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Abstract—This paper describes an automated event detection and 

location system for water distribution pipelines which is based upon 
low-cost sensor technology and signature analysis by an Artificial 
Neural Network (ANN). The development of a low cost failure 
sensor which measures the opacity or cloudiness of the local water 
flow has been designed, developed and validated, and an ANN based 
system is then described which uses time series data produced by 
sensors to construct an empirical model for time series prediction and 
classification of events. These two components have been installed, 
tested and verified in an experimental site in a UK water distribution 
system. Verification of the system has been achieved from a series of 
simulated burst trials which have provided real data sets. It is 
concluded that the system has potential in water distribution network 
management. 
 

Keywords—Detection, leakage, neural networks, sensors, water 
distribution networks.  

I. INTRODUCTION 
N “event” in a water pipeline distribution system is 
defined when something unusual or non-standard in the 

measured or operational characteristics of the flow is detected. 
Detection can be visual evidence of a leak, or, more often, 
changes in flow, pressure or some other parameter which is 
being measured. A leak can be major and catastrophic (“burst” 
– in which case the evidence and location is clear to see) or 
minor. Locating the position of this latter type of leak can be 
very difficult. A leak survey is often conducted, and can be 
divided into two phases [1]. In the first phase, the whole 
distribution network is examined for leaks during minimum 
flow conditions. The usual approach is district flow metering 
which is the most common method in England and Wales. 
Martin and Farley [2] commented that computer technology 
has provided the opportunities for continual monitoring of 
leakage levels through district metering. The principle of 
district metering is based on the subdivision of the distribution 
system into discrete district meter areas (DMAs), by the 
permanent closure of valves, and the measurement of the 
flows into each zone. A DMA generally comprises an area 
containing approximately1000 properties. By examination of 
the measured minimum night flows (NFM) for each zone the 
existence of a leak can be confirmed. The NFM is the lowest 

 
 

flow supplied to a hydraulically isolated supply zone, and is 
usually measured between midnight and 5:00 a.m. because 
water use is at a minimum and it is thus easier to identify the 
legitimate flows. If the night flow minus the legitimate flow is 
close to zero, the leakage must also be close to zero. In 
contrast, discrepancies will signify leakage in the absence of 
any other factors. 

In phase 2 of a leak survey the aim is to pinpoint the 
position of the leak.  Detection crews (or contractors) will 
enter an area and perform a systematic listening for the sound 
of a leak at valves and fittings where the main can be reached 
without any excavation. Leaks make noise because as 
pressurised water is forced out through a cavity somewhere in 
the pipe wall, flow energy is lost to the pipe wall and to the 
surrounding soil area. This energy creates sound waves in the 
audible range which can be sensed and amplified by electronic 
transducers, or in some cases, by simple mechanical means. 
Thames Water alone has more than 100 two-man teams 
working full time looking for leaks [3]. Sometimes these 
operations will be combined with other activities, for example 
routine maintenance or rehabilitation.  This two-stage leak 
survey methodology has significant room for improvement. 
Many of the processes are inconvenient, expensive, time-
consuming and unreliable [4]. 

This paper presents a solution to this challenge by 
providing technology in which low-cost sensors and 
appropriate signal processing by Artificial Intelligence 
techniques are the major distinguishing features. The concept 
of a “failure” sensor is introduced, in which the output is not 
necessarily proportional to some hydraulic parameter, but is 
unmistakably affected when an unusual event occurs. Thus the 
basis for a pipeline monitoring system has been established: a 
spatial array of time series data provided by a low-cost sensor 
installation. Interpretation of the low-grade signal data in the 
spatial array can then be achieved by the use of an ANN 
system in a pattern recognition mode. The paper describes the 
sensor design, development & deployment, system 
verification, associated simulation analysis and an ANN 
approach for burst detection, ending up with conclusions.  
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II.   SENSOR DESIGN, DEVELOPMENT AND DEPLOYMENT 
The basic working principle of the low cost sensor which has 
been researched and developed is that the local opacity or 
cloudiness of a water flow can be affected by a change in the 
flow regime such as turbulence caused by flow velocity 
change, including reversal, aeration of the water flow, or even 
colour changes as two different water streams combine. An 
opacity failure sensor was therefore designed to project a 
narrow beam of infra red (IR) light into the water flow and 
then measure the intensity of the light which is scattered 
sideways by the water flow. The design of this sensor has 
been previously reported [5].  

A dual channel data logger (Lascar Electronics Ltd., EL-3-
12bit), having a storage capacity of 8000 readings per channel 
in its on-board memory, was selected. A laptop computer was 
required for the configuration of the channels and the 
downloading of the recorded data. 
 
 

III.   NEURAL NETWORK ANALYSIS 
The totality of a water distribution network as a distributed, 

non-linear dynamical system may not be effectively or 
satisfactorily described using purely deterministic and linear 
methods. Techniques such as neural networks, which are 
capable of performing non-linear discriminant analysis, appear 
more suitable for categorising time series data from such 
sources. The opacity sensor output was one useful type of 
time series data which could be analysed in this way (other 
relevant variables include flow and pressure), and an ANN 
was implemented using these data for abnormality detection 
within a sub-zone. This implementation demonstrated that an 
automated online system utilising ANNs could, in principle, 
be capable of monitoring a large number of sensors for 
abnormal signal detection. 
 

A.   Analysis and Design 
Initial analysis of opacity sensor time series (for the multi-

prototype installation) and actual abnormal flows in the area 
under examination revealed abnormal peaks in the opacity 
output which appeared to correlate with known events such as 
bursts and flushing. Detailed analysis of this correlation 
indicated several characteristics of the response: 
 
 An initial abnormally high peak in opacity shortly after 

the commencement of the burst was followed by a 
gradual drop over a short duration to normal levels. 
Approximate durations for initial peaks were in the range 
of 20 minutes to several hours – hence a sensor sampling 
rate of 5 minutes was considered to be sufficient to 
capture the events.  

 The size of the peak and the lag between the event start 
and the opacity response was correlated to the proximity 
of the sensor to the event. Simulated burst trials 
subsequently showed that the response to in-zone events 
was usually limited to sensors in the locality of the event. 

 Major events were often found to lead to a persistent 
change in opacity level over a long time period (even 
after the event was terminated). Smaller events resulted in 
a ‘settling’ back to normal levels of opacity even while 
the burst or flushing persists. 

 The installation site of the sensor (location within the pipe 
network, size/material of pipe and duration since the last 
cleaning) was a critical factor for performance. 

 
 

Knowledge of the causal relationship between an event and 
the opacity response was not available (no water distribution 
network uses opacity simulation tool), nor was sufficient 
training data for known events collected in order to adopt a 
comprehensive pattern recognition approach. However, it was 
empirically apparent, from both the monitoring of everyday 
operation and the simulated burst trials, that the opacity level 
could produce supplementary information to the normal 
hydraulic (flow and pressure) data for leak location. Hence, 
these factors led to the adoption of a time series prediction 
approach, in conjunction with a classification module for 
monitoring the opacity data. The set of outputs could then be 
analysed to supplement sub-zone location, and this was the 
approach adopted in the work presented here.  
 
 
 
 
 
 
 
 
 
 
 
 
 

B.   Algorithms 
A Mixture Density Neural Network (MDNN) [6] was 

applied in a manner similar to that used previously for flow 
data [7] with little modification. In summary, precise point 
predictions were not required for the application, instead, a 
distribution of likely values was more appropriate. Hence, the 
core of the system was a Mixture Density Neural Network 
used as a time series predictor. The inputs were lagged 
normalized raw values (processed for rogue and missing 
values) and the output was a mixture model [8] of Gaussian 
distributions for the prediction some time step in the future 
(one day in this case). A ‘most likely’ value along with 
variance for the value was calculated from the mixture model. 
These data, along with the actual observed value, were 
processed by the abnormality detection module. 

A traditional feed-forward ANN such as a Multi-Layer 
Perceptron (MLP) [9] could be used for time series 
forecasting by employing a sliding window over the input 
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sequence. The aim was to forecast future developments of the 
time series by finding a function ℜ→ℜ:f such that: 
 

( ) ( ) ( ) ( )( )1,...,1, −−−=+ Nxxxfdt ττττ     (1)        
 
In equation (1) τ represents current time, and d is the number 
of time steps ahead to predict (so that 1=d  is next step 
ahead prediction). The standard static ANN approach to 
perform this prediction is to induce the function f as an MLP 
or Radial Basis Function architecture, using a set of N-tuples 
as inputs, and a single output as the target value of the 
network (sometimes referred to as the sliding window 
technique in which the input layer represents a moving 
window through the time series). Fig. 1 shows the basic 
architecture of the MDN applied to time series prediction in 
this fashion. 

A time series prediction on its own will not provide a 
classification. A classification module was therefore 
developed to detect discrepancies between actual and 
predicted values, over some time window. A value for the 
prediction (either centre of the highest component or an 
average across distributions) along with variance for the value 
was calculated from the mixture model. These data, along 
with the actual observed value, was then processed by the 
burst detection module. The module operated by analyzing the 
actual observed value in the context of the predicted value and 
a user definable error sensitivity level. If the observed value 
was outside the defined threshold for a windowed period, then 
the state passed from normal to abnormal (0 to ±1). In the case 
of opacity data, the signal type required a short period, high 
threshold filter – based on analysis of historic data the 
threshold was set at six standard deviations and a time 
window of 20 minutes. 
 

C.   Training  
Seven sensors from the trial installation of 10 were selected 

for monitoring. Unlike previous work applied to flow data, the 
characteristic of the opacity data over a historic time period of 
weeks/ months was found to be far from stationary. The 
evolving dynamics of the system produced frequent step 
changes in the opacity level as well as in some cases an 
adapting diurnal cycle (some signals exhibited no diurnal 
cycle). 

The MDN can be extended to non-stationary problems, 
provided that the model is treated as continuously adaptive. In 
other words, for non-stationary data, the model must be re-
estimated within a relatively short time interval. Therefore, in 
operational conditions, the ANNs would require very regular 
retraining to capture the current state of the sensor output. To 
simulate this, the ANN module for each sensor was trained 
with just over one week’s data immediately preceding the 
simulated burst trials. No major abnormalities were present 
during this interval in the majority of cases thus providing 
training data representing normal operating conditions. Data 

collected for seven days including the simulated burst trials 
formed the unseen test data set. 

The MDN was trained on the pre-processed data set, in 
order to learn a one-day ahead time series prediction (mixture 
model distribution of the prediction). A network was trained 
for 100 cycles on the training set, a relatively low figure to 
attempt to prevent over-fitting on the small training set. Three 
hidden units and two Gaussians proved sufficient for the 
problem. The test sets were then presented and the 
classification module applied.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
IV.   SYSTEM VERIFICATION BY EXPERIMENTAL BURST TRIALS 

In order to test out the ANN system for event detection and 
location, experimental burst trials were carried out in the 
DMA under investigation. From the pressure variation and 
simulation viewpoints, the DMA could be divided into three 
sub-zones, viz; 
(i)  close to the reservoir, 
(ii) central portion, 
(iii) tail end of the distribution network. 

Two opacity failure sensors (1 & 4) were located close to 
the reservoir, five (2, 3, 5, 6 & 7) were located in the central 
portion and three (8, 9 & 10) were located in the tail end (see 
Fig. 2).  

A series of two burst trials was planned with the co-
operation of the Water Company. The results of the 
simulations were used to help choose the best locations for the 
simulated bursts, though only sites that would not cause 
obstructions to the public could be used. The sites chosen for 
both simulated burst trials are shown in Fig. 2 

The Water Company specified the maximum flow rates that 
were permissible at each site for the simulated bursts, which 
were created by fitting a standpipe to a fire hydrant and then 
slowly opening the valve, with an in-line flow meter 
connected, until the desired flow rate was reached. It was 
essential that there was minimum risk of damage to any of the 
pipes, or discoloration of water in the pipe due, for example, 
to sediment agitation. Once the required flow rate was 
achieved the flow meter was removed. These flow rates were 
relatively low, so the burst trials were carried out during the 
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night when water usage and therefore flow rates in the pipes 
was low. 

Each burst trial was carried out on consecutive nights so 
that any measured response could be attributed to a particular 
event. The logging intervals of each failure sensor was set to 1 
minute and the loggers carefully synchronized so that the 
phase difference between the opacity changes at the ten 
sensors could be identified. 
 

A.   Trial I Procedure and Results 
The first three bursts (1st at 5.5 l/s, 2nd at 5 l/s & 3rd at 6 l/s) 

were simulated in the central portion of the distribution 
network, while the last burst (4th at 3 l/s) was conducted at the 
tail end of the network (see Fig. 2). Fig. 3—5 show the data 
for the first 3 individual burst simulations. Fig. 3 shows the 
responses at all ten sensors to the simulated Burst 1. Sensors 
6, 9 and 10 appeared to respond to the simulated burst along 
with Sensor 8. However the trace for Sensor 8 showed an 
increase in opacity prior to the valve being opened, while the 
rise in opacity at Sensor 6 was only around 5%, and was slow, 
taking over one hour to reach peak opacity.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 shows the opacity response from all ten sensors to 

simulated Burst 2. Sensor 5 and Sensors 8—10 showed a 
response, while sensors 8 and 9 appeared to respond to an 
event that occurred before the “burst” was initiated. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 5 shows the response at the ten sensors to a simulated 
Burst 3. Responses were only seen at Sensors 2 and 3 and 
both showed a rapid rise in opacity of the water in the 
pipelines followed by a more gradual fall once a peak in 
opacity was reached. Sensor 3 responded almost immediately 
to the burst whereas fifteen minutes elapsed before Sensor 2 
responded. None of the ten sensors appeared to respond to 
burst 4. 

B.   Trial II Procedure and Results 
It was found that whilst the Trial I experiments were being 

carried out in one section of the network, cleaning and 
relining of pipes was unknowingly being carried out in 
another part (the 2 sections were said to be isolated, but on 
investigation after the Trial I results had been analysed, it was 
found that this was not so. So, a further series of burst trials 
was carried out at almost the same locations where the first 
trail was conducted. Sensor 1 response was invalid as it 
showed both positive and negative opacity values of very high 
magnitude. This type of response was not evident in any other 
data sets, and investigation showed a fault to have developed 
in the data logger.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 6 shows the plot for the simulated burst 3 which is very 

similar to Fig. 5, the plot for the simulated burst 3 recorded 
during Trial I. Once again, Sensors 2 and 3 showed a 
significant response to the simulated burst, with Sensor 3  
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Fig. 5 Recorded Opacity Data for Burst Trial I –Burst 3 
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Figure 15 Classification plots for Trial I 
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responding almost immediately and Sensor 2 responding ten 
minutes later. There was possibly a small response at Sensor 
10. None of the sensors responded significantly to any other 
burst in the trial. 

 
V.   ANN ANALYSIS AND RESULTS 

Results from the interactive MATLAB MDNGUI system 
for Trial I are shown in Fig. 7. The classification is 
superimposed on the original graph, covering one week’s 
data.  

The system also produced an output file containing a 
summary of the classification, as described in Table I. The 
same classification process was also applied to the Trial II 
data. In this case, only two of the burst sites corresponded to 
those in the first trials (Burst 1 and 3 from Trial I). The only 
abnormality detected in response to any of the four bursts 
were for sensors 2 and 3, for the simulated burst 
corresponding to Burst 3 in Trial II. Fig. 8 illustrates the 
output. 
 

TABLE I 
CLASSIFICATION MODULE OUTPUT 

Sensor Abnormality detected 
(1st window) 

Corresponding event 

No.5 26/3/01 13:25-13:45 

27/3/01 22:30-22:50 

Unknown 

Burst 2 – flush commenced 
22:01 27/3/01 

No.6 None  

No.4 27/3/01 08:55-09:15 

30/3/01 13:20-13:40 

Unknown 

Unknown 

No.10 5 events 26th-30th March 
2001 

Expected to be related to 
relining work performed during 
this period, when valve 
operations were carried out 
with the Gresley PRV section. 

No.3 28/3/01 22:20-22:40 Burst 3 – flush commenced 
21:50 28/3/01 

No.3 28/3/01 22:35-22:55 Burst 3 – flush commenced 
21:50 28/3/01 

No.7 None  

 
Like the previous burst in this locale, the signal was easily 

classified by the system (Table II). However, in this case, the 
opacity level had subsequently undergone a step drop due to 
the flushing which effectively cleaned the pipes in the sub-
zone. Consequently, the system detected an abnormal drop in 
opacity for the period after the burst and would require 
retraining with data after the flushing to update the MDN. 
 
 
 
 
 
 
 
 
 
 

TABLE II 
CLASSIFICATION MODULE OUTPUT FOR SENSORS 2 AND 3 

Sensor Abnormality detected  

(1st window) 

Corresponding event 

No.2 16/5/01 22:40-23:00 

 

17/5/01 00:45-01:05 
Negative 

Burst 3 – flush commenced 22:00 
16/5/01 

Cleaning effect of flushing 

No.3 16/5/01 22:25-22:45 

 

16/5/01 23:45-00:05 
Negative 

Burst 3 – flush commenced 22:00 
16/5/01 

Cleaning effect of flushing 

 
 

VI.   CONCLUSION 
The low cost failure sensor has been developed to provide 

input to an ANN. The opacity failure sensor was designed to 
measure the opacity of water flow in a pipeline which has 
given repeatable results in the laboratory and in situ in a water 
distribution pipeline network [5]. 

A Neural Network monitoring system based on a time series 
prediction and classification for abnormality detection has 
been successfully developed. The system has been applied to 
the two sets of burst trials and has demonstrated that the 
opacity response in some sensors could provide additional 
information on burst location to that supplied by hydraulic 
sensors. 

The field results obtained from the multi-prototype sensors 
are encouraging for the monitoring of abnormalities (burst, 
leakage and flushing) in a DMA. It is concluded that a low-
cost sensor technology of this type can contribute to a system 
for monitoring and leak detection in water distribution 
pipelines with appropriate computer-based interpretation, e.g. 
ANN, which is potentially a most valuable asset management 
tool.   

Data collection and transfer remain major issues. 
Technologies for data collection from low cost sensors were 
not within the remit of this research programme. However, the 
importance of an efficient method for data collection is 
understood, for which the rapidly developing technologies 
associated with mobile communications are of great interest. 
This must represent a subsequent stage of the research. There 
will be the possibility of using a PSTN (Public Switched 
Telephone Network) link as a data download solution. 
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