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Asymptotic Properties of a Stochastic Predator-Prey
Model with Bedding-DeAngelis Functional

Response

Abstract—In this paper, a stochastic predator-prey system with
Bedding-DeAngelis functional response is studied. By constructing
a suitable Lyapunov founction, sufficient conditions for species to
be stochastically permanent is established. Meanwhile, we show that
the species will become extinct with probability one if the noise is
sufficiently large.

Keywords—Stochastically permanent, extinct, white noise,
Bedding-DeAngelis functional response.

I. INTRODUCTION

IN mathematical biology, the predator’s functional
response which is the rate of prey consumption by an

average predator is one of the significant elements of the
predator-prey relationship. Generally, the functional response
can be classified into two types: prey-dependent and
predator-dependent. And Bedding-DeAngelis functional
response belongs to predator-dependent functional response.
As a matter of fact, the phenomenon that predators have to
share or compete for food is common. Therefore, studying

A. The Model

However, we have no choice but to admit that all
population systems are often subject to environmental noises.
So, considering the corresponding stochastic population is
necessary and important[1]-[13]. In [1], Liu and Wang
introduced global stability of a nonlinear stochastic
predator-prey system with Beddington-DeAngelis functional
response. As we all know, stochastically permanent and
extinct are also very important. There are two noise sources
in [1], but their coupled mode is very simple. We know one
noise source not only has influence on the growth rate of
predator but also on the prey’s. Therefore, from the argument
above, we study the following form in this paper:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx = x

[
r1 − b1x− a1y

1 + βx+ γy

]
dt

+x[σ1dB1(t) + μ2dB2(t)],

dy = y

[
r2 − a2x

1 + βx+ γy
− b2y

]
dt

+y(t)[σ2dB1(t) + μ1dB2(t)],

(1)
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where x(t) and y(t) stand for the population densities of prey
and predator at time t, respectively; ri, bi, ai, β, γ are positive
parameters, i = 1, 2. μ2

i and σ2
i represent the intensities of the

white noises, i = 1, 2. Let (Ω, F, {Ft}t≥0, P ) be a complete
probability space with a filtration {Ft}t≥0 satisfying the usual
conditions, i.e. it is right continuous and increasing while F0

contains all P−null sets. We denote by R2
+ the positive cone

in R2, and also denote by X(t) = (x(t), y(t)) and |X(t)| =
(x2(t) + y2(t))

1
2 .

1) The Preliminaries: In this section, we give some
definitions, lemmas, assumptions and notations. The proof of
Lemma 1, Lemma 2 and Lemma 3 are similar to [14]. Here,
we omit them.

Definition 1 (see [14]) The solution X(t) = (x(t), y(t)) of (1)
are said to be stochastically permanent, if for any ε ∈ (0, 1),
there exists a pair of positive constants δ = δ(ε) and χ = χ(ε)
such that for any initial value X(0) = (x(0), y(0)) ∈ R2

+, the
solution X(t) to (1) has the properties that

lim inf
t→∞ P{|X(t)| ≥ δ} ≥ 1−ε, lim inf

t→∞ P{|X(t)| ≤ χ} ≥ 1−ε.

Lemma 1 For any initial value x0 > 0, y0 > 0, there is an
unique positive local solution (x(t), y(t)) for t ∈ [0, τe) of
model (1) almost surely (a.s.).
Lemma 2 For any given initial value X0 = (x0, y0) ∈ R2

+,
there is an unique solution X(t) = (x(t), y(t)) to model (1)
on t ≥ 0 and the solution will remain in R2

+ with probability
1.
Lemma 3 The solutions of model (1) are stochastically
ultimately bounded for any initial value X0 = (x0, y0) ∈ R2

+.
Assumption (A1):

1

2
max

{(
σ2
1 + μ2

2 + σ1σ2 + μ1μ2

)
,
(
σ2
2 + μ2

1

+σ1σ2 + μ1μ2

)}
< min

{
r1 +

a1
γ
, r2

}
,

Assumption (A2): r1 − σ2
1 + μ2

2

2
< 0,

Assumption (A3): r2 +
a2
β

− σ2
2 + μ2

1

2
< 0.

For convenience of statement, we introduce some notations:
let

M(x, y) =
a1y

1 + βx+ γy
,N(x, y) =

a2y

1 + βx+ γy
.
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II. CONCLUSION

Theorem 1 Under Assumption (A1), for any initial value
X(0) = (x(0), y(0)) ∈ R2

+, the solution X(t) = (x(t), y(t))
satisfies that

lim sup
t→∞

E(
1

|X(t)|α ) ≤ K, (2)

where α is an arbitrary positive constant satisfying

α+ 1

2
max

{
(σ2

1 + μ2
2 + σ1σ2 + μ1μ2),

(
σ2
2 + μ2

1 + σ1σ2

+μ1μ2

)}
< min

{
r1 +

a1
r
, r2

}
.

(3)
there exist an arbitrary positive constant s > 0 satisfying

αmin
{
r1 +

a1
r
, r2

}
− α(α+ 1)

2
max

{(
σ2
1 + μ2

2 + σ1σ2

+μ1μ2

)
,
(
σ2
2 + μ2

1 + σ1σ2 + μ1μ2

)}
− s > 0.

(4)
Theorem 2 Assume (A1) hold, equation(1) is Stochastically
permanent.

The proof is application of the well-known Chebyshev
inequality, Lemma 3 and Theorem 1. Here, we omit it.
Theorem 3 Assume (A2) and (A3) hold. For any given
initial value (x0, y0) ∈ R2

+, the solution (x(t), y(t)) to (1)
will be extinct exponentially with probability one.

APPENDIX A
PROOF OF THEOREM 1

Proof: The proof is motivated by the method of [12]. Define
V1(x, y) = x + y, for (x, y) ∈ R2

+, by the Itôs formula, we
compute

dV1(x, y) =
{
x
[
r1 − b1x−M(x, y)

]
+ y

[
r2 +N(x, y)

−b2y
]}

dt+ x
[
σ1dB1(t) + μ2dB2(t)

]
+y

[
σ2dB1(t) + μ1dB2(t)

]
.

Then define W (x, y) =
1

V1(x, y)
, dropping x(t) from

U(x(t), y(t)), V3(x(t), y(t)) and t from x(t), y(t), we have

dW = LWdt−W 2
{
x
[
σ1dB1(t) + μ2dB2(t)

]
+y

[
σ2dB1(t) + μ1dB2(t)

]}
,

where

LW = −W 2
[
x
(
r1 − b1x−M(x, y)

)
+ y

(
r2 +N(x, y)

−b2y
)]

+W 3
[(

σ2
1 + μ2

2

)
x2 +

(
σ2
2 + μ2

1

)
y2

+2xy
(
σ1σ2 + μ1μ2

)]
.

Under Assumption (A1), let us choose a positive constant α
such that it obeys (3). By the Itô formula, we get

L(1 +W )α = α(1 +W )α−1LW +
α(α− 1)

2
W 4

×(1 +W )α−2
[(

σ2
1 + μ2

2

)
x2 +

(
σ2
2

+μ2
1

)
y2 + 2xy

(
σ1σ2 + μ1μ2

)]
.

Then we choose s > 0 sufficiently small such that it satisfies
(4). Consequently,

Lest(1 +W )α = sest
(
1 +W

)γ

+ estL
(
1 +W

)γ

= est
(
1 +W

)γ−2[
s
(
1 +W

)2

+H
]
,

where

H = −αW 2
[
x
(
r1 − b1x−M(x, y)

)
+ y

(
r2 +N(x, y)

−b2y
)]

− αW 3
[
x
(
r1 − b1x−M(x, y)

)
+ y

(
r2

+N(x, y)− b2y
)]

+ αW 3
[(

σ2
1 + μ2

2

)
x2 +

(
σ2
2

+μ2
1

)
y2 + 2xy

(
σ1σ2 + μ1μ2

)]
+

α(α+ 1)

2
W 4

×
[(

σ2
1 + μ2

2

)
x2 +

(
σ2
2 + μ2

1

)
y2 + 2xy

(
σ1σ2 + μ1μ2

)]
.

In the following analysis, we will discuss the upper
boundedness of the function (1 + W )α−2[s(1 + W )2 + H].
It is easy to imply that

W 3
[(

σ2
1 + μ2

2

)
x2 +

(
σ2
2 + μ2

1

)
y2 + 2xy

(
σ1σ2 + μ1μ2

)]
≤

(
max

{(
σ2
1 + μ2

2σ1σ2 + μ1μ2

)
,
(
σ2
2 + μ2

1σ1σ2 + μ1μ2

)})
U

and

α(α+ 1)

2
W 4

[(
σ2
1 + μ2

2

)
x2 +

(
σ2
2 + μ2

1

)
y2 + 2xy

(
σ1σ2

+μ1μ2

)]
≤ α(α+ 1)

2

(
max

{(
σ2
1 + μ2

2 + σ1σ2 + μ1μ2

)
,(

σ2
2 + μ2

1 + σ1σ2 + μ1μ2

)})
W 2.

Hence,

Lest(1 +W )α = est(1 +W )α−2
[
s(1 +W )2 +H

]
≤ est(1 +W )α−2

{[
s+ αmax

{
b1, b2

}]
+
[
2s− αmin

{
r1 +

a1
r
, r2

}
+ αmax{b1, b2}

+αmax
{(

σ2
1 + μ2

2 + σ1σ2 + μ1μ2

)
,
(
σ2
2

+μ2
1 + σ1σ2 + μ1μ2

)}]
W −

[
− αmin

{
r1

+
a1
r
, r2

}
− α(α+ 1)

2
max

{(
σ2
1 + μ2

2

+σ1σ2 + μ1μ2

)
,
(
σ2
2 + μ2

1 + σ1σ2 + μ1μ2

)}
−s

]
U2

}
.

From (4), we know that there exists a positive constant S such
that Lest(1 +W )α ≤ Sest.
Therefore,

E
[
est

(
1 +W (t)

)α]
≤

(
1 +W (0)

)α

+
S

s
est

=
(
1 +W (0)

)α

+K1e
st,

where K1 =
S

s
.

So, we have

lim sup
t→∞

EWα(t) ≤ lim sup
t→∞

E(1 +W (t))α ≤ K1.
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Note that (x + y)α ≤ 2α(x2 + y2)

α

2 = 2α|X|α, where X =
(x, y) ∈ R2. Now, we can obtain that

lim sup
t→∞

E(
1

|X(t)|α ) ≤ 2α lim sup
t→∞

EWα(t) ≤ 2αK1 =: K.

Theorem 1 is proved.

APPENDIX B
PROOF OF THEOREM 3

Proof: Define Lyapunov function V2 = lnx. Applying Itô
formula leads to

dV2 = d(lnx)

=

[(
r1 − σ2

1 + μ2
2

2

)
− b1x−M(x, y)

]
dt+ σ1dB1(t)

+μ2dB2(t).

Integrating it from 0 to t, yields

lnx(t) = lnx0 +

(
r1 − σ2

1 + μ2
2

2

)
t− b1

∫ t

0

x(s)ds

−c1

∫ t

0

M(x(s), y(s))ds

+σ1

∫ t

0

dB1(s) + μ2

∫ t

0

dB2(s).

Consequently,

lnx(t) ≤ lnx0 +

(
r1 − σ2

1 + μ2
2

2

)
t+ σ1B1(t) + μ2B2(t).

Dividing t on the both sides and letting t → ∞, we can obtain

lim sup
t→∞

lnx(t)

t
≤ r1 − σ2

1 + μ2
2

2
< 0 a.s.

Similarly, define Lyapunov function V3 = ln y, by the Itô
formula, we have

ln y(t) = ln y0 +

(
r2 − σ2

2 + μ2
1

2

)
t− b2

∫ t

0

y(s)ds

−c2

∫ t

0

N(x(s), y(s))ds

+σ2

∫ t

0

dB1(s) + μ1

∫ t

0

dB2(s).

Therefore,

ln y(t)

t
≤ ln y0

t
+ r2 − σ2

2 + μ2
1

2
+

a2
β

+
σ2B1(t)

t
+

μ1B2(t)

t
.

Let t → ∞, we have

lim sup
t→∞

ln y(t)

t
≤ r2 +

a2
β

− σ2
2 + μ2

1

2
< 0 a.s.

The desired assertion is derived.
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