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Abstract—The development of Artificial Neural Networks 

(ANNs) is usually a slow process in which the human expert has to 
test several architectures until he finds the one that achieves best 
results to solve a certain problem. This work presents a new 
technique that uses Genetic Programming (GP) for automatically 
generating ANNs. To do this, the GP algorithm had to be changed in 
order to work with graph structures, so ANNs can be developed. This 
technique also allows the obtaining of simplified networks that solve 
the problem with a small group of neurons. In order to measure the 
performance of the system and to compare the results with other 
ANN development methods by means of Evolutionary Computation 
(EC) techniques, several tests were performed with problems based 
on some of the most used test databases. The results of those 
comparisons show that the system achieves good results comparable 
with the already existing techniques and, in most of the cases, they 
worked better than those techniques. 
 

Keywords—Artificial Neural Networks, Evolutionary 
Computation, Genetic Programming. 

I. INTRODUCTION 
NNS are learning systems that have solved a large 
amount of complex problems related to different areas 

(classification, clustering, regression, etc.) [1]. The interesting 
characteristics of this powerful technique have induced its use 
by researchers in different environments [2]. 

Nevertheless, the use of ANNs has some problems, mainly 
related to their development process. This process can be 
divided into two parts: architecture development and training 
and validation. As the network architecture is problem-
dependant, the design process of this architecture used to be 
manually performed, meaning that the expert had to design 
different architectures and train them until he finds the one 
that achieves best results after the training process. The 
manual nature of this process determines its slow performance 
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although the recent use of ANNs development techniques 
have contributed to achieve a more automatic procedure.  

II. STATE OF THE ART 

A. Genetic Programming 
Genetic Programming (GP) [3] is based on the evolution of 

a given population. In this population, every individual 
represents a solution for a problem that is intended to be 
solved. The evolution is achieved by means of selection of the 
best individuals – although the worst ones also have a little 
chance of being selected – and their mutual combination for 
creating new solutions. This process is developed using 
selection, crossover and mutation operators. After several 
generations, it is expected that the population might contain 
some good solutions for the problem. 

The GP encoding for the solutions is tree-shaped, so the 
user must specify which are the terminals (leaves of the tree) 
and the functions (nodes with children) for being used by the 
evolutionary algorithm in order to build complex expressions. 

The wide application of GP to various environments and its 
consequent success are due to its capability for being adapted 
to different environments. Although the main and more direct 
application is the generation of mathematical expressions [3], 
GP has been also used in others fields such as knowledge 
extraction [4], rule generation [5], filter design [6], etc. 

B. ANN Development with EC Tools 
The development of ANNs is a topic that has been 

extensively dealt with very diverse techniques. The world of 
evolutionary algorithms is not an exception, there is a great 
amount of works that have been published about this topic 
with different techniques in this area, even with GAs or GP 
[3] [12] [14] [28]. These techniques follow the general 
strategy of an evolutionary algorithm: an initial population 
consisting of different genotypes, each one of them codifying 
ANN parameters (typically, the weight of the connections 
and/or the architecture of the network and/or the learning 
rules), is randomly created. This population is evaluated in 
order to determine the fitness of each individual. Afterwards, 
this group is made evolve repeatedly by means of different 
genetic operators (replication, crossover, mutation, etc.) until 
a determined termination condition is fulfilled. This condition 
can be, for example, if a sufficiently good individual is 
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obtained, or that a predetermined maximum number of 
generations is reached. 

As a general rule, the field of ANN generation using 
evolutionary algorithms is divided into three main fields: 
evolution of weights, architectures and learning rules. 

First, the weight evolution starts from an ANN with an 
already determined topology. In this case, the problem to be 
solved is the training of the connection weights, attempting to 
minimize the network failure. Most of the training algorithms, 
such as backpropagation (BP) algorithm, are based on 
gradient descent, which presents several inconveniences [7], 
mainly the possibility of getting stuck into a local minimum of 
the fitness function. With the use of an evolutionary 
algorithm, the weights can be represented either as the 
concatenation of binary values [8] or real numbers [9]. The 
main disadvantage of this type of encoding is the permutation 
problem. This problem means that the order in which weights 
are taken at the array can make equivalent networks 
correspond to completely different chromosomes, making the 
crossover operator inefficient. 

Second, the evolution of architectures involves the 
generation of the topological structure. This means 
establishing the connectivity and the transfer function of each 
neuron. The network architecture is highly important for the 
successful application of the ANN, since the architecture has a 
very significant impact on the processing capability of the 
network. Therefore, the network design, traditionally 
performed by a human expert using trial and error techniques 
on a group of different architectures, is crucial. The automatic 
architecture design has been possible thanks to the use of 
evolutionary algorithms. In order to use them to develop ANN 
architectures, it is needed to choose how to encode the 
genotype of a given network for it to be used by the genetic 
operators. 

At the first option, direct encoding, there is a one-to-one 
correspondence between every one of the genes and their 
subsequent phenotypes. The most typical encoding method 
consists of a matrix that represents an architecture where 
every element reveals the presence or absence of connection 
between two nodes [10]. These types of encoding are 
generally quite simple and easy to implement. However, they 
also have a large amount of inconveniences as scalability [11], 
the incapability of encoding repeated structures, or 
permutation [12]. 

Apart from direct encoding, there are some indirect 
encoding methods. In these methods, only some 
characteristics of the architecture are encoded in the 
chromosome. These methods have several types of 
representation. Firstly, the parametric representations 
represent the network as a group of parameters such as 
number of hidden layers, number of nodes for each layer, 
number of connections between two layers, etc [13]. Although 
the parametric representation can reduce the length of the 
chromosome, the evolutionary algorithm performs the search 
within a restricted area in the search space containing all the 
possible architectures. Another non direct representation type 

is based on grammatical rules [11]. In this system, the network 
is represented by a group of rules, with the shape of 
production rules which develop a matrix that represents the 
network, which has several restrictions. 

The growing methods represent another type of encoding. 
In this case, the genotype does not encode a network directly, 
but it contains a set of instructions for building up the 
phenotype. The genotype decoding consists on the execution 
of those instructions [14]. 

With regards to the evolution of the learning rule, there are 
several approaches [15], although most of them are only based 
on how learning can modify or guide the evolution and also 
on the relationship among the architecture and the connection 
weights. 

C. Graph-Based Genetic Programming 
As was described, the codification type of the GP algorithm 

has the shape of trees. This allows the solving of a great size 
of different problems. It also allows the finding of solutions 
that other codifications, e.g. bit or real strings as used on GAs, 
can not find. Graph codification also allows the solving of 
problems that could not be solved with tree-shape 
codification. Few after the appearance of GP, some 
researchers have studied the possibility of using graphs inside 
GP to represent and solve these problems. 

As first approximations of graph-based GP, some solutions 
appeared that used trees with special operators with the 
objective of solving very specific problems, e.g. to develop 
stack automata [16] or electrical circuits. In this field there are 
some works in which classic GP is used to develop different 
types of electrical circuits and analogical filters [17] [18]. To 
do this, some operators had to be created to allow GP 
represent so complex structures. Although the results have 
been very satisfactory, this kind of codification, using these 
operators, is very limited, and has only allowed the solving of 
problems in this field. 

Other approximations to the codification of graphs by using 
trees are Gruau’s and Luke’s [19] [20], mainly used to 
develop ANNs with GP. These works use the operators on the 
GP tree to build graphs as this tree and its operators are being 
executed. These operators can be used, e.g, to create new 
nodes or to create links between nodes. These codifications 
are called cellular encoding or edge encoding, and have some 
drawbacks. First, the represented phenotype (i.e., the obtained 
graph) is too dependent of the execution order of the operators 
of the tree. A subtree inside an individual can turn into a 
completely different subtree after being crossed with another 
individual. Therefore, it is desirable to use a crossover 
algorithm that preserves better the phenotype on this 
operation. Also, this type of codification produces a high 
number of interconnected nodes, which can not be very 
desirable on many domains. 

Teller describes a system called PADO which uses a stack 
and lineal discriminators in order to obtain parallel programs 
used for signal and image classification [21]. All of these 
methods use special types of parallelisms in the use of graphs, 
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and can not be considered as a natural generalization of GP to 
the use of graphs. 

In a similar way as this last work, Kanstchik uses graphs as 
codification system, having for this purpose an indexed 
memory, which is used to transfer data between nodes [22]. 
These nodes are divided in two parts: action and ramification. 
The action part can be a constant or a function that will be 
executed when the node is reached during the program 
execution. To do this execution, this function takes its 
parameters from the stack, and writes its result on the stack 
too. After this, the ramification part chooses, by examining the 
top of the stack, which node will go on the execution between 
the nodes to which is connected the current one. 

Another GP system which uses graphs is called Parallel 
Distributed Genetic Programming (PDGP) [23]. In PDGP, 
programs are represented as graphs with nodes that represent 
program primitives and links that represent the execution flow 
and the results. Therefore, PDGP can be used to evolve 
parallel programs or to produce sequential programs with 
shared (or reutilized) subtrees. This work defines new 
crossover and mutation operators for their use with these 
graphs. 

In a new approximation to the use of graphs, this time 
called linear-graph GP, some special nodes were used [24]. 
These nodes execute a set of sequential operations and end in 
a conditional ramification. As a result of this ramification, 
these nodes point to other nodes of the same type, allowing 
the pointing to a node referenced more than once. Although 
this study allows the working directly with graphs, this work 
was only created to develop graph-shaped sequential 
programs, and can not be used to solve more generic 
problems. 

One of the most representative works in this field is called 
Neural Programming [25]. This work describes a system that 
uses graphs as codification type. Also, this work uses a credit 
system on the connections between nodes to choose better 
which ones will be used in the individual combinations. 
However, this system only works with mathematical graphs 
(i.e., graphs with nodes representing mathematical operations 
such as arithmetical, trigonometrical, etc.) because it was 
developed for image and signal processing. Anyway, this 
system is one of the most complete existing ones. 

III. MODEL 
This work will use a graph-based codification to represent 

ANNs in the genotype. These graphs will not contain any 
cycles. Due to this type of codification the genetic operators 
had to be changed in order to be able to use the GP algorithm. 
The operators were changed in this way: 

• The creation algorithm must allow the creation of graphs. 
This means that, at the moment of the creation of a node’s 
child, this algorithm must allow not only the creation of this 
node, but also a link to an existing one in the same graph, 
without making cycles inside the graph. 

• The crossover algorithm must allow the crossing of 

graphs. This algorithm works very similar to the existing one 
for trees, i.e. a node is chosen on each individual to change the 
whole subgraph it represents to the other individual. Special 
care has to be taken with graphs, because before the crossover 
there may be links from outside this subgraph to any nodes on 
it. In this case, after the crossover these links are updated and 
changed to point to random nodes in the new subgraph. 

• The mutation algorithm has been changed too, and also 
works very similar to the GP tree-based mutation algorithm. A 
node is chosen from the individual and its subgraph is deleted 
and replaced with a new one. Before the mutation occurs, 
there may be nodes in the individual pointing to other nodes in 
the subgraph. These links are updated and made to point to 
random nodes in the new subgraph. 

These algorithms must also follow two restrictions in GP: 
typing and maximum height. The GP typing property [26] 
means that each node will have a type and will also provide 
which type will have each of its children. This property 
provides the ability of developing structures that follow a 
specific grammar. The maximum height is a restriction of the 
complexity of the graph, not allowing the creation of very 
large graphs that could lead to obtaining too big ANNs with 
over-fitting problems. These two restrictions are applied on 
the genetic operators making the resulting graphs follow these 
restrictions. 

The nodes used to build ANNs with this system are the 
following: 

• ANN. Node that defines the network. It appears only at 
the root of the tree. It has the same number of descendants as 
the network expected outputs, each of them a neuron. 

• n-Neuron. Node that identifies a neuron with n inputs. 
This node will have 2*n descendants. The first n descendants 
will be other neurons, either input or hidden ones. The second 
n descendants will be arithmetical sub-trees. These sub-trees 
represent real values. These values correspond to values of the 
respective connection weights of the input neurons – the first 
descendants – of this neuron. 

• n-Input neuron. Nodes that define an input neuron which 
receives its activation value from the input variable n. These 
nodes will not have any children. 

• Finally, the arithmetic operator set {+,-,*,%}, where % 
designs the operation of protected division (returns 1 as a 
result if the divisor is 0). They will generate the values of 
connection weights (sub-trees of the n-Neuron nodes). These 
nodes perform operations among constants in order to obtain 
new values. As real values are also needed for such 
operations, they have to be introduced by means of the 
addition of random constants to the terminal set in the range [-
4, 4]. 

The execution of the graph will make the creation of the 
ANN: each n-Neuron node will make the creation on one 
neuron and links to the neurons which are connected to that, 
each n-Input node will connect an input neuron to another 
neuron, and an arithmetical subgraph will set the value of a 
weight. An example of this can be seen on Fig. 1. 

Note that, during the neuron creation, a given neuron - 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3155

 

 

either an input one or a referenced one - can be repeated 
several times as predecessor. In such case, there is no new 
input connection from that processing element, but the weight 
of the already existing connection will be added with the value 
of the new connection. 

Once the tree has been evaluated, the genotype turns into 
phenotype. In other words, it is converted into an ANN with 
its weights already set (thus it does not need to be trained) and 
therefore it can be evaluated. The evolutionary process 
demands the assignation of a fitness value to every genotype. 
Such value is the result of the evaluation of the network with 
the pattern set representing the problem. This result is the 
mean square error (MSE) of this evaluation. 

Nevertheless, this error value considered as fitness value 
has been modified in order to induce the system to generate 
simple networks. The modification has been made by adding a 
penalization value multiplied by the number of neurons of the 
network. In such way, and given that the evolutionary system 
has been designed in order to minimize the error value, when 
adding a fitness value, a larger network would have a worse 
fitness value. Therefore, the existence of simple networks is 
preferred as the penalization value that is added is 
proportional to the number of neurons of the ANN. The 
calculus of the final fitness will be as follows: 

 
 (1) 

 
where MSE is the mean square error of the ANN with the 
training pattern set, N is the number of neurons of the network 
and P is the penalization value for such number. 

IV. PROBLEMS TO BE SOLVED 
This technique has been used for solving problems of 

different complexity taken from the UCI database [27]. All 
these problems are knowledge-extraction problems from 
databases, where, taking certain features as a basis, it is 
intended to perform a prediction about another attribute of the 
database. The value that is intended to be predicted might be a 

diagnosis value (when using medical databases), a 
classification value or a prediction one. A small summary of 
the problems to be solved can be seen on Table I. 

 
 
 
 
 
 
 
 
 
All these databases values have been normalized between 0 

and 1 and the pattern sets divided into two parts for each 
problem, taking the 70% of the database for training and using 
the remaining 30% for performing tests. 

V. RESULTS AND COMPARISON WITH OTHER METHODS 
Several experiments have been performed in order to 

evaluate the system performance. The values taken for the 
parameters at these experiments were the following: 

• Crossover rate: 95%. 
• Mutation probability: 4%. 
• Selection algorithm: 2-individual tournament. 
• Graph maximum height: 5. 
• Maximum inputs for each neuron: 9. 
• Population size: 1000 individuals. 
• Penalization value: 0.00001. 
To achieve these values, several experiments had to be done 

in order to obtain values for these parameters that would 
return good results to all of the problems. These problems are 
very different in complexity, so it is expected that these 
parameters give good results to many different problems. 

This last parameter, the penalization to the number of 
neurons, is important. The values range from very high (0.1) 
to very small (0.00001 or 0). High values only enables the 
creation of very small networks with a subsequent high error, 
and low values lead to overfitting problem. Experiments 

 
TABLE I 

SUMMARY OF THE PROBLEMS TO BE  SOLVED 

Problem Number of 
inputs 

Number of data 
points 

Number of 
outputs 

Breast Cancer 9 699 1 
Iris Flower 4 150 3 
Heart Disease 13 303 1 
Ionosphere 34 351 1 

0.2 

2.8 

-2 

2.5 

-1.2 

1.1 

3.2 

RNA 

3-Neuron

1-Input 

3-Input 
3.2 

-1 

+

2.1 

3-Input -2

0.2

4-Input

2.2

3-Neuron

x1 

x2 

x3 

x4 

2-Neuron 

-1.2 

2.5 

2-Input 

3-Input 

2.8
2.2 

Fig. 1 GP graph and its resulting network
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showed that is preferable for this parameter to take low values 
instead of higher ones, allowing the creation of networks large 
enough for solving the problem, avoiding overfitting. 

In order to evaluate its performance, the system presented 
here has been compared with other ANN generation and 
training methods. 

The method 5x2cv [29] is used in Cantú-Paz and Kamath’s 
work [28] for the comparison of different ANN generation 
and training techniques based on EC tools. This work presents 
as results the average precisions obtained in the 10 test results 
generated by this method. Such values are the basis for the 
comparison of the technique described here with other well 
known ones. These algorithms used on the comparison are 
widely explained with detail in Cantú-Paz and Kamath’s work 
[28]. Such work shows the average times needed to achieve 
the results. Not having the same processor that was used, the 
computational effort needed for achieving the results can be 
estimated. This effort represents the number of times that the 
pattern file was evaluated. The computational effort for every 
technique can be measured using the population size, the 
number of generations, the number of times that the BP 
algorithm was applied, etc. This calculation varies for every 
algorithm used. All the techniques that are compared with the 
work are related to the use of evolutionary algorithms for 
ANN design. Five iterations of a 5-fold crossed validation test 
[29] were performed in all these techniques in order to 
evaluate the precision of the networks. These techniques are 
connectivity matrix, pruning, parameter search and graph-
rewriting grammar. 

Table II shows a summary of the number of neurons used in 
Cantú-Paz and Kamath’s work [28] in order to solve the 
problems that were used with connectivity matrix and pruning 
techniques. The epoch number of the BP algorithm, when 
used, is also indicated here. 

Table III shows the parameter configuration used by these 
techniques. The execution was stopped after 5 generations 
with no improvement or after 50 total generations. 

 

TABLE III 
PARAMETERS OF THE TECHNIQUES USED DURING THE COMPARISON 

 Matrix Pruning Parameters Grammar 
Chromosome 
length (L) N N 36 256 
Population size ⎣ ⎦L3  ⎣ ⎦L3  25 64 
Crossover 
points 

L/10 L/10 2 L/10 

Mutation rate 1/L 1/L 0.04 0.004 
N = (hidden+output)*input + output*hidden 
 
The results obtained with these 4 methods are shown in 

Table IV. Every box of the table indicates 3 different values: 
precision value obtained in Cantú-Paz and Kamath’s work 
[28] (left), computational effort needed for obtaining such 
value with that technique (below) and precision value 
obtained with the technique described here and related to the 
previously mentioned computational effort value (right). 

Watching this table, it is obvious that the results obtained 
with the method proposed here are, not only similar to the 
ones presented in Cantú-Paz and Kamath’s work [28], but 
better in many cases. The reason of this lies in the fact that 
these methods need a high computational load since training is 
necessary for every case of network (individual) evaluation, 
which therefore turns to be time-consuming. During the work 
described here, the procedures for design and training are 
performed simultaneously, and therefore, the times needed for 
designing as well as for evaluating the network are combined. 

Most of the techniques used for the ANN development are 
quite costly, due in some cases to the combination of training 
with architecture evolution. The technique described here is 
able to achieve good results with a low computational cost and 
besides, the added advantage is that, not only the architecture 
and the connectivity of the network are evolved, but also the 
network itself undergoes an optimization process. 

Table IV also shows a small overfitting problem. This is 
due to the fact that the system has been left to training up to a 
certain number of fitness function evaluations. This usually 
leads to overfitting the training set when it keeps training for a 
long time. 

VI. CONCLUSIONS 
This paper presents a technique for ANN generation with 

GP based on graphs. To develop this system, the evolutionary 
operators had to be modified in order to be able to work with 
graphs instead of trees. This system has been compared to a 

TABLE II 
ARCHITECTURES USED 

 Inputs Hidden Outputs BP Epochs 
Breast Cancer 9 5 1 20 
Iris Flower 4 5 3 80 
Heart Cleveland 26 5 1 40 
Ionosphere 34 10 1 40 

 

TABLE IV 
COMPARISON OF THE RESULTS OBTAINED WITH OTHER METHODS AND WITH THE PRESENT ONE 

 Matrix Pruning Parameters Grammar 

96.77 96.27 96.31 95.79 96.69 96.27 96.71 96.31 Breast Cancer 
92000 4620 100000 300000 

92.40 95.49 92.40 81.58 91.73 95.52 92.93 95.66 Iris Flower 
320000 4080 400000 1200000 

76.78 81.11 89.50 78.28 65.89 81.05 72.8 80.97 Heart Cleveland 
304000 7640 200000 600000 

87.06 88.34 83.66 82.37 85.58 87.81 88.03 88.36 Ionosphere 
464000 11640 200000 600000 

Average 88.25 90.30 90.46 84.50 84.97 90.16 87.61 90.32 
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set of different techniques that use evolutionary algorithms for 
ANN design and training. The conclusion of such comparison 
is that the results of 5x2cv tests using this method are not only 
comparable to those obtained with other methods, but also 
better than them in most of the cases. It should be borne in 
mind that if the parameters of the system had been adapted to 
every problem to be solved the results would have been better. 
However, the parameters used have been the same for all the 
problems because it is intended to find a parameter set useful 
for any problem, and therefore there is no need of human 
participation. In such way, it can be stated that even without 
human participation, this method can improve the results of 
other algorithms. 

This system has another advantage over other methods of 
ANN generation since -after a short analysis by the system- it 
is possible to differentiate the variables that are not relevant 
for problem solving, as they would be not present at the ANN. 
This is an important feature, since it gives new knowledge 
about the problem being solved. 

VII. FUTURE WORK 
Once the system has been proved, the work continues 

towards several directions. One interesting research line 
would be the possible integration of a GA into the system in 
order to train the networks being generated. 

As was explained earlier, this system has an overfitting 
problem. Another research line could be to use any technique 
to avoid overfitting, such as early stop. 
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