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Abstract—this paper presents an auto-regressive network called 

the Auto-Regressive Multi-Context Recurrent Neural Network 
(ARMCRN), which forecasts the daily peak load for two large power 
plant systems. The auto-regressive network is a combination of both 
recurrent and non-recurrent networks. Weather component variables 
are the key elements in forecasting because any change in these 
variables affects the demand of energy load. So the AR-MCRN is 
used to learn the relationship between past, previous, and future 
exogenous and endogenous variables. Experimental results show that 
using the change in weather components and the change that 
occurred in past load as inputs to the AR-MCRN, rather than the 
basic weather parameters and past load itself as inputs to the same 
network, produce higher accuracy of predicted load. Experimental 
results also show that using exogenous and endogenous variables as 
inputs is better than using only the exogenous variables as inputs to 
the network.  
 

Keywords—Daily Peak Load Forecasting, Neural Networks, 
Recurrent Neural Networks, Auto Regressive Multi-Context Neural 
Network 

I. INTRODUCTION 
REDICTION of energy load demand is vital in today's 
financial system. It is crucial because a correct estimation 

of energy can result in substantial savings for a power system. 
Once modeled appropriately it allows for the planning and 
designing of future plants, provides security and reliability, 
and reduces the operational cost of a power system. Several 
techniques have been implemented to solve the load-
forecasting problem. These techniques can be categorized into 
factor analysis and time series [21, 20, 22] The factor analysis 
method is based on the determination of various factors, 
which influence the load demand, and working out their 
association with the load. However, the factor analysis method 
is incompetent as the evaluation of the factors involved is not 
easy. The time series method is based on the prediction of 
future load based on historical load. In the time series 
approach weather component variables are not involved in 
determining future load. Due to the limitations of this method, 
inaccurate and unstable predictions (forecasts) can be 
produced. Artificial neural networks deviate from the 
statistical models by their ability to map, in a fuzzy way, 
inputs to outputs. In this paper exogenous and endogenous 
input variables that are affecting the load are mapped to the 
load using neural network techniques.  
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The use of these networks [1, 25, 8, 7, 14, 18, 27] allows for 
the avoidance of the previous techniques' limitations by 
employing non-linear modeling and adaptation. 

Artificial Neural Networks (ANN), as in [9, 1], are 
information processing paradigms simulated by the way 
biological nervous systems, such as the brain, process 
information. ANN can also be a form of multiprocessor 
computer system with straightforward process elements, a 
high degree of interconnection, easy scalar messages and 
adaptive relations between elements: ANNs are similar to 
people, as they learn from experience. An ANN is configured 
for a specific application, such as pattern recognition or data 
classification, through a learning process. Learning in 
biological systems involves adjustments to the synaptic 
connections that exist between the neurons.  There are mainly 
two types of neural networks: conventional neural networks 
and recurrent neural networks. Conventional neural networks, 
as in [9, 1], consist of three interconnecting layers; one input 
layer, one or more hidden layers and one output layer. 
Conventional neural networks allow signals to travel in one 
way only; from the input to the hidden layer and then to the 
output layer. There is no feedback (loops) i.e. the output of 
any layer does not affect that same layer. Conventional neural 
networks tend to be straightforward networks that associate 
inputs with outputs. Recurrent neural networks can have 
signals traveling in both directions by introducing loops into 
the network. These networks are very powerful but slower 
than the conventional networks, due to the loops, and can get 
extremely complicated. The simple recurrent network (SRN) 
[10] is an example of this type of network. The SRN is widely 
used by researchers, however, the network faces difficulties 
due to the architecture of the network itself: The architecture 
of the SRN includes the network memory, which consists of 
one context layer (relatively small) [6, 5, 26], the mapping of 
hidden layer neurons to the output layer neurons and an 
increased computation cost due to the need for more hidden 
neurons [2, 13]. The auto-regressive multi-context recurrent 
neural network is introduced to improve the speed of the 
training session due to a reduction of the recurrent 
connections, and is an appropriate method for approximating 
daily peak load. 
      O This paper is organized as follows: in the next section 
the autoregressive multi-context recurrent neural network is 
introduced, in section III learning algorithms are explained, in 
section IV we propose the forecasting system, in section V we 
display our experimental results, in section VI we propose an 

Auto-regressive Recurrent Neural Network 
Approach for Electricity Load Forecasting  

Tarik Rashid, B. Q. Huang, M-T. Kechadi and B. Gleeson 

P 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:10, 2007

1541

 

 

online forecasting system as our future work and finally we 
outline the conclusion of this paper. 

II. AUTO-REGRESSIVE RECURRENT NEURAL NETWORK  
 
In [2], we have proved that the modified multi-context 
recurrent neural network (MCRN) overcomes the limitations 
of the SRN. The hybrid network introduced here, is a 
combination of the conventional neural network and SRN 
with MCRN [2] and is called the auto-regressive multi-context 
recurrent neural network (AR-MCRN). Two different AR-
MCRN structures were designed, as can be seen from Figure 
1a, the network is structured with two hidden layers on the 
same level; we called it AR-MCRN-a . However, in Figure 1b, 
the network is structured with two hidden layers on different 
levels, we called it AR-MCRN-b. In each topology, one 
hidden layer acts as a conventional neural network to the 
output layer while the other hidden layer acts as both a feed–
forward to the output layer and a feed back to context layers. 
Logistic sigmoid transfer functions were used for all neurons 
in the hidden and linear transfer function was used for neuron 
in the output layer. This type of structure will improve the 
speed of the training session and is an appropriate method for 
approximating daily peak load [13, 24].  

 

Fig. 1 a, displays the AR-MCRNN-a with hidden layers drawn in the 
same level, while b displays the AR-MCRNN-b with hidden drawn 

in different layer levels 

III.  LEARNING ALGORITHM 
  Neural networks are universally categorized in terms of their 
corresponding training algorithms: supervised, unsupervised 
and fixed weight. Supervised learning networks have been the 
mainstream of neural model development. The training data 
consists of numerous pairs of input/output training patterns, 
where the output pattern is the target output for the given 
input pattern. The learning will benefit from the support of a 
target. Examples of this are the conventional and simple 
recurrent networks [21, 9, 1]. For an unsupervised learning 

rule, the training set consists of input training patterns only. 
As a result the network is taught without the assistance of a 
target, such as the Kohonen network [16]. Fixed weight 
networks, as indicated by their name, cover fixed weights. No 
learning takes place; therefore, the weights cannot be 

� �modi ed. An example of this type is the Hop eld network 
[12]. For supervised learning networks, there are several 
learning techniques that are widely used by researchers. The 

�main three are dynamic online learning, modi ed back 
propagation and back propagation through time, all of which 
were used for our MCRANN [2, 23] depending on the 
application. Dynamic online learning is the most accurate 
amongst them, however, it is time consuming and slow due to 
the complexity of the computation. Modified back 
propagation is driven to include recurrent memory [2]. 
Modified back propagation was the quickest and produced 
accurate results.  

IV. FORECASTING SYSTEM 
 The creation of a forecasting system can be described as 
follows: acquire and analyze the historical data, pre-process 
and normalise the data, choose the training and testing sets, 
choose the network architecture and its parameters, choose a 
suitable learning algorithm, and lastly implement the system. 

A. Historical Data 

   Two historical data sets were collected to perform the 
forecasting task: 

1. The first set that we term data set (A) was obtained 
from the EUNITE 2001 symposium, a forecasting 
competition. It reflects the behavior of the East 
Slovakia Electricity Corporation. This data recorded 
the load at half hour intervals every day from Jan 
1997 to Jan 1999 and daily average temperature from 
Jan 1995 to Jan 1999. 

2. The second set which we term data set (B), was 
obtained from the ESB Company. It reflects the 
behavior of the Electricity Supply Board in the 
Republic of Ireland. The data recorded the load, 
temperature, cloud rate, wind speed and humidity at 
fifteen-minute intervals every day from Jan 1989 to 
Jan 1999. 

B.  Training and Testing Data  

  The training and testing data sets for both data set (A) and 
(B) were cautiously selected to carry out the daily peak load 
forecasting and to estimate the performance of this new neural 
network. The training set consists of all data collected during 
the period January 1997 to December 1998 and the testing set 
concerns the data collected during January 1999. 

C. Input/Output Data Selection 
   For this particular forecasting task the future load is a 
function of the accessibility of significant variables in both 
data sets. For data set (A) the future load is a function of the 
calendar, the status of the day (holidays), and the past and 
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current change in the temperature T and past change in the 
load L. The future load in the data set (B) is a function of the 
calendar, the status of the day, the past and current change in 
the weather components (such as temperate T, cloud rate C, 
wind speed W and humidity H) and the past change in load L. 
In the following, details about the size and structure of the 
inputs of the MCRN network implementing each data set are 
given and explained. Note that as the two data sets contain 
different sets of parameters, the expression of the future load 
for each data set is given as follows: 
 

1. The future (predicted) load for data set (A) is calculated 
from the difference between the historical values of load 
and its future values. The difference between the two is 
expressed as follows: (fLt =∆ past and current 
calendar; past and current social events; 

tT∆ ,..., ntT −∆ ; 1−∆ tL ,..., ntL −∆ )  
2. The difference between the future and historical loads 

for data set (B) depends on a richer set of parameters 
than data set (A):   fLt =∆  ( past and current 
calendar; past and current social events; 

tT∆ ,..., ntT −∆ ; tC∆ ,..., ntC −∆ ; tW∆ ,..., ntW −∆ ; tH∆ ,

..., ntH −∆ ; 1−∆ tL ,..., ntL −∆ ). 
 

where t is the index of the day. The change in the load 
(difference between future and historical loads) and the 
change in weather components (temperature, cloud rate, wind 
speed, humidity) can be described as follows:  
 

111 ;/)( −−− −=∆−=∆ ttttttt TTTLLLL ;

1−−=∆ ttt CCC ; 1−−=∆ ttt WWW ; 1−−=∆ ttt HHH ; 
 
According to the parameters recorded in each data set the size 
of the network input layer is 12 neurons for data set (A) and 
18 neurons for data set (B).  Let vI  denote an input neuron 
v . The following is the allocation of each input neuron of the 
network for data set (A): 
 

1) Input neurons 41...II  are allocated for the index of 
the month expressed in binary representation. 

2) The next three input neurons 765 ,, III  represent the 
index of the week. Thus the network can identify the 
seasonal periods of the year and can also distinguish 
the days with high temperatures from those with low 
temperatures. 

3)  Input neuron 8I  indicates whether the forecasted 
day is a working day or a holiday. 

4) Input neuron 9I  indicates whether the day prior to 
the forecasted day was a working day or a holiday. 
Usually this will affect the next day's load. 

5) Input neuron 10I  is for the change in temperature 
between the current day and the previous 
day: 1−−=∆ ttt TTT . 

6) Input neuron 11I  is allocated for inputting the change 
in the temperature over the previous two consecutive 
days: 211 −−− −=∆ ttt TTT . 

7) The last input neuron 12I  is reserved for inputting 
the change in the load over the previous two 
days: 2211 / −−−− −=∆ tttt LLLL . 

 
   Figure 2, shows a sample of input data selected from data 
set (A). 
 

 
 

Fig. 2 shows a sample of input data selected from data set (A) to the 
network 
 
   The network input layer for data set (B) consists of 18 
neurons. In addition to the 12 inputs described above, another 
6 input neurons are needed to represent other parameters 
recorded in this data set, such as wind speed, cloud rate, 
humidity, etc. Therefore, the first 11 neurons are exactly the 
same as for data set (A), and neuron 12 of network (A) is 
similar to neuron 18 of network (B). In the following we 
describe the additional neurons: 

1) Input neuron 12I  indicates the change in the cloud 
rate between the current day and the previous 
day: 1−−=∆ ttt CCC . 

2) Input neuron 13I  indicates the change in the cloud 
rate over the previous two consecutive 
days: 13I : 211 −−− −=∆ ttt CCC . 

3) Input neuron 14I  indicates the change in wind speed 
between the current day and the previous 
day: 1−−=∆ ttt WWW . 

4) Input neuron 15I  is allocated for inputting the 
change in wind speed over the previous two 
consecutive days: 211 −−− −=∆ ttt WWW . 

5) Input neuron 16I  indicates the change in humidity 
between the current day and the previous 
day: 1−−=∆ ttt HHH . 

6) Input neuron 17I  indicates to the network the change 
in humidity over the previous two consecutive 
days: 211 −−− −=∆ ttt HHH . 
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For both networks with data sets (A and B), inputs 91...II  are 

binary coded and inputs 1810 ....II  are scaled between [0:1]. A 
binary representation is used for each group independently of 
the others. Alongside some other differences in parameter 
settings, which are described in the section above, both 
networks implementing data sets (A and B) have the same 
output layer, which consists of one neuron. The output of the 
networks is the current change of the daily peak load, which is 
the difference between the forecasted daily peak and the 
previous daily peak load: 11 / −−−=∆ tttt LLLL . Both 
networks output is also normalised between 0 and 1. 
   The forecasting system which is described in [3] takes into 
account only the time and change in previous loads. In 
comparison, the technique offered in this paper considers 
more than just weather components. It considers the change in 
weather components for days, which are very close in time. 
This includes change in the load and details of the status of the 
day and calendar rather than just pure weather data. These 
changes are presented to the network as inputs and give the 
network a momentous enhancement in terms of accuracy and 
stability. The average error of the network performance 
dropped from approx. 4.5% to 1.9%. This is because the 
variation of the differences between the loads for two 
consecutive days is less than the differences between the loads 
factors themselves for two consecutive days.  Consequently 
the network takes inputs in time series with values that are 
close to each other. This allows the network to learn more 
easily than if it was presented with inputs whose values are 
not close.  The same remark applies to the other variables such 
as weather components.  These types of differences between 
two parameter values that are close in time are shown in 
Figures 3 and 4.  Figure 3 shows the variations in the daily 
average temperate for January 1997 and January 1998. Figure 
4 shows the variations in the daily peak load for January 1997 
and January 1998. 
 
 

 
Fig. 3 (a) is the daily average temperate for the Jan 1997 and 1998,  
(b) is the difference between daily average temperature over 
consecutive days for Jan 1997 and 1998 (data set (A)) 
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Fig. 4 (a) is the daily peak load for the Jan 1997 and 1998, (b) is the 
difference between daily peak load over consecutive days for Jan 
1997 and 1998 (data set (A)) 

D.   Selection of Network Structure 
For each data set no exemption was made in terms of split 
models for weekend, weekday, and holiday or even for the 
days with odd behavior e.g. high temperature with load that 
did not decrease and low temperature with load that did not 
increase (no distinction was made for weekdays, weekends, 
winter season etc). 
   Three network structures were selected with different 
parameters. One network structure was selected for data set 
(A), because data set A has only one weather component 
variable (Daily average temperature). Whereas, two network 
structures were selected for data set (B), the first structure 
included only the daily average temperature and the second 
structure included all the weather components. The following 
details the network structures:  

1) The AR-MCRNN-a structure and the AR-MCRNN-
b structure for data set (A) each of which consisted 
of 12-2-3-2*3-1; 12 neurons, 2 neurons in the first 
hidden layer, 3 neurons in the second hidden layer, 
2 context layers, each of which has 3 neurons, and 
1 output neuron.  

2) The AR-MCRNN-a structure and the AR-MCRNN-
b structure for data set (B) each of which consisted 
of 12-2-3-2*3-1; 12 neurons, 2 neuron in the first 
hidden layer, 3 neurons in the second hidden layer, 
2 context layers each of which has 3 neurons and 1 
output neuron.  

3) The AR-MCRNN-a structure and the AR-MCRNN-
b structure for data set (B) each of which consisted 
of 18-3-4-2*4-1; 18 neurons in the input layer, 3 
neurons in the first hidden layer, 4 neurons in the 
second hidden layer, 2 context layers each of which 
has 4 neurons and 1 output neuron.  

These parameters relied profoundly on the size of the 
training and testing sets. Learning rates, momentum and 
the training cycles were varied. The type of activation 
function was a logistic function. 
 

E. Cross Validation, Training and Testing 
 
   An effective algorithm is used for cross validation and to 
compute near optimal values for the network parameters such 
as learning rate, momentum, hidden neurons and the threshold 
value at which to stop training. Let TR denote the training set 
and TS the testing set used in this study (see Figure 5). The 
algorithm in general was as follows: 
 

1. Invoke the training data set TR only. 
2. Divide the training data set TR by n , so we have iP  

validation set of data, for all ni ...2,1=  validation 
sets of data.  

3. Let '
iP  be the outcome of subtracting the iP  set 

from the TR set. Consider '
iP  is a training set and 

iP is validation set. For all ni ...2,1= . 
4. Train the n  networks independently, each with its 

training set '
iP and iP test set. For all ni ...2,1= . 

5. Compute the mean square error for each 
network iMSE . For ni ...2,1= . 

6. Optimize each network parameter (such as hidden 
neurons, learning rate, momentum etc). Repeat step 
4. 

7. Choose the best performance amongst the networks 
in terms of prediction and accuracy from step 5.  
Save the best iMSE  and the best weight 
connections as the optimized network mean square 
error iOMSE  and weight connections iOW . 

   Testing of the network can be done in two ways: 
1) Invoke the testing data set TS.  
2) Load the network with the saved iOW  from 

above. Then, present the TS data set to the network. 
Obtain the forecasting results. 

Or  
1) Train the network with TR. 
2) Stop the training when MSE  of the network is 

equal to or less than the iOMSE . 
3) Present the TS data set to the network. Obtain the 

forecasting. 
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The two ways of testing are compared in terms of the 
forecasting results and the speed of convergence. 

 
Figure 5 displays the cross validation procedures. 

 

F. Complexity Computations of the AR-MCRNN 
 
The multi-context layer in recurrent networks provides the 
potential for the network to store information about previous 
inputs. If one context layer is doing well for the task, it is 
possible that two or more context layers will construct the 
network better for a sequential task because they have more 
accurate information about the previous inputs. The number of 
context layers and the number of hidden layers, and neurons 
in each hidden layer are user specified. The common practice 
is to select these parameters so that the best achievable 
structure with as few potential parameters as possible is 
acquired. This cannot be very helpful, and, in practice, we 
have to experiment with different structures and evaluate their 
outcomes, to get the most appropriate neural network structure 
for the task to be tackled. In various applications, one or two 
hidden layers are adequate. The recommendation is to 
commence with a linear model, in order to facilitate neural 
networks with no hidden layers, followed by changing over to 
networks with one hidden layer but with no more than five to 
ten neurons. As a last step you should try two hidden layers. 
The number of weights for AR-MCRN-a can be calculated by 
the formula below: 
 
 
And the number of weights for the MCRNN-b can be 
calculated by  
 
 

Where cIhho ,,,, 21  are the number of output neurons, first 
hidden neurons, second hidden neurons, n input neurons and 
the number of context layers, respectively? As can be seen 
from the above two equations, they are very similar except 
that the fourth terms are different. Therefore, we expect that 
both AR-MCRN-a and ARMCRN-b can perform the task 
equally. 

V. EXPERIMENTAL RESULTS 
   The performance of the training and the validation of the 
network are evaluated by computing the sum of iMSE  
averaged over the number of training and validation sets using 
the equation below: 

∑
=

=
n

i
iMSE

n
performMSE

1
. )3.........(....................1.)(

 
The error results of AR-MCRN-a obtained for load 
forecasting using the cross validation of 10 training and 
testing sets are shown in Table 1, using cross validation on 
data set A. The results from using the cross validation 
technique are very close to the actual forecasting errors 
produced by the network on the same data set as shown in 
Table 2. The second part of Table 2 shows the results for data 
set B, with only the change in the temperature component 
included as an input to the network. The last part of Table 2 
displays the results for data set B, for which all the changes in 
weather components are included as inputs to the network. 
Obviously, the results shown in the last part presents better 
results in both accuracy in training and testing. Figures 6 and 
7 display the load forecasting results of AR-MCRN-a and AR-
MCRN-b for data set A and data set B, respectively, using 
only the change in daily average temperature component. 
While Figure 8 displays the forecasting results of AR-MCRN-
a and AR-MCRN-b for data set B with the influence of all 
weather components. The evaluation of this network 
implementation of the load forecasting application is realised 
using two performance measures, namely the Mean Absolute 
Percentage Error (MAPE) and Maximum Error (MAX). The 
expressions of these two functions are given below, in 
equations (4) and (5): 

( ) )5.(............................................................max

)4....(..................................................100
1

ii

n

i i

ii

LpLrMAX
Lr

LpLr
n

MAPE

−=

−
= ∑

=  

   Where n , is the number of outputs forecasted from the 
network, iLr  and iLp , are the target and the predicted values 
of the daily peak load, and i  is the index of the day.  
 
 
 
 
 
 
 
 

)1........(2),,,,( 1122
2
221 hIhhIhchcIhhow ++++=

)2........(2),,,,( 12122
2
221 hhhhIhchcIhhow ++++=
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TABLE I 
DISPLAYS THE RESULTS OF VARIOUS ERROR PERFORMANCES OF 
THE n NUMBERS OF TRAINING AND VALIDATION SETS ON THE 

AR-MCRNN-A FOR THE DATA SET (A) 

 
 

TABLE II  
DISPLAYS THE TRAINING AND TESTING DIFFERENT ERRORS OF 

OUR AR-MCRNN-A AND AR-MCRNN-B NETWORKS FOR BOTH 
DATA SETS (A AND B) 
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Fig. 6 displays the forecasting results of AR-MCRNN-a and AR-
MCRNN-b for the data set (A) with only influence of the daily 
average temperature component variable 
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Fig. 7 displays the forecasting results of AR-MCRNN-a and AR-
MCRNN-b for the data set (B) with influence of only the daily 
average temperature component variable 
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Fig. 8 displays the forecasting results of AR-MCRNN-a and AR-
MCRNN-b for the data set (B) with influence of all weather 
components variables 

VI. CONCLUSION 
 In this paper AR-MCRN networks are studied and used for 
daily peak electric load forecasting. Two historical data sets 
have been used on our networks. In this paper an effective 
approach for predicting the energy load is presented. The 
approach is mainly based on the neural network introduced 
initially in [10, 6, 5, 26, 2, 13]. Because the application of the 
initial network to the load-forecasting problem was not 
straightforward, some modifications and improvements in 
both the network structure and architecture were needed. AR-
MCRN-a and AR-MCRN-b are designed to encode past 
histories and produce relatively equal accurate forecasting 
after short training periods. Furthermore, this paper also 
presented a different approach for modeling the load 
forecasting application. Weather components were identified 
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and used in the model. The experimental results showed that 
the use of these components affected the network performance 
and therefore its output. More notably these components 
helped the network in the learning phase and made it easier 
and faster than without them. 
         In addition, the experimental results also showed a 
network presented with exogenous and endogenous inputs is 
better than a network presented with just exogenous inputs, as, 
in the first case, some relationships between various values of 
parameters were made clear. While, in the latter case, the days 
are implicitly the same if there is no information to the 
contrary. The results obtained in the first case were stable with 
higher precision than in the second case.  
          The main result of this paper is the development of well 
suited neural networks (AR-MCRN) to model the load 
forecasting application, and also the demonstration that the 
change in weather components over time leads to better 
performance than using current absolute weather components 
for the power plant peak load forecasting. Finally, the 
approach presented here compares favorably with other 
techniques proposed in [4, 11, 15, 17, 19], with maximum 
values of 1.5 in mean average percentage error. 

VII. FUTURE WORK  
Our future work will continue to study energy load forecasting 
using a new Auto-Regressive multi-context recurrent neural 
network. This network is characterised by the links from both 
hidden and output layers to the set of context layers. This 
network has previously been tested on other applications and 
has proved to be very competent when compared to networks 
in the same category such as Elman and Jordan networks. 
      We describe a methodology to take full advantage of this 
network's capabilities. This approach consists of two main 
phases: of-line training and online training. During of fine 
training, the network is trained with a few years' data. Then, 
from all this data a particular season is chosen and the 
network is re-trained using the weights of the first training run 
as initial weights. Again, at the end of this training session, the 
new weights are obtained and are used as initial weights to 
train for a particular month of that season. 
      The second phase has two main steps. The first step 
consists of selecting a day for which one wants to predict the 
load. According to the inputs of that day (i.e., temperature, 
weather parameters, etc.), a clustering technique is used to 
extract patterns (days) from the historical data that have 
“similar” features to that day. The network is then trained with 
these patterns. The second step starts just after the completion 
of the first step. It consists of inputting the selected day to the 
trained network and the output should correspond to the 
energy load of that day. Experimental results show that the 
network is very efficient and the prediction accuracy is very 
high. 
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