
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:12, 2020

494

 

 

 
Abstract—Big Data represents the recent technology of 

manipulating voluminous and unstructured data sets over multiple 
sources. Therefore, NOSQL appears to handle the problem of 
unstructured data. Association rules mining is one of the popular 
techniques of data mining to extract hidden relationship from 
transactional databases. The algorithm for finding association 
dependencies is well-solved with Map Reduce. The goal of our work 
is to reduce the time of generating of frequent itemsets by using Map 
Reduce and NOSQL database oriented document. A comparative 
study is given to evaluate the performances of our algorithm with the 
classical algorithm Apriori. 
 

Keywords—Apriori, Association rules mining, Big Data, data 
mining, Hadoop, Map Reduce, MongoDB, NoSQL.  

I. INTRODUCTION 

ODAY there is a huge amount of digital data that can be 
used to achieve several goals. This evolution of data is 

called "Big data". This kind of data is available in different 
formats and is propagated at a high streaming speed. These 
characteristics has opened up new opportunities in different 
fields such as industry, commerce, health and much more. 
However, some problems must be handled in terms of storage 
and how to process these enormous sets of data in order to use 
them effectively and obtain hidden information. Association 
rule mining is one of the most used data mining techniques to 
extract knowledge from large databases. Extracting frequent 
item set is the most important step in the process of finding 
association rule mining, which allows finding relationships 
between the data to be presented in simple and understandable 
rules that help in decision-making. However, the existing 
techniques of data mining must be adapted to the different 
characteristics of big data. In the literature, we find many 
algorithms of extracting of frequent itemsets: Apriori, FP-
Growth. But, these algorithms are used mostly on structured 
data. That is why we propose to use the Apriori algorithm to 
extract frequent itemsets on NOSQL databases oriented 
document.  

The rest of the paper is organized as follows: Section II 
some definitions are dressed to define the challenges we are 
facing, the related works are cited in Section III, and in 
Section IV we describe our work. Experimental results of our 
algorithm are shown in Section V. Finally, a conclusion is 
presented to summarize the main outcomes of this work. 

 

 
Sarra Senhadji is with the University of Science and Technology of Oran, 

Algeria (e-mail: sarra.senhadji@gmail.com). 

II. DEFINITIONS 

In this section we explain briefly the most important 
challenges we are facing in a big data context. 

A. Big Data [6] 

Many definitions were proposed by different authors to try 
to describe the big data. For example in [8] Big Data is 
defined as “datasets whose size is beyond the ability of typical 
database software tools to capture, store, manage, and 
analyze”. Likewise, Davis and Patterson [26] say that “Big 
data is data too big to be handled and analyzed by traditional 
database protocols such as SQL”. 

Many authors [8], [7], [3], [15] use the term 3V (Volume, 
Variety and Velocity) to characterize the Big Data. 
 Volume (Data in rest). Volume is the principal 

characteristic of big data that refers to the large amount of 
data generated every minute from several sources. 

 Variety (Data in many forms). These data do not have a 
fixed structure and are rarely presented in a perfectly 
ordered form to be ready for processing [13]. 

 Velocity (Data in motion). Velocity means the speed with 
which data are being generated, produced, created, or 
refreshed. Big Data helps the company to hold the 
incoming flow of data and at the same time process it fast. 

More Vs are defined in [6], [13], [9] to describe the other 
characteristics of big data. 

B. NOSQL 

The relational database systems deal with structured data, 
where data are manipulated with the standard language SQL 
(Structured Query Language). However, due to the growth of 
the different varieties of format, new database systems must 
be developed to handle the problem of unstructured and 
scalable data. NoSQL (Not Only SQL) [18] was proposed to 
deals with non-relational databases systems, that are schema-
free, scalable and BASE property (does not support full ACID 
property). NoSQL [12] has four principal categories: key-
value databases, column-based, document-based and graph-
oriented databases. In this work we focus on NOSQL oriented 
document. 

C. Association Rule Mining 

The association rule is one of the interesting techniques of 
data mining that has captured the attention of many 
researchers in different domains. This technique permits to 
find intelligible rules trough a large set of data. 

Considering a transactional database D, an association rule 
has the form X → Y, where X and Y are two itemsets and X ∩ 
Y = Ø. An item set is composed of database’s attributes; this 

Association Rules Mining and NOSQL Oriented 
Document in Big Data 

Sarra Senhadji, Imene Benzeguimi, Zohra Yagoub 

T



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:12, 2020

495

 

 

item is frequent if its support is higher than a defined 
minimum support. A rule is strong if its confidence is greater 
than a minimum confidence specified by a user. 

There are two steps for extraction of the association rule 
mining: 
1. The first step consists of finding frequent  itemsets: 

APRIORI [1], FP-growth [16], Close [14] etc. 
2. In the second step strong rules are defined from the 

generated frequent itemsets. 
Even if the algorithm for extracting association rules seems 

simple and easy to implement, the first step is computationally 
intensive due to the phenomenal number of generated 
itemsets. 

While the itemsets are generated the entire database is 
scanned every time. This means that the execution time is 
increased according to the number of transactions [5]. The 
purpose of the paper is to improve the Apriori algorithm by 
reducing the number of scan of the transactions. 

Parallelism of item sets generating algorithms can play an 

important role in improving the execution time. This is well 
solved with map reduce [10, 11]. 

D. MapReduce 

MapReduce [4] is a computational model that allows us to 
divide a big problem to smaller problems in parallel in order to 
speed up the time process. 

A MapReduce algorithm is a programming model that will 
implement 2 phases, the mapping phase and the reducing 
phase. The map phase consists of a treatment that takes input 
data and maps it to <key, value> pairs. The reduce phase takes 
all the <key,value> with the same key and made a process on 
it . 

The example in Fig. 1 illustrates how MapReduce works 
[24]. First, the input text file is split row by row. Each row 
will be “mapped” by a host. The mapping step is going to 
produce many associations of <key, value> pairs, in the above 
example the key is the word and the value is “1”. 

 

 

Fig. 1 MapReduce Example [24] 
 

After, the produced <key, value> pairs are sorted according 
to the key. This is the most complicated part, but fortunately it 
is made by the MapReduce library. 

Finally, a “reduce” task is performed by each node by 
counting all the <key, value> pairs which have the same key. 
The final result represents the number of instances of each 
word in the file text. 

III. RELATED WORKS 

In the literature the association rule minings are widely used 
in distributed systems and they have to be reviewed to deal 
with unstructured and scalable data [17], [25]. However, we 
found an interesting study of [2] which is close to our work. 
APRIORI is one of the implemented algorithms used by the 
authors. They use a cluster of 5 nodes of Hadoop/MapReduce. 
They also explore NoSQL databases oriented document by 
using MongoDB. Thus, Bson documents are used to store item 
sets with their support. The main steps are presented as: 
1. The first step is to find L1, which basically counts the 

occurrence of each item in the transactional database.  
a. In Map Task, each document will input to the map (Key, 

Value) function. The key is items, and the value is one. 
b. The Reduce Task, after shuffling and sorting the data, is 

based on keys In the Reduce (Key, Value []) function, the 
key is the item, and the value is a list of counts of that 
item. The Reduce task will iterate over the value and 
output the final sum. 

2. In the second step, an auto join of L1 * L1 is required to 
build L2. This can be done in Map task. Reduce task will 
find the final sum of the items, and filter them based on 
minimum support. 

3. For a step K, an auto join of Lk-1 * Lk-1 is required to build 
Lk 

4. Step K is repeated until Lk is empty. 
Our main idea is to review the process of generating 

frequent item sets in order to improve the execution time. In 
the next section, we will present in details our proposition. 

IV. METHODOLOGY 

In this section we present our algorithm and how we can 
ameliorate the classical Apriori algorithm. 

A. Apriori and MapReduce 

Our main idea is to ameliorate the algorithm APRIORI by 
reducing the time consumed for the item sets generating 
process. For this we propose to reduce the number of 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:12, 2020

496

 

 

transactions to be analyzed. 
Proposed algorithm: 
// for a transnational database T, a transaction is identified by an ID 
input: ID_transaction, minsup 
output: K-frequent itemsets 
 First step consists of generating L1 (1-itemsets, support, 

ID_transaction). An itemset is defined with all the id of 
transactions where it appears. The support of itemset is 
calculated by a complete scan of the transnational 
database T. The Itemset that has a support greater than 
MinSup is retained for the next step. 

 The second step consists of generating the itemset 
candidate L2 by an auto join of L1 * L1 to build 2-itemset 
candidates (Ix,Iy) where Ix and Iy are itemset candidates 
of L2. Before scanning all the transactions for calculating 
the L2 candidate's support, we use the set L1 to get the 
ID_transaction with the minimal support between Ix and 
Iy. This permits to limit the size of L2 by scanning only a 
subset of transactions. 

 For step k, we use the Lk-1 list to generate the K-itemset 
candidates and the corresponding transactions to be 
scanned. 

 We repeat this step until no more frequent itemsets can be 
found. 

B. Proposed Algorithm 

Pseudo code 
• Notation: 
TDB: transactional database 
TID: ID of a transaction 
t: transaction 
Ck: Candidate itemset of size k 
Lk: frequent itemset of size k 
L1= {frequent items}; 
Join Step: Ck is generated by joining Lk-1with itself 
Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset 
of a frequent k-itemset 

 
//map reduce operation consists on generating itemsets, support and 
the ID of transaction to be scanned (TID) 

First step: map reduce operation on itemsets of size 1  
Map operation: 
L1 = find 1-itemsets; 
return (1-itemsets, {TID}); 
Reduce operation: 
count = 0; 
For each transaction t in TDB do 
increment the count of all 1-itemsets that are contained in t 
if count>= MinSup then return (1-itemsets, (count,{TID})) ; 
end; 

 

Second step: map reduce operation on itemsets of size k  
Map operation: 
For (k= 1; Lk ≠Ø; k++) do 
begin 
tab={}; //list of transactions to be scanned 
Ck+1= candidates generated from Lk; 
x = find_ item_min_sup( Ck+1, LK); 
trans = find_TID (x); 
add trans to tab; 

For each transaction t in tab do 
if k+1-itemsets in Ck+1 then return (k+1-itemset, TID) ; 

end; 
Reduce operation: 
count = 0; 
For each transaction t in tab do 
increment the count of all k-itemsets that are contained in t 
if count>= MinSup then return (k-itemsets, (count,{TID})) ; 
end; 

V. IMPLEMENTATION AND RESULTS 

In this section we present the tools and the datasets used to 
implement our algorithm. We realized experiments to compare 
our approach to the common frequent itemset search 
algorithm. The obtained results of different experimentation 
are presented to show the effectiveness of our work. 

A. Environment 

We implement our work on a virtual machine with VMware 
Workstation 12 Player [19] having the following 
configurations: 
 Operating system: Ubuntu 14.04 LTS is used with 2 Go 

RAM and 30 Go disk space. 
 Hadoop: Hadoop 2.6.5 [22] was installed over Ubuntu 

and set up with a Single Node Cluster. 
 Eclipse: Algorithms are developed in Java by using the 

IDE Eclipse version 3.8.1[20]. 
 MongoDB: MongoDB [23] is an open source, document-

oriented, schema free database that stores data as a BSON 
(Binary Simple Object Notion) document which is a 
binary encoded format of JSON. Each database may have 
multiple collections. Each collection may have many 
documents. MongoDB architecture has three core 
components: Mongod process handles data request and 
manages the underlying data format and data store. 

B. Datasets 

To experiment our work, we used two datasets of frequent 
mining itemsets [21]: 
 Retail: contains the (anonymized) retail market basket 

data from an anonymous Belgian retail store. There are 88 
161 transactions and each item represent the Id of the 
products. 

 Kosarak: contains (anonymized) click-stream data of a 
Hungarian on-line news portal. It has 900 000 transactions 
and each item represent the ID user. 

 
TABLE I 

DATASETS 

Data set #items #transactions 

Retail 16 470 88 161 

Kosarak 41 270 900 000 

 
The datasets used for our experiments are prepared to be 

ready for applying algorithms of generating frequent itemsets. 
The file of the transactional database is shown in Fig. 2 where 
each line contains items separated by a space. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:12, 2020

497

 

 

C. MongoDB 

In order to analyze the datasets, transactional databases 
must be imported to MongoDB. For this, the « mongoimport » 
command is executed in MongoDB to import JSON, CSV or 

TSV files. 
Fig. 3 shows the import of the file retail. The collection is 

named retail where each line represents a unique id named 
ObjectId with the items of the transaction. 

 

 

Fig. 2 Transactional database 
 

 

Fig. 3 Transactional database 
 

Fig. 3 shows the import of the file retail. The collection is 
named retail where each line represents a unique id named 
ObjectId with the items of the transaction. 

D. Comparative Study 

In this section, we present the result of different 
experiments. 

Experiment 1 

In this we use the transactional database Retail, we vary the 
minimal support and we fix the minimal confidence to 0.1. 

 Execution Time vs Minsup 
TABLE II 

EXECUTION TIME COMPARISON 

Min_sup 
execution time (min) 

gain % Classical 
Apriori 

Proposed 
Apriori 

1000 565 55 90.26% 

1300 275 27 90.01% 

1500 33 12 63.63% 

2000 18 5 72.22% 

3000 11 3 72.72% 

The results of implementing of classical and ameliorated 
Apriori are presented in Table II and Fig. 4. 

Table II shows that the improved Apriori reduces the 
execution time required for the original Apriori by 90.26% 
when the minimum support is equal to 1000 and by 72.72% 
when the Minsup is equal to 3000. So we notice that when the 
value of the minimum support decreases, the rate of reduction 
of time increases, which shows that our approach is effective. 

 

 

Fig. 4 Execution Time 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:12, 2020

498

 

 

As we see in Fig. 4, the time required for the proposed 
Apriori is less than the classical Apriori. Moreover, the 
execution time is reduced when the minimum support value 
decreases. 

 Number of Scanned Transactions 

In the classical Apriori, for each step of generating item sets 
candidates, all transactions are scanned to determine the 
frequent ones. However, our proposed algorithm will scan 
only the required transactions for generating frequent item sets 
as shown in Table III. 

 
TABLE III 

NUMBER OF SCANNED TRANSACTIONS 

Min_sup Classical Apriori Proposed Apriori 

1000 352644 212750 

1300 352644 204459 

1500 264483 188402 

2000 264483 183783 

3000 264483 175357 

 

 

Fig. 5 Number of scan 
 
As shown in Fig. 5 the number of scanned transactions is 

significantly reduced in the proposed algorithm, because all 
transactions are scanned in the classical Apriori while only the 
required transactions are used to determinate the frequent item 
sets. 

Experiment 2 

The main objective of this experiment is to compare the 
performances of our algorithm and the Apriori algorithm when 
the number of transactions becomes huge. So when the 
number of transactions grows the extraction of item sets 
become computational. The classical Apriori scan all 
transactions to generate the itemsets, but in the proposed 
algorithm only a set of transactions is scanned. 

For this we use the transactional database Kosarak and we 
fix the minimum support to 20000 and the minimum 
confidence to 0.1. 

 
TABLE IV 

COMPARATIVE RESULT 

number of transactions Classical Apriori Proposed Apriori 

700 000 5418.614s = 90m 8304.6s = 138m 

600 000 4449.973s = 74m 6564.38s = 109m 

300 000 1948.29s = 32m 3525.34s = 58m 

200 000 1093.67s =18m 3040.478s = 40m 

100 000 171.028s = 2m 1413.346s = 24m 

In Table IV, the proposed algorithm takes much less time 
than the classical Apriori algorithm. For example, a database 
that contains 700,000 transactions, the Apriori algorithm takes 
138 minutes while the proposed algorithm takes only 90 
minutes. 

 

 

Fig. 6 Comparative result 
 

In Fig. 6, we can see that the consumed time of the 
proposed algorithm is less than the time taken by the classical 
algorithm of Apriori, and the difference increases more and 
more when the size of the database increases. 

VI. CONCLUSION 

In this paper we studied the problem of association rule 
mining generation with NOSQL databases under a big data 
environment. The main goal of this paper is to improve the 
phase of discovery of frequent itemsets; we studied the Apriori 
algorithm and discussed its limits in order to propose a 
solution that reduces the time consumed for execution. 

We used Hadoop Framework to experiment our work, and 
we choose NoSQL document-oriented databases. After the 
implementation of the two algorithms, many experiments were 
presented to compare the execution time of each algorithm, 
the obtained results show a significant gain in the proposed 
algorithm compared to the classical Apriori algorithm. 

As future works, we can study the performances of our 
algorithm with other algorithms of extracting frequent 
itemsets. 

REFERENCES 
[1] Rakesh Agrawal, Tomasz Imielinski, and ArunSwami. Mining 

association rules between sets of items in large databases. In 
Proceedings of the 1993 ACM SIGMOD international conference on 
Management of data - SIGMOD '93. ACM Press, 1993. 

[2] Idrees Al-Hashemi. Applying data mining technique over big data. PhD 
thesis, August 2013. 

[3] AprilReeve. Managing data in motion: data integration bestpractice 
techniques and technologies. Morgan Kaufmann, 2013. 

[4] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a fexible data 
processing tool. Communications of the ACM, 53(1):72_77, 2010. 

[5] Y. Djenouri, D. Djenouri, J. C. Lin, and A. Belhadi. Frequent itemset 
mining in big data with effective single scan algorithms. IEEE Access, 
6:68013_68026, 2018. 

[6] Cheikh Kacfah Emani, Nadine Cullot, and Christophe Nicolle. 
Understandable big data: a survey. Computer science review, 17:70_81, 
2015. 

[7] Pascal Hitzler and Krzysztof Janowicz. Linked Data, Big Data, and the 
4th Paradigm. Semantic Web, 4(3):233_235, 2013. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:12, 2020

499

 

 

[8] Brad Brown Jacques Bughin Richard Dobbs Charles Roxburgh James 
Manyika, Michael Chui and Angela Hung Byers. Big Data: The Next 
Frontier Forinnovation, Competition, And Productivity. Technical 
report, McKinsey Global Institute, 2011. 

[9] Nawsher Khan, Mohammed Alsaqer, Habib Shah, Gran Badsha, Aftab 
Ahmad Abbasi, and Soulmaz Salehian. The 10 vs, issues and challenges 
of big data. In Proceedings of the 2018 International Conference on Big 
Data and Education - ICBDE '18. ACM Press, 2018. 

[10] Ming-Yen Lin, Pei-Yu Lee, and Sue-Chen Hsueh. Apriori-based 
frequent itemset mining algorithms on MapReduce. In Proceedings of 
the 6th International Conference on Ubiquitous Information 
Management and Communication - ICUIMC '12. ACM Press, 2012. 

[11] Xueyan Lin. MR-apriori: association rules algorithm based on 
MapReduce. In 2014 IEEE 5th International Conference on Software 
Engineering and Service Science. IEEE, June 2014. 

[12] Andreas Meier and Michael Kaufmann. NoSQL databases. In SQL & 
NoSQL Databases, pages 201_218. Springer Fachmedien Wiesbaden, 
2019. 

[13] https://nikinfotech.wordpress.com/category/bigdata/. 
[14] Pasquier, Nicolas, et al. "Discovering frequent closed itemsets for 

association rules. International Conference on Database Theory. 
Springer, Berlin, Heidelberg, 1999.  

[15] Rafael Peixoto, Hassan Thomas, Christophe Cruz, Aurélie Bertaux, and 
Nuno Silva. Semantic HMC for Business Intelligence using Cross-
Referencing. In 14th International Conference on Informatics in 
Economy, Bucharest, Romania, April 2015. 

[16] Agrawal Rakesh and Ramakrishman Srikant. Fast algorithms for mining 
association rules in large databases. In VLDB, 1994. 

[17] Nataliya Shakhovska, Roman Kaminskyy, Eugen Zasoba, and Mykola 
Tsiutsiura. Association rules mining in big data. International Journal of 
Computing, 17(1):25_32, 2018. 

[18] Michael Stonebraker. SQL databases v. NoSQL databases. 
Communications of the ACM, 53(4):10, apr 2010. 

[19] VMWare. https://my.vmware.com/en/web/vmware/downloads. 
[20] Eclipse. https://www.eclipse.org/. 
[21] Frequent Itemset Mining Dataset Repository. 

http://fimi.uantwerpen.be/data/. 
[22] https://hadoop.apache.org/. 
[23] MongoBD. Available: http://www.mongodb.org/. 
[24] https://whatsbigdata.be/mapreduce/ 
[25] Sudhakar Singh, Rakhi Garg, and PK Mishra. Review of apriori based 

algorithms on mapreduce framework. arXiv preprint arXiv:1702.06284, 
2017. 

[26] Davis, D. Patterson, Ethics of Big Data: Balancing Risk andInnovation, 
O’Reilly Media, 2012. 
 

 
 
 
Sarra Senhadji, Associate professor since 2015, computer science 
department, faculty of mathematics and informatics, University of science and 
Technology Mohamed Boudiaf, Oran, Algeria. Interest in data mining, data 
replication and big data.  
 
Imene Benzeguimi, Master in distributed information system in 2019, 
University of Science and Technology Mohamed Boudiaf of Oran, Algeria.  
 
Zohra Yagoub, Master in distributed information system in 2019, University 
of Science and Technology Mohamed Boudiaf of Oran, Algeria.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 


