism in JUnit and hence

for testing different methods even with common attributes,

separate testing code has to be written which increases the

number of lines of code.

B. Testing Private Members

JUnit does not provide upfront mechanism for testing the

private methods. On the other hand, when a private method

contains an algorithm which requires more unit testing than

it is possible through the public interfaces, then it becomes

practically important to test the private method as well. The

level of abstraction furnished by public methods of a class

could be too high such that the algorithm of private method

could not be easily targeted by the test class. At times to

enhance modularity, developers create private utility methods

which do not act on the instance data but simply work upon the

passed arguments to produce a desired result. In such cases, it

becomes necessary to directly test the operations of the private

method.

In order to assist unit testing of private components in JUnit,

the Java Reflection API can be used as a fill in. The java.lang
and java.lang.reflect packages provide necessary classes for

java reflection. However, there are several disadvantages of

this approach. Firstly, the test code becomes verbose when the

reflection API is deployed. Using Reflection produces test code



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:11, 2017

1218

String username[]={"tom","john","peter"};
String password[]={"12345","abcd","abc"};
pointcut stub(): call(* login.databaseModule(..));
Object around(): stub()
{

Object args[]=thisJoinPoint.getArgs();
String s=(String)args[0];
for(i=0;i < username.length;i++)
{

if(s.equals(username[i]))
{

return (String)password[i];
}

}
return null;

}

Fig. 5 Stub created using AspectJ

which is harder to understand and maintain. Apart from this,

since java reflection involves the types that are dynamically

resolved at run time, the associated operations have slower

performance as certain Java virtual machine optimisations can

not be exercised [19]. In fact, using reflection mechanism is

not recommended by most of the software developers [20].

However using AspectJ, the private methods can be easily

accessed in the aspect for testing by adding privileged keyword

to the aspect. Code inside privileged aspects has access to all

members of the captured object, even the private ones.

In a nutshell, by definition unit test is intended to test every

unit of code which should be irrespective of its scope and

since AspectJ has provisions for accessing the public as well

as private components of the class within the testing aspects,

therefore it is a better choice for performing unit tests.

C. Performing Integration Testing

JUnit is suitable for conducting unit tests only but using

AspectJ we can carry out other types of testing as well. Using

aspects in AspectJ, we can create a stub or driver in lieu of an

application module which is either not fully developed yet or

needs extensive resources for execution. Such a stub or driver

is useful for performing Integration Testing. AspectJ provides

us with around advice which can be used to completely bypass

the execution of the captured joinpoint and thus around advice

can be utilised to write the functionality of a missing module

to be integrated or a light-weighted alternative of a module.

However, JUnit has limited support for Integration Testing

[21].

In order to understand how a stub can be created using

aspects in AspectJ, let us take example of a login module.

Suppose the login module depends on a backend database

module which checks for the user id value passed to it by

the login module in its database and returns the password on

a match (null otherwise). Now suppose the login module is

ready and we want to test it, but the database module and the

associated database is not ready. In such a case, a stub can be

written in the form of aspect which shall mock the database

module and can be used to return suitable value to the login

module. The code snippet in Fig. 5 throws some light on our

idea.

D. Performing Invariant Testing

An invariant can be defined as a condition or guideline that

is mandated to hold true for a program component or may be

even for the whole program structure. We used pointcuts in

AspectJ to capture all the execution points where the invariant

condition is supposed to be true and further used suitable

advice to check for the correctness of the invariant condition

at all such points. This doesn’t require any modifications to be

made in the source code. Using aspects, invariant conditions

can be tested both at compile time as well as run time. JUnit

has got no provision for testing the invariant conditions.

E. Performing Servlet Testing

JUnit alone does not suffice to test a Java servlet application.

During unit testing of a servlet, the actual request and response

are not available, since the servlet container is not running.

Therefore we need to mock both the HttpServletRequest and

HttpServletResponse objects to simulate as real and get the

desired behavior. For this, we need to use APIs like Mockito

or org.springframework.mock.web to mock out servlet request

or response objects. However, before using these APIs we need

to add their jar files to the project which increases performance

overheads. On the other hand, when we tested Java servlets

using our AspectJ approach, we simply used javax.servlet
package which is a part of the Java Enterprise Edition. Thus,

servlet testing using AspectJ is straightforward and does not

involve the use of any external API.

We first create a RequestWrapper class that extends

the HttpServletRequestWrapper class of the Java Servlet

package. Within this RequestWrapper class, we override the

getParameter() method to pass parameters for the purpose of

security testing to the Servlet. The servlet testing aspect shown

in Fig. 6 implements the Filter interface and then creates

an object of the RequestWrapper class within the doFilter()
method.

F. Learning Curve

JUnit does not provide any direct mechanism for testing a

method with multiple input values, rather we have to use the

Parameterized Class. Parameterized is a runner inside JUnit

that will run the same test case with different set of inputs.

The JUnit code written for testing a method with multiple

inputs using Parameterized class is not straight forward and

is difficult to learn & understand whereas the corresponding

aspect code is quite uncomplicated. The AspectJ testing code

shown in Fig. 7 that tests the getAverage method of the Student
class substantiates our point.

V. CONCLUSION AND FUTURE WORK

In our earlier research work our intent was to find out

whether AspectJ is suitable for testing Java applications and

further to determine which all type of software testing is

possible using aspects in AspectJ. We carried out various

types of testing of selected widely used Java software from

the open source community like jGnash, NetC, JFreeChart,

JDownloader, JGAP etc. using aspects.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:11, 2017

1219

public aspect AspectA implements Filter
{

public void doFilter(ServletRequest request,ServletResponse response,FilterChain chain)
throws IOException,ServletException
{

//RequestWrapper constructor called
chain.doFilter(new RequestWrapper((HttpServletRequest) request), response);

}

@Override
public void destroy()
{

//Necessary to implement
}

@Override
public void init(FilterConfig arg0) throws ServletException
{

//Necessary to implement
}

}

Fig. 6 Servlet testing aspect using AspectJ

public aspect multipleInputValues
{

before() : execution(public static void main(String[]))
{

int[] mark1 = {10,20,30,40,50,60,71,80,90,91};
int[] mark2 = {10,20,30,40,50,60,71,80,90,91};
int[] mark3 = {10,20,30,40,50,60,71,80,90,91};

int i=0;
for (i=0;i<10;i++)
{

Student s = new Student();
s.setMarks1(mark1[i]);
s.setMarks2(mark2[i]);
s.setMarks3(mark3[i]);

double result = s.getAverage();
validateResult(i,result);

}

System.exit(0);
}

}

Fig. 7 Testing with multiple input values

In this paper, we have established the benefits of using

AspectJ for software testing over the conventional techniques.

The number of test cases for testing bigger projects are too

high [22] and practically it is quite time consuming to test the

software with all the test cases using the conventional testing

techniques. Although, with AspectJ we can capture multiple

execution points in the code using wild cards in pointcuts and

therefore test case execution consumes lesser time. Moreover,

it had been yet another challenge in software testing using

conventional techniques to select the code to be included in a

test adequacy criterion. Aspects in AspectJ extend our ability

to select the code in accordance with the intent of the tester.

As far as the available automated testing tools are concerned,

to use these tools, testers need skills like knowledge of test

tools, general software, domain and system knowledge etc

[23]. Aspects, on the other hand, are easier to be adopted into

existing development projects.

In essence, in our paper we have established the use of

aspects in AspectJ to perform various kind of software testing

and listed their benefits as well.

There are several lines of experimentation which arise from

our research work which can be carried out in future. Our

AspectJ approach can be extended to cover other testing types

like concurrency testing, regression testing, loop testing etc.

Moreover, since AspectJ is a new programming paradigm and

not all developers or testers are familiar with this technology,

a Domain Specific Language (DSL) can be created whose

syntax is natural language-like and the statements written

thereof are automatically converted to testing aspects using

the DSL parser so that even the testers who do not have

the knowledge of AspectJ can still avail the benefits of

testing using AspectJ. The preliminary results obtained in this

direction are encouraging.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:11, 2017

1220

REFERENCES

[1] A. Hussain, A. Razak, and E. Mkpojiogu, “The perceived usability of
automated testing tools for mobile applications,” Journal of Engineering
Science and Technology, vol. 12, pp. 89–97, 04 2017.

[2] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo,
“Understanding the test automation culture of app developers,” in 2015
IEEE 8th International Conference on Software Testing, Verification and
Validation (ICST), April 2015, pp. 1–10.

[3] M. Jain and D. Gopalani, “Use of aspects for testing software
applications,” in 2015 IEEE International Advance Computing
Conference, June 2015, pp. 282–285.

[4] M. Jain and D. Gopalani, “Memory leakage testing using aspects,” in
2015 International Conference on Applied and Theoretical Computing
and Communication Technology, Oct 2015, pp. 436–440.

[5] M. Jain and D. Gopalani, “Aspect oriented programming and types
of software testing,” in 2016 Second International Conference on
Computational Intelligence Communication Technology, Feb 2016, pp.
64–69.

[6] M. Jain and D. Gopalani, “Testing application security with aspects,”
in 2016 International Conference on Electrical, Electronics, and
Optimization Techniques (ICEEOT), March 2016, pp. 3161–3165.

[7] F. V. C. Ficarra, C. de Castro Lozano, M. P. Jiménez, E. Nicol, A. Kratky,
and M. Cipolla-Ficarra, Advances in New Technologies, Interactive
Interfaces, and Communicability. Springer, 2011.

[8] A. Z. Javed, “Model-driven framework for context-dependent testing of
components,” Ph.D. dissertation, School of Information Technology and
Electrical Engineering, The University of Queensland, August 2007.

[9] X. Li and X. Xie, “Research of software testing based on AOP,” in IEEE
3rd International Conference on Intelligent Information Technology
Application, vol. 1, 2009, pp. 187–189.

[10] E. Duclos, S. L. Digabel, Y. G. Gueheneuc, and B. Adams, “Acre:
An automated aspect creator for testing C++ applications,” in IEEE
7th European Conference on Software Maintenance and Reengineering,
2013, pp. 121–130.

[11] A. Sioud, “Gestion de cycle de vie des objets par aspects pour C++,”
Master’s thesis, UQaC, 2006.

[12] D. Sokenou and S. Herrmann, “Aspects for testing aspects?” in 1st
Workshop on Testing Aspect-Oriented Programs, 2005.

[13] S. Copty and S. Ur, “Multi-threaded testing with AOP is easy, and it
finds bugs!” Lecture Notes in Computer Science, vol. 3648, pp. 740–749,
2005.

[14] J. Pesonen, M. Katara, and T. Mikkonen, “Production-testing of
embedded systems with aspects,” Lecture Notes in Computer Science,
vol. 3875, pp. 90–102, 2006.

[15] S. L. Tsang, S. Clarke, and E. Baniassad, “An evaluation of
aspect-oriented programming for Java-based real-time systems
development,” in Seventh IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing, 2004. Proceedings.,
May 2004, pp. 291–300.

[16] R. Laddad, AspectJ in Action: Practical Aspect-Oriented Programming.
Greenwich, USA: Manning Publications Co., 2003.

[17] D. Gotseva and M. Pavlov, “Aspect-oriented programming with
AspectJ,” International Journal of Computer Science Issues, pp.
212–218, 2012.

[18] P. Bouillon, M. Burger, and A. Zeller, “Automated debugging in Eclipse:
(at the touch of not even a button),” in Proceedings of the 2003 OOPSLA
Workshop on Eclipse Technology eXchange, ser. Eclipse ’03. New York,
USA: ACM, 2003, pp. 1–5.

[19] S. Tyagi and P. Tarau, “A most specific method finding algorithm for
reflection based dynamic prolog-to-java interfaces,” in PADL. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 322–326.

[20] Z. Shams, “Reflection support: Java reflection made easy,” The Open
Software Engineering Journal, vol. 7, pp. 38–52, 01 2014.

[21] C. Artho and A. Biere, “Advanced unit testing: How to scale up a unit
test framework,” in Proceedings of the 2006 International Workshop on
Automation of Software Test, ser. AST ’06. New York, USA: ACM,
2006, pp. 92–98.

[22] D. R. Kuhn and V. Okun, “Pseudo exhaustive testing for software,” in
30th Annual IEEE Software Engineering Workshop, 2006, pp. 153–158.

[23] D. Rafi, K. Moses, K. Petersen, and M. Mantyla, “Testing non-functional
requirements with aspects,” in IEEE 7th International Workshop on
Automation of Software Test AST, 2012, pp. 36–42.


