
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:6, 2008

647

Asynchronous Parallel Distributed Genetic
Algorithm with Elite Migration

Kazunori Kojima, Masaaki Ishigame, Goutam Chakraborty, Hiroshi Hatsuo, and Shozo Makino

Abstract—In most of the popular implementation of Parallel GAs
the whole population is divided into a set of subpopulations, each
subpopulation executes GA independently and some individuals are
migrated at fixed intervals on a ring topology. In these studies,
the migrations usually occur ‘synchronously’ among subpopulations.
Therefore, CPUs are not used efficiently and the communication
do not occur efficiently either. A few studies tried asynchronous
migration but it is hard to implement and setting proper parameter
values is difficult.
The aim of our research is to develop a migration method which is

easy to implement, which is easy to set parameter values, and which
reduces communication traffic. In this paper, we propose a traffic
reduction method for the Asynchronous Parallel Distributed GA by
migration of elites only. This is a Server-Client model. Every client
executes GA on a subpopulation and sends an elite information to the
server. The server manages the elite information of each client and
the migrations occur according to the evolution of sub-population in
a client. This facilitates the reduction in communication traffic.
To evaluate our proposed model, we apply it to many function op-

timization problems. We confirm that our proposed method performs
as well as current methods, the communication traffic is less, and
setting of the parameters are much easier.

Keywords—Parallel Distributed Genetic Algorithm (PDGA), asyn-
chronous PDGA, Server-Client configuration, Elite Migration

I. INTRODUCTION

GENETIC Algorithm (GA) [1] is a multi-point search
technique imitating the survival of the fittest rule of

nature. The approximate solutions are obtained by repeating
the selection, the crossover and the mutation operations called
genetic operations, on a set of approximate solutions. An
individual in the population has the chromosome information
which is an encoded solution of the problem.
Since J. H. Holland et al. proposed GA in the early

1970s, GA had been successfully applied to various function
optimization problems, combinational optimization problems,
control problems, machine learning and so on [2]. This is
because GA is easy to implement, it is robust, and it could
find global optimum solution.
In recent years, it has been required to get the better

approximate solutions faster and more efficiently for larger and
more complicated problems. However, it is hard to obtain the
approximate solution for these problems by using GA running
on a single machine, because it is computationally heavy.
There are two basic approaches to make GA faster. In

approach one, the algorithm itself is modified from its generic

Kazunori K., Masaaki I. and Goutam C. are with the Iwate Prefectural
University, Iwate, Japan, 020-0193. E-mail: kojima@iwate-pu.ac.jp. Hiroshi
M. is with the Tohoku Seikatsu Bunka College. Shozo M. is with the Tohoku
University.

model to a more specific algorithm to solve the problem at
hand, or hybridize GA with artificial neural network, simulated
annealing or some other heuristics.
The second approach is to speed up the computation by

parallel distributed implementation (PDGA). Many researches
in the PDGA are coarse-grained parallel GA which is im-
plemented as follows. The population is divided into some
subpopulations and each subpopulation is assigned to a differ-
ent processor. GA is executed in parallel on each processor.
To prevent premature convergence of the subpopulation, some
individuals from each processor are exchanged (migrated)
among different subpopulations.
There are two main methods to migrate individuals. One

is the synchronous method where migration occurs at fixed
generation intervals. In this method, a fast CPU needs to wait
for the response from a slow CPU for synchronization of
migration. Therefore, it is not efficient for CPU utilization
especially in a heterogeneous environment. The other is the
asynchronous method where individuals are migrated with
fixed probability. But it is hard to implement the asynchronous
event in general. Furthermore, the migrations are not driven
by the searching need in both the methods.
To solve these problems, Munetomo et al. [10] proposed a

migration method that controls the migration timings by the
difference of the standard deviation in a particular subpopula-
tion. However, it is very hard to set the parameter to control
the migration timing.
In this paper, we propose a migration method, we named

Elite Migration. This is an Asynchronous Parallel Distributed
Genetic Algorithm implementation on a Server-Client topol-
ogy. In this method, a client station executes GA independently
on a subpopulation and send an elite chromosome information
to the server when an elite is updated. The server manages
elite information received from each subpopulation. When an
elite of a client is not updated for several generations, the
server sends some manipulated chromosome information to
the client and the client receives the chromosome information
as migrants. Therefore, migration is less and controlled by the
server.
To evaluate the proposed method, we applied our method

to find the global optimum for some uni-modal and multi-
modal functions, and confirmed that the results are as good as
obtained by other methods with much less message passing.

II. PARALLEL DISTRIBUTED GA

Researches on PDGA can be classified roughly into 4
approaches [3].

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:6, 2008

648

Fig. 1. Island model: migrants are sent synchronously in fixed intervals on
a ring topology

1) Global Parallelization [4], [5], where the whole popula-
tion is assigned to a single processor and the calculations
of fitness or the genetic operations are assigned to
different processors.

2) Coarse-grained Parallelization [6], [7], [8], [9], [10],
where the population is divided into some subpopula-
tions and the individuals are exchanged between these
subpopulations.

3) Fine-grained Parallelization [11], [12], [13], where indi-
viduals are assigned on a grid structure and an individual
can crossover with its neighbouring individuals.

4) Works that combine the above [14], [15].

Among these researches, the subpopulation based methods [6],
[7], [8], [9], [10] are the most natural parallelization method
and can be implemented easily.
In PDGA using subpopulation based methods, the island

model is usually used. In the island model, the population
is divided into some subpopulations and each subpopulation
executes GA independently. To prevent convergence of each
subpopulation, individuals need to be exchanged between
subpopulations at fixed intervals or with fixed probability.
In most of the island models, ring topology is used as

shown in Figure 1. Individuals are sent to next island and
are received from the previous island synchronously at fixed
intervals. Hereafter, we call this model Synchronous model. In
the Synchronous model, a fast processor has to wait for a slow
processor for the migration to be synchronized. Therefore, in
an heterogeneous environment, where there are some slow
processors, the available computation power can not be used
efficiently.
On the other hand, there is a model where individuals are

exchanged with fixed probability. In this model, each subpop-
ulation requests migration asynchronously. Hereafter, we call
this model Random-Exchange model. However, in general, it
is hard to process such asynchronous events. Furthermore,
from the viewpoint of genetic search, it is not efficient if
migration occurs either randomly or at fixed intervals, because

migrations are not motivated by necessity.
To solve the above problems, Munetomo et al. proposed

Sigma-Exchange model [10]. In this model, the standard
deviation of fitness in each subpopulation is observed. When
fitness of members in a subpopulation converges, migration
occurs. However, it is hard to set the parameter that controls
migration because we need to set the parameter according to
the characteristics of the application and/or the population size.
Recently Erick et al. [3] reported various researches and

experiments with PDGA. However, they didn’t discuss about
the communication traffic.
Adachi et al. proposed Parameter-free GA [16], [17] and Hi-

royasu et al. proposed Dual Individual Distributed Genetic Al-
gorithm [18]. They implemented their algorithm with Master-
Slave configuration. However, the migrants pass between the
master and the slave synchronously, creating heavy commu-
nication load. They did not discuss about the communication
traffic either.
Thus two main problems of PDGA are reducing unneces-

sary migration which involves communication cost, and setting
different parameters for maximum efficiency. To overcome
these problems, we propose Asynchronous elite migration
PDGA as explained in section III.

III. ASYNCHRONOUS ELITE MIGRATION PDGA

The model we used in this work forms a Server-Client
configuration as shown in Figure 2, composed of a server
program and some client programs. Hereafter, we call our
proposed model as APDGA-EM (Asynchronous Parallel Dis-
tributed Genetic Algorithm with Elite Migration).
Each client program executes GA independently with a

subpopulation. The server program being executed as Elite
Server manages the elite information of each subpopulation.
Hereafter, we call the server as Elite Server, and client as
Subpopulation Client.
This Elite Server-Subpopulation Client model has two mer-

its. It is easy to manage asynchronous event, and it does not
affect the results even if some Subpopulation Client break
down. Moreover, it is possible to add new Subpopulation
Client to the system or delete useless Subpopulation Client
from the system as the genetic search progresses.
Elite Server communicates to each Subpopulation Client

according to the following rules.

When an elite is updated in a Subpopulation Client,
the Subpopulation Client sends the elite chromosome
information to Elite Server.
Each Subpopulation Client has a Longevity parameter.
When the genetic search does not go well in a Subpop-
ulation Client, in other words an elite is not updated,
Longevity parameter () is decremented.
When Longevity parameter () is 0 with a Subpopulation
Client, it requests migration to Elite Server as shown in
Figure 3. Then, that Subpopulation Client receives new
chromosome information from Elite Server.
Elite Server receives elite information from each Sub-
population Client and sort them by fitness order. When
a Subpopulation Client requests migration, Elite Server

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:6, 2008

649

Fig. 2. Asynchronous PDGA with Elite Migration: an elite chromosome
information is sent to Elite Server when an elite in a Subpopulation Client is
updated

Fig. 3. Asynchronous Migration between Elite Server and Subpopulation 1:
A Subpopulation Client requests migration to Elite Server and receives of
elite chromosome information when Longevity parameter is 0

sends number of chromosomes from the top of the list,
i.e., the best chromosomes Elite Server knows.

The communication in Elite Migration consists of sending
an elite chromosome information from a Subpopulation Client
to Elite Server, sending a migration request from a Subpopu-
lation Client to Elite Server and as response, a Subpopulation
Client receives the chromosome information from Elite Server.
They are asynchronous events because they occur at various
times. Communication occurs when an elite in a Subpopulation
Client is updated. So unnecessary communication is reduced
and the communication traffic is less.

A. Parameters

There are three parameters in Elite Migration.
1) Interval to Send an Elite: A Subpopulation Client does

not send an elite chromosome information at every elite
updating, but once in every times of updates. By increasing
, our system is able to reduce the communication frequency
from a Subpopulation Client to Elite Server. We need to
optimize this interval .

2) Longevity Parameter: The Longevity parameter () is to
control the timing of the request for chromosome import from
Elite Server. To simplify the implementation, is decremented
by 1 when, in a generation, an elite is not updated. And
the migration occurs when is decremented to 0. When an
elite is updated, is reset to the initial value. Thus, when
GA searches well within a Subpopulation Client, it does
not need to send migration request to Elite Server and the
communication frequency is low.
3) The Number of Migrants: As described before, the mi-

gration occurs when Longevity Parameter in a Subpopulation
Client is decremented to 0. The Subpopulation Client requests
to Elite Server for migrants and Elite Server sends chro-
mosome information to the Subpopulation Client. Individuals
selected randomly in the Subpopulation Client are replaced by
newly received individuals. The ensuing traffic could be kept
low when the number of migrants () is small.

B. Implementation

We implemented the simulation using C and MPI, and exe-
cuted on SGI Origin2000. Origin2000 is a parallel processing
machine with 32 CPUs. MPI (Message Passing Interface) [19]
is the standard library for message communication. MPI is
used on parallel computers but there are similar packages for
UNIX or WindowsNT, so that one can use MPI on WSs or
PCs on a TCP/IP network.
When we implement Parallel GA on WSs or PCs on a

TCP/IP network, we can also use PVM (Parallel Virtual
Machine), Socket library, Java language and so on. It is hard
to implement Random-Exchange and Sigma-Exchange using
the above techniques. However, it is easy to implement our
algorithm using them.
Figure 4 shows Problem Analysis Diagram (PAD) of Elite

Server program that we used, and Figure 5 shows the PAD of
the Subpopulation Client program.
Elite Server waits for messages from Subpopulation Clients

until they exist. When a message arrives, Elite Server pro-
cesses it according to its content and then waits for further
messages. In our programs, messages are identified using TAG
of MPI. Messages can be identified by including TAG in the
message on Socket programming or Java language.
The Subpopulation Client executes GA and sends an elite

information once every times the elite in that island is
updated. When an elite is not updated, Longevity parameter
() is decremented. If Longevity parameter is 0, the Subpopu-
lation Client sends a request to Elite Server for migration and
receives migrants from Elite Server.
A message is composed of a TAG and the message itself.

The TAG is used to identify the message. The main body of
the message mainly is the chromosome itself. Thus, a message
that a Subpopulation Client sends to the Elite Server is the
chromosome information of the elite in that Subpopulation
Client. A message that a Subpopulation Client receives from
the Elite Server is some chromosome information that the Elite
Server manages.
Figure 4 and Figure 5 omit the details. But it is evident

from these figures that the model is easy to implement and
that the communication cost is low.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:6, 2008

650

Fig. 4. PAD of Elite Server: Elite Server processes only messages from
Subpopulation Clients

Fig. 5. PAD of Subpopulation Client: Subpopulation Client executes GA
and processes messages according to an elite status

IV. EXPERIMENTS AND RESULTS

In this section, we describe the experiments and the re-
sults. For comparison, we implemented Synchronous model,
Random-Exchange, Sigma-Exchange and APDGA-EM on
Origin2000.

A. Experimental conditions

We experimented the above mentioned algorithms on 8
function optimization problems. Table I shows the list of
functions Func1 to Func8, we experimented with.
Func1 and Func2 are a -dimensional uni-modal function

and a -dimensional multi-modal function respectively. We
created these two functions. Each variable is encoded to 10-bit
gray code in the chromosome. Func3 and Func4 are De Jong’s
Function F1 and F5. Func5, Func6, Func7 and Func8 are the
functions that were used in the first International Contest on
Evolutionary Optimization (ICEO) in 1996 and the second
ICEO in 1997. From Func3 to Func8, the precision of a
solution is set to 6 decimal places and each variable is encoded
to 22–31 bits gray code. The optimization criterion is to get
maximum value for all the functions.
The parameters for GA are as follows. Total population

size is 1024. Selection is roulette selection. Crossover is
single point crossover for each variable. Crossover rate is 0.6.
Mutation is applied at bit level with 0.03 probability. An elite
is preserved at every generation and it is terminated at the
500th generation.
The parameters for PDGA are follows. Migration rate is

0.2. Migration interval is 100 generations in Synchronous

TABLE I

LIST OF APPLICATION PROBLEMS

Func1: n-Half-Sine

, chromlen=
Func2: n-Sine-Cosine

, chromlen=
Func3: De Jong’s Function F1 (Parabola)

, chromlen=
Func4: De Jong’s Function F5 (Shekel’s foxholes)

, chromlen=
Func5: Generalized Langerman’s function

, chromlen=
Func6: Sphere model

, chromlen=
Func7: Griewank’s function

, chromlen=
Func8: Michalewicz’ function

, chromlen=

model. Migration probability is 0.01 in Random-Exchange.
From preliminary experiments of Sigma-Exchange a suitable
value for the parameter to control migration timing is selected.
And ring topology is used.
In the proposed APDGA-EM, interval to send an elite

is set at 10, initial Longevity is 100 and the number of
migrants is 2.

B. Comparison of fitness and traffic

In this set of experiments, the number of islands is 16 and
each algorithm was executed for 25 times.
Table II shows the mean of best fitness till termination.

In this table, Sync, Rand-ex and Sig-ex indicate Synchronous
model, Random-Exchange model and Sigma-Exchange model
respectively.
From this table, we can confirm that the fitnesses obtained

by APDGA-EM are as good as obtained by other methods.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:6, 2008

651

TABLE II

COMPARISON OF MEAN OF THE BEST FITNESS

Sync Rand-ex Sig-ex APDGA-EOM
Uni-modal 9.9999E-01 9.9999E-01 9.9999E-01 9.9999E-01
Multi-modal 9.9418E-01 9.9468E-01 9.9444E-01 9.9546E-01
De Jong F1 -1.9696E-08 -2.2352E-08 -2.5914E-08 -3.2331E-08
De Jong F5 -9.9800E-01 -9.9800E-01 -9.9800E-01 -9.9800E-01
Langerman 9.8969E-01 9.8654E-01 9.8728E-01 9.9337E-01
Sphere -1.1312E-05 -9.8701E-06 -1.6630E-05 -1.4850E-05
Griewank -3.1375E+02 -3.0876E+02 -3.1379E+02 -3.0879E+02
Michalewicz 4.6875E+00 4.6876E+00 4.6875E+00 4.6875E+00

Therefore, in spite of lower communication cost, which we
will show later, APDGA-EM could deliver at least equally
good results.
Table III shows the mean of the traffic that one Subpopu-

lation Client has received in the simulations. Table IV shows
the mean of the traffic that one Subpopulation Client has sent
to Elite Server in the simulations

TABLE III

COMPARISON OF RECEIVED DATA AT SUBPOPULATION CLIENT (BYTES)

Sync Rand-ex Sig-ex APDGA-EOM
Uni-modal 1200.00 2317.60 410.24 41.60
Multi-modal 1200.00 2279.04 324.16 40.00
De Jong F1 720.00 1357.60 208.80 6.72
De Jong F5 480.00 837.12 0.00 3.84
Langerman 1200.00 2269.92 139.52 0.00
Sphere 1200.00 2441.76 362.40 3.20
Griewank 1200.00 2201.76 348.96 1.60
Michalewicz 1200.00 2480.96 54.24 4.80

TABLE IV

COMPARISON OF SENT DATA BY SUBPOPULATION CLIENT (BYTES)

Sync Rand-ex Sig-ex APDGA-EOM
Uni-modal 1200.00 2313.60 408.32 76.96
Multi-modal 1200.00 2275.20 322.56 66.40
De Jong F1 720.00 1359.36 204.48 69.76
De Jong F5 480.00 837.12 0.00 46.08
Langerman 1200.00 2284.80 132.16 142.40
Sphere 1200.00 2448.00 359.04 126.72
Griewank 1200.00 2208.00 343.68 140.96
Michalewicz 1200.00 2486.40 50.56 116.48

The traffic of received data is the same as the one of sent
data in Synchronous model because the number of message
passing is same. The traffic in Random-Exchange is almost
twice as that of Synchronous model, and here too the traffic
of received data is almost same as the sent data. In Sigma-
Exchange, both the received data traffic and sent data traffic
is less than the ones in Synchronous model and Random-
Exchange. Convergence of population in De John’s Function
F5 (Func4) is difficult, because the difference between higher
fitness value and lower fitness value is large. Therefore,
migration takes place only occasionally and the traffic is less.
Also in Michalewicz Function (Func8), migration happens
seldom and the traffic is less. In these two functions, the traffic
of the received data is almost same as the sent data.

In APDGA-EM, the traffic is more than that of Sigma-
Exchange for some functions. But the traffic is less than other
methods in general. The traffic of the received data are the
migrants from Elite Server and the traffic of the sent data are
the elites sent to Elite Server. Therefore, these two traffics are
different. When an elite in a Subpopulation Client is updated
frequently, the traffic of sent data increases. On the other hand,
the decrementing of Longevity Parameter () rarely happens.
Therefore, the migration does not occur frequently and the
traffic of received data is less.
From the results of our experiments, we can confirm that

the traffic in APDGA-EM is less compared to other methods.
And still it could achieve comparable chromosome fitnesses.
Therefore, APDGA-EM is a more efficient parallel algorithm.

C. Parameters of APDGA-EM

In APDGA-EM, there are the following three parameters.

Initial value of Longevity Parameter ()
The number of elite for migrants ()
Interval to send an elite information to Elite Server ()

Among these parameters, initial value of Longevity Parameter
() and the number of elite for migrants () affect the
communication cost for received data, and interval () to send
an elite information affects the communication cost for sent
data.
Figure 6 shows the dependence of final fitness on initial

Longevity Parameter. Figure 7 shows the dependence of final
fitness on the number of migrants. Figure 8 shows the variation
of final fitness on the interval to send an elite information.
From Figure 6 and Figure 7, we can confirm a tendency of

negative and positive gradient respectively. For example, when
the initial value of Longevity Parameter is small or when the
number of migrants is large, the fitness is better. In summary,
this means that the fitness is better when more messages are
passed between Elite Server and Subpopulation Client, and it is
worse when the traffic is less. However, the fitness fluctuates
within a narrow range. Therefore, we can also confirm that
these parameters do not affect the fitness strongly.
From Figure 8, it is seen that the resulting fitness does not

really depend on the interval at which elite is passed from
Subpopulation Client to Elite Server, and the fitness varies
within a very narrow range. Similar behaviour is confirmed
for all other functions too. This is an important difference
from the parameter of Sigma-Exchange that has to be changed
according to population size, GA operators and the application

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:6, 2008

652

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 1 10 100

F
itn

es
s

Initial Longevity ()

Fig. 6. Dependence on initial Longevity parameter: Fitness is better when
Initial Longevity () is small value

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 1 10

F
itn

es
s

Number of migrants ()

Fig. 7. Dependence on the number of migrants: Fitness is better when the
number of migrants () is large value

problem. We thus conclude that the proposed algorithm is
more robust to the selection of the parameters for various
applications.
From all the experiments, we recommend the general opti-

mum values for the parameters as:

Initial Longevity parameter () to be 100
The number of elite information to send for migrants ()
to be 2
Interval to send an elite information to Elite Server ()
to be 10

The above setting could deliver near optimum values for all
the experiments we performed.

V. CONCLUSION

In this paper, we proposed Elite Migration for Asyn-
chronous Parallel Distributed Genetic Algorithm which uses
Server-Client topology. Our proposed method mainly sets
some rules to communicate between Elite Server and Sub-
population Client which run genetic operations on a small
population of chromosomes. A Subpopulation Client sends an
elite chromosome information to Elite Server when an elite
is updated. To control migration timing, Longevity Parameter

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 1 10 100 1000

F
itn

es
s

Interval to send an elite to the master ()

Fig. 8. Dependence on interval to send an elite: Fitness does not really
depend on this value

() is introduced on each Subpopulation Client. And some
chromosome information that the Elite Server manages are
used for migrants. Thus the proposed algorithm reduces the
message passing traffic in PDGA.
We applied our proposed method and other PDGA methods

to various function optimization problems and confirmed the
effectiveness of our proposal. The traffic in proposed method
is less than other current PDGA methods, and the results by
our proposed method is better or at least equally good as those
obtained by other methods.
Three parameters of the proposed method could affect the

fitness values and the generated traffic. However, we have
shown that the effect of the parameter values are only marginal
and do not need to be tuned for different problems. Thus the
proposed algorithm is robust to variations in parameter values,
and the same set of values work well for every problem.
Therefore, the proposed algorithm is robust as well as its

communication cost is lower compared to its competitive
algorithms

ACKNOWLEDGMENTS

The authors would like to thank Iwate Prefectural University
Media Center Administrative staffs, who made possible the
access to the computation environment needed to pursue this
work.

REFERENCES

[1] Holland, J.H.: “Adaption in Natural and Artificial Systems”, University
of Michigan Press (1975).

[2] Goldberg, D.E.: “Genetic Algorithm in Search Optimization and Machine
Learning”, Addison Wesley (1989).

[3] Erick Cantú-Paz: “Efficient and Accurate Parallel Genetic Algorithms”,
Kluwer Academic publishers (2000)

[4] Fogarty, T.C., and Huang, R.: “Implementing the genetic algorithm on
transputer based parallel processing systems”, Parallel Problem Solving
from Nature, pp.145-149 (1991).

[5] Hauser, R., and Männer, R.: “Implementation of standard genetic algo-
rithm on MIMD machines” Parallel Problem Solving from Nature, PPSN
III, pp.504-513 (1994)

[6] J.P. Cohoon, W.N. Martin, and D.S. Richards: “A Multi-population
Genetic Algorithm for Solving the k-Partition Problem on Hypercubes”,
Proc. of ICGA-91, pp.244-248 (1991).

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:6, 2008

653

[7] C.C. Petty, and M.R. Leuze: “Theoretical Investigation of a Parallel
Genetic Algorithm”, Proc. of ICGA-89, pp.398-405 (1989).

[8] R. Tanese: “Parallel Genetic Algorithm for a Hypercube”, Proc. of ICGA-
87, pp.177-183 (1987).

[9] R. Tanese: “Distributed Genetic Algorithms”, Proc. of ICGA-89, pp.434-
439 (1989).

[10] Munetomo M., Yoshiaki T., and Yoshiharu S., “An Efficient Sigma
Exchange Algorithm for a Subpopulation-Based Asynchronously Parallel
Genetic Algorithm and Its Evaluation”, IPSJ, vol.35, no.9, pp. 1815-1827,
1994.

[11] R.J. Collins, and D.R. Jefferson: “Selection in Massively Parallel Genetic
Algorithms”, Proc. of ICGA-91, pp.249-256 (1991).

[12] B. Manderick, and P. Spiessens: “Fine-grained Parallel Genetic Algo-
rithms”, Proc. of ICGA-89, pp.428-433 (1989).

[13] P. Spiessens, and B. Manderick: “A Massively Parallel Genetic Algo-
rithm, Implementation and First Analysis”, Proc. of ICGA-91, pp.279-285
(1991).

[14] D.E. Brown, C.L. Huntley, and A.R. Spillane: “A Parallel Genetic
Heuristics for the Quadratic Assignment Problem”, Proc. of ICGA-89,
pp.406-415 (1989).

[15] M. Gorges-Schleuter: “ASPARAGOS: An Asynchronous Parallel Ge-
netic Optimization Strategy”, Proc. of ICGA-89, pp.422-427 (1989).

[16] Sachio K., Hidefumi S., and Susumu A.: “Parameter-free Genetic
Algorithm (PfGA) Using Adaptive Search with Variable-Size Local
Population and Its Extension to Parallel Distributed Processing”, IEICE
Transactions(D-II), Vol.J82-D-II, No.3, pp.512-521 (1999).

[17] Susumu A., and Hidefumi S.: “Effects of Migration Methods in Parallel
Distributed Parameter-Free Genetic Algorithm”, IEICE Transactions(D-I),
Vol.J83-D-I, No.8, pp.834-843 (2000).

[18] Tomoyuki H., Mitsunori M., Masahiro H., and Yusuke T.: “A New Model
of Distributed Genetic Algorithm for Cluster Systems: Dual Individual
DGA”, Proc. of PDPTA, Vol.1, pp.477-483 (2000).

[19] P. Pacheco: “Parallel Programming with MPI”, Baifu-kan (2001)

Kazunori Kojima received the B.Eng. and M.Eng. degree in mining
college from Akita University in 1993 and 1995, respectively. He is currently
a research associate of Faculty of Software & Information Science of Iwate
Prefectural University. He has been engaged in research on genetic algorithms.

Masaaki Ishigame received the Ph.D. degree in Tohoku University in
1974. He was a research associate of Tohoku University, an employee of
Matsushita Denso, and an associate professor of Akita University. He is
currently Dean of the graduate school of Iwate Prefectural University. He
has been engaged in research on signal processing, image processing, and
knowledge engineering.

Goutam Chakraborty received his Ph.D. in 1993 from Tohoku University,
Japan. Presently he is Professor and head of the Intelligent Informatics
lab., Department of the Software and Information Science, Iwate Prefectural
University, Japan. His main research interests are Soft Computing algorithms
and their applications to solve pattern recognition, prediction, scheduling
and optimization problems including applications in wired and wireless
Networking problems.

Hiroshi Matsuo received the Ph.D. degree in Tohoku University in 1990.
He was an employee of Canon, and a research associate and an assistant
professor of Akita University. He is currently an associate professor of Tohoku
Seikatsu Bunka College.

Shozo Makino received the Ph.D. degree in Tohoku University in 1974.
He was a research associate, and an associate professor of Tohoku University.
He is currently a professor of Tohoku University. He has been engaged in
research on voice recognition and understanding, voice database, voice signal
processing, voice CALL system, image processing, character recognition.

