
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3152

Abstract—The development of Artificial Neural Networks

(ANNs) is usually a slow process in which the human expert has to
test several architectures until he finds the one that achieves best
results to solve a certain problem. This work presents a new
technique that uses Genetic Programming (GP) for automatically
generating ANNs. To do this, the GP algorithm had to be changed in
order to work with graph structures, so ANNs can be developed. This
technique also allows the obtaining of simplified networks that solve
the problem with a small group of neurons. In order to measure the
performance of the system and to compare the results with other
ANN development methods by means of Evolutionary Computation
(EC) techniques, several tests were performed with problems based
on some of the most used test databases. The results of those
comparisons show that the system achieves good results comparable
with the already existing techniques and, in most of the cases, they
worked better than those techniques.

Keywords—Artificial Neural Networks, Evolutionary
Computation, Genetic Programming.

I. INTRODUCTION
NNS are learning systems that have solved a large
amount of complex problems related to different areas

(classification, clustering, regression, etc.) [1]. The interesting
characteristics of this powerful technique have induced its use
by researchers in different environments [2].

Nevertheless, the use of ANNs has some problems, mainly
related to their development process. This process can be
divided into two parts: architecture development and training
and validation. As the network architecture is problem-
dependant, the design process of this architecture used to be
manually performed, meaning that the expert had to design
different architectures and train them until he finds the one
that achieves best results after the training process. The
manual nature of this process determines its slow performance

Manuscript received August 30, 2006. This work was supported in part by

the Spanish Ministry of Education and Culture (Ref. TIC2003-07593,
TIN2006-13274), the INBIOMED network (Ref PI0/52048) financed by the
Carlos III Health Institute, grants from the General Directorate of Research of
the Xunta de Galicia (Ref. PGIDIT03-PXIC10504PN PGIDIT04-
PXIC10503PN, PGIDIT04-PXIC10504PN), and the European project Interreg
(Ref. IIIA-PROLIT-SP1E194/03).

D. Rivero, J. Dorado, J. R. Rabuñal, A. Pazos and J. Pereira are with the
University of A Coruña, Department of Information & Communications
Technologies, Campus Elviña s/n, 15071, A Coruña, Spain, (e-mail: {drivero,
julian, juanra, apazos, javierp}@udc.es).

although the recent use of ANNs development techniques
have contributed to achieve a more automatic procedure.

II. STATE OF THE ART

A. Genetic Programming
Genetic Programming (GP) [3] is based on the evolution of

a given population. In this population, every individual
represents a solution for a problem that is intended to be
solved. The evolution is achieved by means of selection of the
best individuals – although the worst ones also have a little
chance of being selected – and their mutual combination for
creating new solutions. This process is developed using
selection, crossover and mutation operators. After several
generations, it is expected that the population might contain
some good solutions for the problem.

The GP encoding for the solutions is tree-shaped, so the
user must specify which are the terminals (leaves of the tree)
and the functions (nodes with children) for being used by the
evolutionary algorithm in order to build complex expressions.

The wide application of GP to various environments and its
consequent success are due to its capability for being adapted
to different environments. Although the main and more direct
application is the generation of mathematical expressions [3],
GP has been also used in others fields such as knowledge
extraction [4], rule generation [5], filter design [6], etc.

B. ANN Development with EC Tools
The development of ANNs is a topic that has been

extensively dealt with very diverse techniques. The world of
evolutionary algorithms is not an exception, there is a great
amount of works that have been published about this topic
with different techniques in this area, even with GAs or GP
[3] [12] [14] [28]. These techniques follow the general
strategy of an evolutionary algorithm: an initial population
consisting of different genotypes, each one of them codifying
ANN parameters (typically, the weight of the connections
and/or the architecture of the network and/or the learning
rules), is randomly created. This population is evaluated in
order to determine the fitness of each individual. Afterwards,
this group is made evolve repeatedly by means of different
genetic operators (replication, crossover, mutation, etc.) until
a determined termination condition is fulfilled. This condition
can be, for example, if a sufficiently good individual is

Artificial Neural Network Development by
means of Genetic Programming with Graph

Codification
Daniel Rivero, Julián Dorado, Juan R. Rabuñal, Alejandro Pazos, and Javier Pereira

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3153

obtained, or that a predetermined maximum number of
generations is reached.

As a general rule, the field of ANN generation using
evolutionary algorithms is divided into three main fields:
evolution of weights, architectures and learning rules.

First, the weight evolution starts from an ANN with an
already determined topology. In this case, the problem to be
solved is the training of the connection weights, attempting to
minimize the network failure. Most of the training algorithms,
such as backpropagation (BP) algorithm, are based on
gradient descent, which presents several inconveniences [7],
mainly the possibility of getting stuck into a local minimum of
the fitness function. With the use of an evolutionary
algorithm, the weights can be represented either as the
concatenation of binary values [8] or real numbers [9]. The
main disadvantage of this type of encoding is the permutation
problem. This problem means that the order in which weights
are taken at the array can make equivalent networks
correspond to completely different chromosomes, making the
crossover operator inefficient.

Second, the evolution of architectures involves the
generation of the topological structure. This means
establishing the connectivity and the transfer function of each
neuron. The network architecture is highly important for the
successful application of the ANN, since the architecture has a
very significant impact on the processing capability of the
network. Therefore, the network design, traditionally
performed by a human expert using trial and error techniques
on a group of different architectures, is crucial. The automatic
architecture design has been possible thanks to the use of
evolutionary algorithms. In order to use them to develop ANN
architectures, it is needed to choose how to encode the
genotype of a given network for it to be used by the genetic
operators.

At the first option, direct encoding, there is a one-to-one
correspondence between every one of the genes and their
subsequent phenotypes. The most typical encoding method
consists of a matrix that represents an architecture where
every element reveals the presence or absence of connection
between two nodes [10]. These types of encoding are
generally quite simple and easy to implement. However, they
also have a large amount of inconveniences as scalability [11],
the incapability of encoding repeated structures, or
permutation [12].

Apart from direct encoding, there are some indirect
encoding methods. In these methods, only some
characteristics of the architecture are encoded in the
chromosome. These methods have several types of
representation. Firstly, the parametric representations
represent the network as a group of parameters such as
number of hidden layers, number of nodes for each layer,
number of connections between two layers, etc [13]. Although
the parametric representation can reduce the length of the
chromosome, the evolutionary algorithm performs the search
within a restricted area in the search space containing all the
possible architectures. Another non direct representation type

is based on grammatical rules [11]. In this system, the network
is represented by a group of rules, with the shape of
production rules which develop a matrix that represents the
network, which has several restrictions.

The growing methods represent another type of encoding.
In this case, the genotype does not encode a network directly,
but it contains a set of instructions for building up the
phenotype. The genotype decoding consists on the execution
of those instructions [14].

With regards to the evolution of the learning rule, there are
several approaches [15], although most of them are only based
on how learning can modify or guide the evolution and also
on the relationship among the architecture and the connection
weights.

C. Graph-Based Genetic Programming
As was described, the codification type of the GP algorithm

has the shape of trees. This allows the solving of a great size
of different problems. It also allows the finding of solutions
that other codifications, e.g. bit or real strings as used on GAs,
can not find. Graph codification also allows the solving of
problems that could not be solved with tree-shape
codification. Few after the appearance of GP, some
researchers have studied the possibility of using graphs inside
GP to represent and solve these problems.

As first approximations of graph-based GP, some solutions
appeared that used trees with special operators with the
objective of solving very specific problems, e.g. to develop
stack automata [16] or electrical circuits. In this field there are
some works in which classic GP is used to develop different
types of electrical circuits and analogical filters [17] [18]. To
do this, some operators had to be created to allow GP
represent so complex structures. Although the results have
been very satisfactory, this kind of codification, using these
operators, is very limited, and has only allowed the solving of
problems in this field.

Other approximations to the codification of graphs by using
trees are Gruau’s and Luke’s [19] [20], mainly used to
develop ANNs with GP. These works use the operators on the
GP tree to build graphs as this tree and its operators are being
executed. These operators can be used, e.g, to create new
nodes or to create links between nodes. These codifications
are called cellular encoding or edge encoding, and have some
drawbacks. First, the represented phenotype (i.e., the obtained
graph) is too dependent of the execution order of the operators
of the tree. A subtree inside an individual can turn into a
completely different subtree after being crossed with another
individual. Therefore, it is desirable to use a crossover
algorithm that preserves better the phenotype on this
operation. Also, this type of codification produces a high
number of interconnected nodes, which can not be very
desirable on many domains.

Teller describes a system called PADO which uses a stack
and lineal discriminators in order to obtain parallel programs
used for signal and image classification [21]. All of these
methods use special types of parallelisms in the use of graphs,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3154

and can not be considered as a natural generalization of GP to
the use of graphs.

In a similar way as this last work, Kanstchik uses graphs as
codification system, having for this purpose an indexed
memory, which is used to transfer data between nodes [22].
These nodes are divided in two parts: action and ramification.
The action part can be a constant or a function that will be
executed when the node is reached during the program
execution. To do this execution, this function takes its
parameters from the stack, and writes its result on the stack
too. After this, the ramification part chooses, by examining the
top of the stack, which node will go on the execution between
the nodes to which is connected the current one.

Another GP system which uses graphs is called Parallel
Distributed Genetic Programming (PDGP) [23]. In PDGP,
programs are represented as graphs with nodes that represent
program primitives and links that represent the execution flow
and the results. Therefore, PDGP can be used to evolve
parallel programs or to produce sequential programs with
shared (or reutilized) subtrees. This work defines new
crossover and mutation operators for their use with these
graphs.

In a new approximation to the use of graphs, this time
called linear-graph GP, some special nodes were used [24].
These nodes execute a set of sequential operations and end in
a conditional ramification. As a result of this ramification,
these nodes point to other nodes of the same type, allowing
the pointing to a node referenced more than once. Although
this study allows the working directly with graphs, this work
was only created to develop graph-shaped sequential
programs, and can not be used to solve more generic
problems.

One of the most representative works in this field is called
Neural Programming [25]. This work describes a system that
uses graphs as codification type. Also, this work uses a credit
system on the connections between nodes to choose better
which ones will be used in the individual combinations.
However, this system only works with mathematical graphs
(i.e., graphs with nodes representing mathematical operations
such as arithmetical, trigonometrical, etc.) because it was
developed for image and signal processing. Anyway, this
system is one of the most complete existing ones.

III. MODEL
This work will use a graph-based codification to represent

ANNs in the genotype. These graphs will not contain any
cycles. Due to this type of codification the genetic operators
had to be changed in order to be able to use the GP algorithm.
The operators were changed in this way:

• The creation algorithm must allow the creation of graphs.
This means that, at the moment of the creation of a node’s
child, this algorithm must allow not only the creation of this
node, but also a link to an existing one in the same graph,
without making cycles inside the graph.

• The crossover algorithm must allow the crossing of

graphs. This algorithm works very similar to the existing one
for trees, i.e. a node is chosen on each individual to change the
whole subgraph it represents to the other individual. Special
care has to be taken with graphs, because before the crossover
there may be links from outside this subgraph to any nodes on
it. In this case, after the crossover these links are updated and
changed to point to random nodes in the new subgraph.

• The mutation algorithm has been changed too, and also
works very similar to the GP tree-based mutation algorithm. A
node is chosen from the individual and its subgraph is deleted
and replaced with a new one. Before the mutation occurs,
there may be nodes in the individual pointing to other nodes in
the subgraph. These links are updated and made to point to
random nodes in the new subgraph.

These algorithms must also follow two restrictions in GP:
typing and maximum height. The GP typing property [26]
means that each node will have a type and will also provide
which type will have each of its children. This property
provides the ability of developing structures that follow a
specific grammar. The maximum height is a restriction of the
complexity of the graph, not allowing the creation of very
large graphs that could lead to obtaining too big ANNs with
over-fitting problems. These two restrictions are applied on
the genetic operators making the resulting graphs follow these
restrictions.

The nodes used to build ANNs with this system are the
following:

• ANN. Node that defines the network. It appears only at
the root of the tree. It has the same number of descendants as
the network expected outputs, each of them a neuron.

• n-Neuron. Node that identifies a neuron with n inputs.
This node will have 2*n descendants. The first n descendants
will be other neurons, either input or hidden ones. The second
n descendants will be arithmetical sub-trees. These sub-trees
represent real values. These values correspond to values of the
respective connection weights of the input neurons – the first
descendants – of this neuron.

• n-Input neuron. Nodes that define an input neuron which
receives its activation value from the input variable n. These
nodes will not have any children.

• Finally, the arithmetic operator set {+,-,*,%}, where %
designs the operation of protected division (returns 1 as a
result if the divisor is 0). They will generate the values of
connection weights (sub-trees of the n-Neuron nodes). These
nodes perform operations among constants in order to obtain
new values. As real values are also needed for such
operations, they have to be introduced by means of the
addition of random constants to the terminal set in the range [-
4, 4].

The execution of the graph will make the creation of the
ANN: each n-Neuron node will make the creation on one
neuron and links to the neurons which are connected to that,
each n-Input node will connect an input neuron to another
neuron, and an arithmetical subgraph will set the value of a
weight. An example of this can be seen on Fig. 1.

Note that, during the neuron creation, a given neuron -

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3155

either an input one or a referenced one - can be repeated
several times as predecessor. In such case, there is no new
input connection from that processing element, but the weight
of the already existing connection will be added with the value
of the new connection.

Once the tree has been evaluated, the genotype turns into
phenotype. In other words, it is converted into an ANN with
its weights already set (thus it does not need to be trained) and
therefore it can be evaluated. The evolutionary process
demands the assignation of a fitness value to every genotype.
Such value is the result of the evaluation of the network with
the pattern set representing the problem. This result is the
mean square error (MSE) of this evaluation.

Nevertheless, this error value considered as fitness value
has been modified in order to induce the system to generate
simple networks. The modification has been made by adding a
penalization value multiplied by the number of neurons of the
network. In such way, and given that the evolutionary system
has been designed in order to minimize the error value, when
adding a fitness value, a larger network would have a worse
fitness value. Therefore, the existence of simple networks is
preferred as the penalization value that is added is
proportional to the number of neurons of the ANN. The
calculus of the final fitness will be as follows:

 (1)

where MSE is the mean square error of the ANN with the
training pattern set, N is the number of neurons of the network
and P is the penalization value for such number.

IV. PROBLEMS TO BE SOLVED
This technique has been used for solving problems of

different complexity taken from the UCI database [27]. All
these problems are knowledge-extraction problems from
databases, where, taking certain features as a basis, it is
intended to perform a prediction about another attribute of the
database. The value that is intended to be predicted might be a

diagnosis value (when using medical databases), a
classification value or a prediction one. A small summary of
the problems to be solved can be seen on Table I.

All these databases values have been normalized between 0

and 1 and the pattern sets divided into two parts for each
problem, taking the 70% of the database for training and using
the remaining 30% for performing tests.

V. RESULTS AND COMPARISON WITH OTHER METHODS
Several experiments have been performed in order to

evaluate the system performance. The values taken for the
parameters at these experiments were the following:

• Crossover rate: 95%.
• Mutation probability: 4%.
• Selection algorithm: 2-individual tournament.
• Graph maximum height: 5.
• Maximum inputs for each neuron: 9.
• Population size: 1000 individuals.
• Penalization value: 0.00001.
To achieve these values, several experiments had to be done

in order to obtain values for these parameters that would
return good results to all of the problems. These problems are
very different in complexity, so it is expected that these
parameters give good results to many different problems.

This last parameter, the penalization to the number of
neurons, is important. The values range from very high (0.1)
to very small (0.00001 or 0). High values only enables the
creation of very small networks with a subsequent high error,
and low values lead to overfitting problem. Experiments

TABLE I

SUMMARY OF THE PROBLEMS TO BE SOLVED

Problem Number of
inputs

Number of data
points

Number of
outputs

Breast Cancer 9 699 1
Iris Flower 4 150 3
Heart Disease 13 303 1
Ionosphere 34 351 1

0.2

2.8

-2

2.5

-1.2

1.1

3.2

RNA

3-Neuron

1-Input

3-Input
3.2

-1

+

2.1

3-Input -2

0.2

4-Input

2.2

3-Neuron

x1

x2

x3

x4

2-Neuron

-1.2

2.5

2-Input

3-Input

2.8
2.2

Fig. 1 GP graph and its resulting network

PNMSEfitness *+=

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3156

showed that is preferable for this parameter to take low values
instead of higher ones, allowing the creation of networks large
enough for solving the problem, avoiding overfitting.

In order to evaluate its performance, the system presented
here has been compared with other ANN generation and
training methods.

The method 5x2cv [29] is used in Cantú-Paz and Kamath’s
work [28] for the comparison of different ANN generation
and training techniques based on EC tools. This work presents
as results the average precisions obtained in the 10 test results
generated by this method. Such values are the basis for the
comparison of the technique described here with other well
known ones. These algorithms used on the comparison are
widely explained with detail in Cantú-Paz and Kamath’s work
[28]. Such work shows the average times needed to achieve
the results. Not having the same processor that was used, the
computational effort needed for achieving the results can be
estimated. This effort represents the number of times that the
pattern file was evaluated. The computational effort for every
technique can be measured using the population size, the
number of generations, the number of times that the BP
algorithm was applied, etc. This calculation varies for every
algorithm used. All the techniques that are compared with the
work are related to the use of evolutionary algorithms for
ANN design. Five iterations of a 5-fold crossed validation test
[29] were performed in all these techniques in order to
evaluate the precision of the networks. These techniques are
connectivity matrix, pruning, parameter search and graph-
rewriting grammar.

Table II shows a summary of the number of neurons used in
Cantú-Paz and Kamath’s work [28] in order to solve the
problems that were used with connectivity matrix and pruning
techniques. The epoch number of the BP algorithm, when
used, is also indicated here.

Table III shows the parameter configuration used by these
techniques. The execution was stopped after 5 generations
with no improvement or after 50 total generations.

TABLE III
PARAMETERS OF THE TECHNIQUES USED DURING THE COMPARISON

 Matrix Pruning Parameters Grammar
Chromosome
length (L) N N 36 256
Population size ⎣ ⎦L3 ⎣ ⎦L3 25 64
Crossover
points

L/10 L/10 2 L/10

Mutation rate 1/L 1/L 0.04 0.004
N = (hidden+output)*input + output*hidden

The results obtained with these 4 methods are shown in

Table IV. Every box of the table indicates 3 different values:
precision value obtained in Cantú-Paz and Kamath’s work
[28] (left), computational effort needed for obtaining such
value with that technique (below) and precision value
obtained with the technique described here and related to the
previously mentioned computational effort value (right).

Watching this table, it is obvious that the results obtained
with the method proposed here are, not only similar to the
ones presented in Cantú-Paz and Kamath’s work [28], but
better in many cases. The reason of this lies in the fact that
these methods need a high computational load since training is
necessary for every case of network (individual) evaluation,
which therefore turns to be time-consuming. During the work
described here, the procedures for design and training are
performed simultaneously, and therefore, the times needed for
designing as well as for evaluating the network are combined.

Most of the techniques used for the ANN development are
quite costly, due in some cases to the combination of training
with architecture evolution. The technique described here is
able to achieve good results with a low computational cost and
besides, the added advantage is that, not only the architecture
and the connectivity of the network are evolved, but also the
network itself undergoes an optimization process.

Table IV also shows a small overfitting problem. This is
due to the fact that the system has been left to training up to a
certain number of fitness function evaluations. This usually
leads to overfitting the training set when it keeps training for a
long time.

VI. CONCLUSIONS
This paper presents a technique for ANN generation with

GP based on graphs. To develop this system, the evolutionary
operators had to be modified in order to be able to work with
graphs instead of trees. This system has been compared to a

TABLE II
ARCHITECTURES USED

 Inputs Hidden Outputs BP Epochs
Breast Cancer 9 5 1 20
Iris Flower 4 5 3 80
Heart Cleveland 26 5 1 40
Ionosphere 34 10 1 40

TABLE IV
COMPARISON OF THE RESULTS OBTAINED WITH OTHER METHODS AND WITH THE PRESENT ONE

 Matrix Pruning Parameters Grammar

96.77 96.27 96.31 95.79 96.69 96.27 96.71 96.31 Breast Cancer
92000 4620 100000 300000

92.40 95.49 92.40 81.58 91.73 95.52 92.93 95.66 Iris Flower
320000 4080 400000 1200000

76.78 81.11 89.50 78.28 65.89 81.05 72.8 80.97 Heart Cleveland
304000 7640 200000 600000

87.06 88.34 83.66 82.37 85.58 87.81 88.03 88.36 Ionosphere
464000 11640 200000 600000

Average 88.25 90.30 90.46 84.50 84.97 90.16 87.61 90.32

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3157

set of different techniques that use evolutionary algorithms for
ANN design and training. The conclusion of such comparison
is that the results of 5x2cv tests using this method are not only
comparable to those obtained with other methods, but also
better than them in most of the cases. It should be borne in
mind that if the parameters of the system had been adapted to
every problem to be solved the results would have been better.
However, the parameters used have been the same for all the
problems because it is intended to find a parameter set useful
for any problem, and therefore there is no need of human
participation. In such way, it can be stated that even without
human participation, this method can improve the results of
other algorithms.

This system has another advantage over other methods of
ANN generation since -after a short analysis by the system- it
is possible to differentiate the variables that are not relevant
for problem solving, as they would be not present at the ANN.
This is an important feature, since it gives new knowledge
about the problem being solved.

VII. FUTURE WORK
Once the system has been proved, the work continues

towards several directions. One interesting research line
would be the possible integration of a GA into the system in
order to train the networks being generated.

As was explained earlier, this system has an overfitting
problem. Another research line could be to use any technique
to avoid overfitting, such as early stop.

ACKNOWLEDGMENTS
The development of the experiments described in this work,

has been performed with equipments belonging to the Super
Computation Center of Galicia (CESGA).

The Cleveland heart disease database was available thanks
to Robert Detrano, M.D., Ph.D., V.A. Medical Center, Long
Beach and Cleveland Clinic Foundation.

REFERENCES
[1] S. Haykin, Neural Networks (2nd ed.), Englewood Cliffs, NJ: Prentice

Hall, 1999.
[2] J. R. Rabuñal and J. Dorado, (eds.) Artificial Neural Networks in Real-

Life Applications, Idea Group Inc, 2005.
[3] J. R. Koza, Genetic Programming: On the Programming of Computers

by Means of Natural Selection, Cambridge, MA, MIT Press, 1992.
[4] J.R. Rabuñal, J. Dorado, A. Pazos, J. Pereira and D. Rivero, “A New

Approach to the Extraction of ANN Rules and to Their Generalization
Capacity Through GP”. Neural Computation, vol. 16, n. 7. 2004. pp.
1483-1523.

[5] M. Bot, “Application of Genetic Programming to Induction of Linear
Classification Trees”, Final Term Project Report, Vrije Universiteit,
Amsterdam, 1999.

[6] J. R. Rabuñal, J. Dorado, J. Puertas, A. Pazos, A. Santos and D. Rivero,
“Prediction and Modelling of the Rainfall-Runoff Transformation of a
Typical Urban Basin using ANN and GP”, Applied Artificial
Intelligence, 2003.

[7] R. S. Sutton, “Two problems with backpropagation and other steepest-
descent learning procedure for networks”, Proc. 8th Annual Conf.
Cognitive Science Society, Hillsdale, NJ: Erlbaum, 1986, pp. 823-831.

[8] D. J. Janson and J. F. Frenzel, “Training product unit neural networks
with genetic algorithms”, IEEE Expert, vol. 8, 1993, pp. 26-33.

[9] G. W. Greenwood, “Training partially recurrent neural networks using
evolutionary strategies”, IEEE Trans. Speech Audio Processing, vol. 5,
1997, pp. 192-194.

[10] E. Alba, J. F. Aldana and J. M. Troya, “Fully automatic ANN design: A
genetic approach”, Proc. Int. Workshop Artificial Neural Networks
(IWANN’93), Lecture Notes in Computer Science, vol. 686. Berlin,
Germany: Springer-Verlag, 1993, pp. 399-404.

[11] H. Kitano, “Designing neural networks using genetic algorithms with
graph generation system”, Complex Systems, vol. 4, 1990, pp. 461-476.

[12] X. Yao and Y. Liu, “Toward designing artificial neural networks by
evolution”, Appl. Math. Computation, vol. 91, no. 1, 1998, pp. 83-90.

[13] S. A. Harp, T. Samad and A. Guha, “Toward the genetic synthesis of
neural networks”, Proc. 3rd Int. Conf. Genetic Algorithms and Their
Applications, J.D. Schafer, Ed. San Mateo, CA: Morgan Kaufmann,
1989, pp. 360-369.

[14] S. Nolfi and D. Parisi, “Evolution of Artificial Neural Networks”,
Handbook of brain theory and neural networks, Second Edition,
Cambridge, MA: MIT Press, 2002, pp. 418-421.

[15] P. Turney, D. Whitley and R. Anderson, “Special issue on the
baldwinian effect”, Evolutionary Computation, vol. 4, no. 3, 1996, pp.
213-329.

[16] A. Zomorodian, 1995. “Context-free Language Induction by Evolution
of Deterministic Push-down Automata Using Genetic Programming”, in
Working Notes of the Genetic Programming Symposium, AAAI-95, Eric
Siegel and John Koza, chairs. AAAI Press. 1995.

[17] Z. Fan, K. Seo, R. C. Rosenberg, J. Hu and E. D. Goodman, “Exploring
Multiple Design Topologies Using Genetic Programming And Bond
Graphs”. GECCO 2002: Proceedings of the Genetic and Evolutionary
Computation Conference. Springer-Verlag. 2002, pp. 1073-1080

[18] Z. Fan, K. Seo, J. Hu, R. C. Rosenberg and E. D. Goodman, “System-
Level Synthesis of MEMS via Genetic Programming and Bond Graphs”,
Genetic and Evolutionary Computation -- GECCO-2003. Vol. 2724.
2003, pp. 2058-2071.

[19] F. Gruau, “Genetic micro programming of neural networks”, in Kinnear,
Jr., K. E., editor, Advances in Genetic Programming, chapter 24, MIT
Press, 1994, pp. 495–518.

[20] S. Luke and L. Spector, “Evolving Graphs and Networks with Edge
encoding: Preliminary Report”. In Late Breaking Papers at the Genetic
Programming 1996 Conference (GP96). J. Koza, ed. Stanford: Stanford
Bookstore, 1996, pp. 117-124.

[21] A. Teller, “Evolving Programmers: The Co-evolution of Intelligent
Recombination Operators”, in Advances in Genetic Programming II, P.
Angeline and K. Kinnear, editors. Cambridge: MIT Press., 1996.

[22] W. Kantschik, P. Dittrich, M. Brameier and W. Banzhaf,
“MetaEvolution in Graph GP”, Proceedings of EuroGP'99, LNCS, Vol.
1598. SpringerVerlag, 1999, pp. 15-28.

[23] R. Poli “Evolution of Graph-like Programs with Parallel Distributed
Genetic Programming”, Genetic Algorithms: Proceedings of the Seventh
International Conference, 1997.

[24] W. Kantschik, W. Banzhaf, “Linear-Graph GP - A new GP Structure”,
in Proceedings of the 4th European Conference on Genetic
Programming, EuroGP 2002, 2002.

[25] A. Teller A. and M. Veloso, “Internal reinforcement in a connectionist
genetic programming approach”, Artificial Intelligence. Vol. 120, N. 2,
2000, pp. 165-198.

[26] D. J. Montana, “Strongly typed genetic programming”, Evolutionary
Computation, Vol. 3, No. 2, 1995, pp. 199-200.

[27] C. J. Mertz and P. M. Murphy, UCI repository of machine learning
databases. http://www-old.ics.uci.edu/pub/machine-learning-databases,
2002

[28] E. Cantú-Paz and C. Kamath, “An Empirical Comparison of
Combinations of Evolutionary Algorithms and Neural Networks for
Classification Problems”, IEEE Transactions on systems, Man and
Cybernetics – Part B: Cybernetics, 2005, pp. 915-927.

[29] T. G. Dietterich, “Approximate statistical tests for comparing supervised
classification learning algorithms”, Neural Computation, Vol. 10, No. 7,
1998, pp. 1895-1924.

