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Abstract—Advancements in the field of artificial intelligence 

(AI) made during this decade have forever changed the way we look 
at automating spacecraft subsystems including the electrical power 
system. AI have been used to solve complicated practical problems 
in various areas and are becoming more and more popular nowadays. 
In this paper, a mathematical modeling and MATLAB–SIMULINK 
model for the different components of the spacecraft power system is 
presented. Also, a control system, which includes either the Neural 
Network Controller (NNC) or the Fuzzy Logic Controller (FLC) is 
developed for achieving the coordination between the components of 
spacecraft power system as well as control the energy flows. The 
performance of the spacecraft power system is evaluated by 
comparing two control systems using the NNC and the FLC. 
 

Keywords—Spacecraft, Neural network, Fuzzy logic control, 
Photovoltaic array. 

I. INTRODUCTION 
ROVISION of electrical power for space vehicles is the 
most fundamental requirement for the satellite payload. 

Power system failure necessarily results in the loss of a space 
mission, and it is interesting to note that, many of the early 
satellite systems failed due to such a loss [1].  

In the last three decades, numerous alternative control 
techniques, such as neural and fuzzy control, have been 
proposed instead of conventional classical technique. 
Development of artificial neural networks (ANN’s) and fuzzy 
logic theory have inspired new resources for possible 
implementation of better and more efficient control. ANN’s 
have capability of learning the dynamical systems that 
estimated input-output functions. Fuzzy systems transform 
sets of structured information into the appropriate control 
actions. Especially, neither ANN’s nor fuzzy systems need 
mathematical modeling of the plants. Fuzzy control systems 
can be developed along with linguistic lines and need some 
expertise information about the plant. On the other hand, 
before used for control purposes, ANN’s have to be trained 
and they need some information (not based on mathematical 
model but sometimes taken measurement from plant) about 
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the plant. Generally, input-output characterization or desired 
output of the plant or neuro controller is sufficient [2, 3]. 

The emphasis of this paper is concerned with the control of 
the energy flow of spacecraft power system using either the 
NN or the FL techniques. The performance of the global 
system has been studied using MATLAB – SIMULINK. 

II. SPACECRAFT POWER SYSTEM 
Photovoltaic conversion of the sun’s energy is the most 

common source of electrical power in space. A typical solar 
panel–battery power system is shown in Fig. 1 [4, 5].  
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Typical solar  panel– battery system architecture 
 

III. PV PANEL MODEL 
A photovoltaic cell is basically a p–n semiconductor 

junction diode which converts solar light energy into 
electricity. Using the equivalent circuit of a solar cell, the non-
linear I–V characteristics of a solar array are extracted, 
neglecting the series resistance [6]:  
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Where: I0 is the PV array output current (A), V0 is the PV 
array output voltage (V), q is the charge of an electron, k is the 
Boltzmann’s constant in J/K, A is  the p–n junction ideality 
factor, T is the cell temperature (K), and Irs is the cell reverse 
saturation current (A).  

The photocurrent Iph depends on the solar radiation and the 
cell temperature as described in the following equation: 
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Where: Iscr is the PV array short circuit current (A) at 
reference temperature and radiation, Tr is the cell reference 
temperature, ki the short circuit current temperature coefficient 
(A/K) and S  is the solar radiation (W/m2).  

IV. ARTIFICIAL INTELLIGENCE TECHNIQUES 

A. Fuzzy Logic Controller 
 Fuzzy controllers have been proposed in diverse fields. 

The structure of the Fuzzy Controller (FC) is shown in Fig. 2. 
A fuzzy controller consists of a knowledge base, which 
contains the typical set of rules and an inference mechanism 
[6] and [7]. 

A fuzzification converts each piece of input data to degrees 
of membership by a lookup in one or several membership 
functions. The fuzzification block thus matches the input data 
with the conditions of the rules to determine how well the 
condition of each rule matches that particular input instance. 
There is a degree of membership for each linguistic term that 
applies to that input variable. 

The rules may use several variables both in the condition 
and the conclusion of the rules. The controllers can therefore 
be applied to both multi-input-multi-output (MIMO) problems 
and single-input-single-output (SISO) problems. 

The inference engine defines mapping from input fuzzy sets 
into output fuzzy sets. It determines the degree to which the 
antecedent is satisfied for each rule. The defuzzifier maps 
output fuzzy sets into a crisp number. Given a fuzzy set that 
encompasses a range of output values, the defuzzifier returns 
one number, thereby moving from a fuzzy set to a crisp 
number. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2. General structure of fuzzy controller. 
 

Benefits of fuzzy Logic: 
• No need for a mathematical model. 

• Relatively simple, fast and adaptive. 

• Less sensitive to system fluctuations. 

• Can implement design objectives, difficult to express 

mathematically in linguistic or descriptive rules. 

• Based on intuition and judgment. 

 

B. Artificial Neural Network  
Artificial intelligence (AI) techniques are becoming useful 

as alternate approaches to conventional techniques or as 
components of integrated systems. They have been used to 
solve complicated practical problems in various areas and are 
becoming more and more popular nowadays. Nowadays, 
considerable attention has been focused on use of ANN on 
system modeling and control applications [8]. 

The basic processing elements of neural networks are called 
artificial neurons, or simply neurons or nodes. As indicated in 
Fig. 3, the effects of the synapses are represented by 
connection weights that modulate the effect of the associated 
input signals, and the nonlinear characteristic exhibited by 
neurons is represented by a transfer function [9]. The neuron 
impulse is then computed as the weighted sum of the input 
signals, transformed by the transfer function. The learning 
capability of an artificial neuron is achieved by adjusting the 
weights in accordance to the chosen learning algorithm. The 
learning situations in neural networks may be classified into 
three distinct sorts. These are supervised learning, 
unsupervised learning, and reinforcement learning [10] and 
[11]. 

 
Fig. 3 Nonlinear model of a neuron. 

 
The main advantages of the neural network technique are:- 

• Nonlinearity. 
• Mapping input signals to desired response.  
• Adaptivity. 
• Evidential response: confidence level improves 

classification.  
• Contextual information: Knowledge is represented 

by the very structure and activation. 
• Fault tolerent: graceful degradation of performance 

if damaged.  
• Uniformity of analysis and design. 
• Neurobiological analogy. 
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V.  CONTROL STRATEGY 

A. Proposed Fuzzy Logic Controller 
Traditional FLC requires the expert knowledge of the 

process operation for the FLC parameter setting, and the 
controller can be only as good as the expertise involved in the 
design [12] and [13]. Fig. 4 indicates the proposed 
architecture of FLC of spacecraft power system. In this 
diagram, the FLC controls whether the system is in peak 
power or in eclipse conditions.  

The inputs to the FLC are:  (a) the error signal (e), indicating 
the difference between the output generation  and the 
reference load, and (b) the derivative of this error signal  (ce). 
The output of the FLC is the change in battery charge current 
(∆IBC). Standard triangular membership functions, as shown 
in Fig. 5 , are chosen for both the inputs and output of the 
fuzzy logic controller where NB, NM, NS, ZE, PS, PM, and 
PB are   negative big, negative medium, negative small, zero, 
positive small, positive medium and positive big respectively. 
The fuzzy rule table of these sets is given in Table I. 

 
 

 

 

 

 
Fig. 4  Block diagram of  proposed FLC. 

 

 

 

 

 

 

 
Fig. 5 Membership functions of the fuzzy sets. 

 

B. Neural Network Controller 
The power control unit controls whether the system is in peak 
power or in eclipse conditions comparing the solar array 
current with the load current, the difference between them is 
the change in battery charge current. An advantage of the 
neural network control over traditional control is its self-
learning ability. As a result, so extensive prior information 
about the system is not required. Off line training for the 
proposed NNC was applied.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data for off-line training can be obtained either by 
simulation or experiment. The network is trained to recognize 
the relationships between the input and output parameters. 

Back propagation algorithm is chosen which is a form of 
supervised learning for multi-layer nets. In this technique, the 
interlayer connection weights and the processing elements’ 
thresholds are first initialized to small random values. The 
network is then presented with a set of training patterns, each 
consisting of an example of the problem to be solved (the 
input) and the desired solution to this problem (the output). 
These training patterns are presented repeatedly to the ANN 
model and the adjustment is performed after each iteration 
whenever the network’s computed output is different from the 
desired output. This process continues until weights converge 
the desired error level or the output reaches an acceptable 
level. For this present work, the data is obtained by simulating 
the proposed system. After many trials, the developed NNC, 
shown in Fig. 6 eventually employed a 2-neuron input, a 3-
neuron hidden layer, and one neuron output layer. The input 
network parameters are; the load current and the error signal 
while the output is the change in battery charge current (∆IBC). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 The architecture of the NN controller model. 
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VI. MATLAB SIMULATION RESULTS 
In this section, models of the basic components of the 

suggested system are simulated using Matlab Software. These 
are the PV array, the battery storage and the control 
subsystems. A control system, which includes the NNC or the 
FLC controller is developed for achieving the coordination 
between the components of stand alone spacecraft power 
system as well as control the energy flows. The simulation 
block diagrams of spacecraft power system using FLC are 
shown in Fig. 5.   

The inputs to The PV subsystem are insolation and 
temperature variables for one orbital period. While, the 
outputs are the PV current and power. 

The battery component as shown has one input, the charge 
current because the temperature is assumed to be constant 
during the operation as a result of its isolation from the space 
environment.  

 Fig. 6 depicts the simulink block diagram of FLC. The 
proposed FLC multi input single output (MISO) has two-input 
single-output. The controller inputs are the error (e) and the 
change of error (ce) at the current sampling interval k, while 
the controller output is the change in battery charge current 
(∆IBC).  

Fig. 7 indicates the second proposed control technique 
using NNC. The input and the output are fixed initially 
however the number of hidden layers and the neurons within 
these layers are optimized during the learning process based 
on the good performance of root mean square error (RMSE). 
A two layer feed-forward network with "logsigmoid" hidden 
neurons and "purlinear" output neurons is be used. The 
network will be trained with Levenberg-Marquardt back 
propagation algorithm. 

 

Vpv
Ppv1

5

Voc
4

SOC
3

DOD
2

VBD
1

To Workspace8

Temp

To Workspace 7

PB

To Workspace4

IL

To Workspace3

PL

To Workspace2

Radiation

To Workspace1
t

Temp

Sun Intensity

Scope 9

Scope 8

Scope 7

Scope 6Scope 4

Scope 3

Scope 2

Product

PV Array 
Subsystem

RAD

Temp

Vpv 1

Ipv 1

Ppv 1

Voc

Memory

Load

VL

IL

PL

IPV

FLC 3

e ib
Constant 2

28

Clock

Battery 
Subsystem

IB

SOC

VBD

VBC

DOD

IBD 1

 
Fig.7. Simulink block diagram of the spacecraft power system with 

FLC. 
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Fig .8  Simulink block diagram of  FLC. 
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Fig. 9 Simulink block diagram of the spacecraft power system with 
NNC. 

 
The solar insolation and the temperature profile in LEO 

indicated in Fig. 8 [9].  The typical current behavior of the PV 
array system is shown in Fig. 9. It is indicated that the 
variations of PV current follows the variations of the sun 
intensity.  There will be time periods when the PV system is 
unable to meet the load demand (eclipse period). This implies 
that the PV system will need a storage system that will be able 
to provide enough energy during such period. 

Using FLC and NNC, the PV output power, the battery 
power, and the load power profile are shown in Fig. 10 & 11 
respectively. It is clear that during sun periods, the generated 
power from PV feeds the load and the excess power charges 
the battery. In the contrary, during eclipse periods, the PV 
array unable to supply the load demand so the battery feeds 
the spacecraft subsystems. The positive values of the battery 
power refer to the charge mode. In the contrary, the negative 
values indicate the discharge mode.  

The solar insolation and the temperature profile in LEO 
indicated in Fig. 10 [14].  The typical current behavior of the 
PV array system is shown in Fig. 11. It is indicated that the 
variations of PV current follows the variations of the sun 
intensity.  There will be time periods when the PV system is 
unable to meet the load demand (eclipse period). This implies 
that the PV system will need a storage system that will be able 
to provide enough energy during such period. 
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Using FLC and NNC, the PV output power, the battery 
power, and the load power profile are shown in Fig. 12 & 13 
respectively. It is clear that during sun periods, the generated 
power from PV feeds the load and the excess power charges 
the battery. In the contrary, during eclipse periods, the PV 
array unable to supply the load demand so the battery feeds 
the spacecraft subsystems. The positive values of the battery 
power refer to the charge mode. In the contrary, the negative 
values indicate the discharge mode.  
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Fig. 10. Solar insolation and the temperature profile. 
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Fig. 11. The typical PV current 
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Fig. 12.  The PV generated power, battery power, and Load Power using FLC. 
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Fig. 13. The PV, battery, and load power profile using NNC. 
 

The output generation of the control using either the FLC 
or the NNC is illustrated in Fig. 14.  Also this figure shows 
the reference load, which is the total spacecraft load. Fig. 15 
depicts zoomed region for the generated power using FLC. 
The FLC settling time is nearly 0.25 minuite to generate 
power while NNC takes approximately zero time to generate 
the required power. The error between the generation and load 
resulting with NNC & FLC is shown in Fig. 16. It is cleared 
that the error resulting with FLC less than NNC during the 
orbital period while FLC doesn't generate the required power 
during the sun period. The NNC has a better response and 
accuracy than FLC for the following reasons:  NNC is fed by 
various inputs which makes NNC more accurate,  NNC 
satisfies the load power requirements, FLC settling time is 
larger than NNC, and NNC takes minimum time to simulate 
the whole system comparing to FLC. 
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Fig. 14. Generated power with NNC and FLC over the orbital period. 
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Fig. 15. Generated power with FLC  & NNC over the orbital period. 
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Fig. 16. Error resulting with FLC and NNC. 

VII. CONCLUSION 
Artificial intelligence (AI) techniques are becoming useful 

as alternate approaches to conventional techniques or as 
components of integrated systems. The mathematical 
modeling and simulation of the spacecraft power system were 
carried out. FLC and NNC techniques are proposed to control 
spacecraft subsystems. This paper has presented a comparison 
of the NNC and FLC.  

Off line training for the proposed NNC was applied. An 
ANN is trained using a back propagation with Levenberg–
Marquardt algorithm. The best validation performance is 
obtained for mean square error is equal to 9.9962×10–11 at 
epoch 637. The regression between the network output and 
the corresponding target is equal to 100% which means a high 
accuracy. NNC architecture gives satisfactory results with 
small number of neurons, hence better in terms of memory 
and time are required for NNC implementation. The results 
indicate that the proposed control unit using ANN can be 
successfully used for controlling the spacecraft power system 
in low earth orbit (LEO) than FLC. Therefore, this technique 
is going to be a very useful tool for the interested designers in 
space field. 

REFERENCES   
[1] Peter Fortescue, John Stark, and Graham Swinerd, "Spacecraft Systems 

Engineering", John Wiley & Sons Ltd. , England, 2003. 
[2] James A. Freeman and David M. Skapura, "Neural Networks 

Algorithms, Applications, And Programming Techniques", Addison-
Wesley Publishing Company, Inc., Paris,1991. 

[3] Leocadio Hontoria, Jorge Aguilera, Florencia Almonacid, Gustavo 
Nofuentes and Pedro Zufiri, "Artificial Neural Networks Applied in PV 
Systems and Solar Radiation", Artificial Intelligence in Energy and 
Renewable, Nova Science Publishers, Inc. , 2006. 

[4] Wiley J. Larson, and James R. Wertz, "Spacecraft Mission Analysis and 
Design", Micrcosm Press, Elo, Segrund, California, 2008. 

[5] Sung-Soo Jang, and Jaeho Choi," Energy balance analysis of small 
satellite in Low Earth Orbit (LEO)," Proc. of 2nd IEEE International 
Conference on Power and Energy (PECon 08), Johor Baharu, Malaysia. 
PP. 967-971, 2008. 

[6] Kevin M. Passino and Stephen Yurkovich, "Fuzzy Control", Addison 
Wesley Longman, Inc. , 1998. 

[7] Radu-Emil Precup , and  Hans Hellendoorn,  "A Survey on Industrial 
Applications of Fuzzy Control", Computers in Industry journal, 2010, 
under puplished. 

[8] Kalogirou SA, "Artificial Intelligence in energy and renewable energy 
Systems", Nova Publisher, 2007. 

[9] Ali Al-Alawi, Saleh M Al-Alawi, and Syed M Islam, “Predictive Control 
of an Integrated PV-diesel Water and Power Supply System Using an 
Artificial Neural Network,” Renewable Energy , vol. 32,  pp. 1426–
1439, 2007. 

[10] B. Chuco Paucar, J.L. Roel Ortiz, K.S. Collazos L., L.C.Leite, and J.O.P 
Pinto, “Power Operation Optimization of Photovoltaic Stand Alone 
System with Variable Loads Using Fuzzy Voltage Estimator and Neural 
Network Controller,” IEEE Power Tech. , 2007. 

[11] Adel Mellita*, Mohamed Benghanemb, “Sizing of Stand-alone 
Photovoltaic Systems Using Neural Network Adaptive Model”, 
Desalination Journal,Vol. 209, PP. 64–72, 2007. 

[12] S. Lalouni, D. Rekioua, T. Rekioua and E. Matagne, "Fuzzy Logic 
Control of Stand-Alone Photovoltaic System with Battery Storage", 
Journal of Power Sources, Vol. 193, PP. 899–907, 2009. 

[13] Ch. Ben Salah, M. Chaaben, M. Ben Ammar, "Multi-criteria Fuzzy 
Algorithm for  Energy Management of a Domestic Photovoltaic Panel", 
Renewable Energy Vol. 33,  PP. 993 –1001, 2008. 

[14] G. Colombo, U. Grasselli, A. De Luca, A. Spizzichino, and S. Falzinis, 
“Satellite     Power System Simulation”, Acta Astronautica, Vol. 40, No. 
I, PP. 4149, 1997. 

 
Hanaa T. El-Madany obtained her B.Sc. degree in Electronics and 
Communication Engineering from Faculty of Electronic Engineering, Menofia 
University in 2003. She completed her MSc degree in communication 
engineering from Faculty of Electronic Engineering, Menofia University in 
2007. Her MSc was in environmental effects on photovoltaic cells of energy 
source of satellite systems. She is an assistant Researcher in the Electronic 
Research Institute, Photovoltaic Cells Department. She published many papers 
in spacecraft power systems.    

Zoom 


