
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:11, 2013

1377

Abstract—In this paper various techniques in relation to large-

scale systems are presented. At first, explanation of large-scale
systems and differences from traditional systems are given. Next,
possible specifications and requirements on hardware and software
are listed. Finally, examples of large-scale systems are presented.

Keywords—Distributed file systems, cashing, large scale
systems, MapReduce algorithm, NoSQL databases.

I. INTRODUCTION
ODAY there are not only software systems running on a
single client, but there are also systems running on servers

on which multiple clients can access. For the latter there are
different requirements, including scalability.

There are two types of scalability: vertical and horizontal.
Vertical scalability means that the original system will be
replaced with a more powerful system. Horizontal scalability
means that the original system remains but extra servers are
added. For large-scale systems the vertical scalability is of
particular interest [4].

A. What are Large-Scale Systems?
There is no single exact definition of a large-scale system.

However, there are criteria to define such a system:
- The amount of data which is processed. “Processed”
- means here storing, accessing, manipulating, and refining
- The number of hardware elements
- The number of people who are involved
- The number of systems, which are purposed and

processed.
For both traditional and large-scale systems, the main

points are performance, reliability, complexity, development
and process. But these points have to be scalable in large-scale
systems, so that the whole system works as a unit.

B. Traditional Systems vs. Large-Scale Systems
A good analogy to describe the differences between

traditional and large-scale systems is the comparison of
differences among a house, a high-rise building and a city.

A large-scale system is usually ‘a system of systems’; it can
be viewed as a city with many houses and high-rise buildings.
That means a large-scale system has a high number of
functions. The functions are expanding over time like a city is
growing over time. In a traditional system the number of
functions is constant. There are updates and small extensions,

Irina Astrova is with the Institute of Cybernetics, Tallinn University of

Technology, Estonia (e-mail: irina@cs.ioc.ee).
Arne Koschel, Elena Deutschkämer, Jacob Ester, and Johannes Feldmann

are with the Faculty IV, Department for Computer Science, University of
Applied Sciences and Arts Hannover, Hannover Germany (e-mail:
arne.koschel@hs-hannover.de).

but there are not large extensions of the functions. This is
comparable with a house or a high-rise building. A house is a
more persistent object and its lifetime changes are usually
limited to small improvements or additions.

As with a city, the architecture of the system is not clearly
defined at the beginning. There are always changes because of
different enhancements. For a house, the architecture is
planned in the beginning, also for a traditional system. For a
city, the architecture is also planned in the beginning, but
because of different conditions at later times the architecture
may need to be changed. The same applies to large-scale
systems. The architecture cannot be defined in the beginning
because it does not endure over the whole lifecycle of the
system. That means a large-scale system has to be flexible for
changes because of expansions. A traditional system can be
more static. Not only because of the growing number of
functions, but also because of the rising user count, a large-
scale system has to be flexible related to the scalability. This
time the scalability and flexibility aspects of a traditional
system are more considered as a projection of users to
computers. For a large-scale system there always has to be the
possibility to scale the system for more users [1].

Table I presents the most important characteristics of
traditional and large-scale systems.

TABLE I

CHARACTERISTICS OF TRADITIONAL AND LARGE-SCALE SYSTEMS [1]
Characteristic Traditional system Large-scale system

Governance Singular dominant
influence

Multiple, conflicting
influences

Duration of life Defined at the moment
of designing Infinite

Flow of
information

Well-understood internal
flow, known sources

Changing flow of
information, new sources

Size Local Often global

Boundaries probably determined Unknown, changeable,
fluctuating

Complexity Optimized Highly complex, not
optimized

Elements Services, components Systems, services

Constructor Own organization or
COTS COTS or foreign

II. REQUIREMENTS FOR LARGE-SALE SYSTEMS
In general, defining hardware and software for large-scale

systems is not very trivial. This fact is mainly due to the large
number of possible applications and scenarios for large-scale
systems. The requirements for hardware and software are
largely dependent on the particular application. The hardware
requirements for a social network like Facebook compared to
a large-scale-scientific-cluster for calculating weather data are
different. To create/develop a solid requirements specification
from the beginning is difficult due to a prospective and
continuous evolution of the system itself. Regardless of these

Arne Koschel, Irina Astrova, Elena Deutschkämer, Jacob Ester, Johannes Feldmann

Architecture of Large-Scale Systems

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:11, 2013

1378

difficulties there are hardware and software, which enforced
on the marked for the usage in large-scale systems. Compared
with traditional systems the error handling is very important.
In a traditional system the failure of any single component
often affects the whole system. On the contrary, failures of
components in a large-scale system are considered and
planned in the lifecycle of the system. Hardware and software
should be designed to handle the failure of any single
component. Facebook, but also Intel and HP, have spent a lot
of time developing specialized hardware and software for
large-scale systems. Recently Facebook presented their
research in finding effective hardware in the “Open Computer
Project” (http://opencompute.org/). Within this research, a
group of Facebook employees has written instructions and
specifications, which gave hints for the construction of very
efficient servers.

However, there are various software approaches, which are
specially designed for large-scale systems. Especially for web-
based large-sale systems there are lots of implementations.
Best known of them are probably the Map-Reduce algorithm,
more precisely Apache Hadoop, which is an implementation
based on the later described map-reduce algorithm. Other
often sees tools are specializations of Memcached, a cache
server, which reduces the load on nodes in the large-scale
system. Through the use of such software, the performance of
large-scale systems can be generally increased significantly,
because the load on the single individual node is reduced as
the content is available in the cache, or the flood of requests is
efficiently distributed across multiple servers, which act as
clusters. There are also implementations that ensure the
availability of the system even when some parts of the system
fail.

A very good example, as mentioned earlier, for a large-
scale system is the Internet itself. The architecture is
decentralized and the development is carried out continuously
and evolutionary. If some parts of the Internet, e.g. a single
server or a route fails, the rest of the Internet acts without
errors as nothing happened, because there are alternative
routes and pages (servers) that can be accessed by the users.

III. COMPONENTS OF LARGE-SCALE SYSTEMS
In the following, there will be given explanations of the

basic components for large-scale systems.

A. File Systems
In traditional systems, file systems are used to organize files

on a single hard disk drive or a RAID system. They provide
applications access to files and directories by directly reading
from and writing to a physical media.

Major software systems are distributed over several
machines, which include the file systems used. Distributed file
systems spread the system’s data over multiple machines and
disks. Many clients share the same data using one or more
servers as point of access. An underlying network connects all
machines which access the file system. They communicate
using a certain protocol. Additional features like mechanisms

for data replication or fault tolerance may be included on file
system level. Prominent examples of conventional distributed
file systems are Suns NFS, Apples AFP and SMB, which are
mostly used within Microsoft Windows-driven environments.
However, large-scale systems need to go one step further for
several reasons such as performance, scalability and
integration into existing infrastructure.

Google File System: This is an example of a distributed file
system. When Google designed Google File System (GFS)
[19] in 2003, the developers made a set of assumptions:
- For reasons of economy, Google chose to use commodity

hardware, which is expected to fail. Therefore, a
monitoring mechanism is needed, to ensure prompt
recovery.

- GFS should be optimized for handling a huge number of
large files, because they are used in experience mostly.

- In practical use, read operations are more common than
write operations. At this, reads are sequential or random,
while writes are supposed to be sequential rather than
random. There are practically no over-write operations.

- Files act as producer-consumer queues with extensive
merging. This means prevalently appending to one certain
file. That's why atomicity is essential while producing
minimal overhead in synchronization.

- As observed in other applications, reading a huge amount
of bulk data is more common than tasks, which depend on
low latency. Therefore a high sustained bandwidth is
more relevant than low response times.

These assumptions are based on Google’s very own, former
experience in developing large-scale systems and high
performance solutions. This shows GFS was highly optimized
for large-scale system needs.

As shown in Fig. 1, a GFS cluster consists of one master
and several chunk servers. Chunk servers store files in fixed-
sized chunks, which are identified by a globally unique ID, the
chunk handle. Chunks are stored on a commodity hard disk as
Linux files. By default three replications of each chunk are
stored on different chunk servers. The master manages all
chunks and takes care about replication and metadata.
Metadata includes access control information, mapping from
files to chunk servers and the location of chunks. Master and
chunk servers communicate periodically. Here, the state of
chunk servers is collected and instructions are given by the
master.

A cluster is accessed by multiple clients. When an
application needs a file, the client API sends a request to the
master. The master then provides metadata which enables the
client to access the certain chunk server that holds the
requested file. There is no payload data transferred between a
client and the master. For reasons of performance, the master
holds the entire metadata in its RAM. Further, a client can ask
the server for multiple chunks metadata within one single
request. Therefore in this architecture a single centralized
master is not a bottleneck. As shown, the flow of control data
and payload data is separated. This leads to an efficient access
behavior, while still benefiting from one single master. There

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:11, 2013

1379

is no overload produced by synchronizing several masters.

Fig. 1 Architecture of Google File System

As mentioned in the assumptions above, a large chunk size
is desired. This is for several reasons: working with big
chunks leads to less metadata to be stored on the master.
Further, there is less communication between the client and
the master to transfer the metadata. Since most read and write
operations are sequential, the TCP/IP connection handling
benefits from large chunks as connections can stay open over
a long period of time. That's why GFS uses a chunk size of 64
MB, which is much larger than in traditional distributed file
systems.

To provide atomic writes with a good performance, GFS
provides an operation called record append. Using this
operation, the client does not have to deal with the exact
position of where to append new data to a chunk. Normally,
this position is described by an offset that is sent to the client
on request. When it comes to concurrent writes to one chunk
by multiple clients, data may be overwritten. Clients may use
offsets, which point to addresses that are already used by other
client’s data, since there is no concurrency management on the
client-side. Therefore, in GFS the clients transfer only the
appending data to the server.

The server manages concurrent writes and appends one
client’s data sequentially to the chunk at a position chosen by
the server. Then the server sends back the actual position of
the appended data within the chunk to the client for later
access.

To keep a cluster available when hardware fails, which is
common, GFS uses two mechanisms. These are fast recovery
and replication. Fast recovery ensures minimal start-up times
of master and chunk servers. If a process fails, a server will
simply retry after a short time-out. Replication applies to both
chunks and masters. Chunks are replicated three times by
default. Replicas are managed by the master, including chunk
verification using checksums. Master replication provides
reliability of the cluster. Backup masters can easily recover a
cluster’s state by reading the log of a crash master.

Further, a master may be “shadowed” which can be
considered as a delayed live-copy of a master. These shadows
independently communicate with the chunk servers. In case of
a crashed master, shadows can provide read-only access to
applications that do not depend on up-to-data data. In
addition, GFS offers features like garbage collection, directory
snapshots and load balancing.

GFS is a highly optimized and customized solution. Its

architecture has been designed to serve Google’s specific
demands on high performance and high availability while
managing a huge amount of data. The architecture enables
horizontal scalability by simply adding chunk servers to the
cluster, which is one essential requirement on the technologies
when applied in large-scale systems.

Amazon Simple Storage Service: This is another major
distributed file system that is used in a large-scale system.
Although as described above, the GFS is proprietary as well,
Amazon does not provide detailed information on the internal
architecture of Amazon Simple Storage Service (Amazon S3)
(http://aws.amazon.com/s3/#functionality).

Amazon S3 is an online storage accessible through web
services. It stores arbitrary objects that are organized in so
called buckets. Objects may be up to 5 terabytes large and can
be accessed with simple read and write operations. Buckets
are available via several Internet protocols, among them
HTTP and BitTorrent. REST and SOAP interfaces are
available as well. Amazon S3 provides authentication
mechanism to impede unauthorized access. The data buckets
are located in specific geographical regions, which can be of
interest when storing sensitive business data. Today, Amazon
S3 stores about 450 billion objects and processes up to
290,000 requests a second at peak time [21].

Google developed a customized solution to run their in-
house applications and systems. In contrast, Amazon uses its
existing infrastructure and free resources to provide scalable
memory to third parties using cloud services.

B. Databases
Like for a traditional system, for a large-scale system any

database system can be used. But a new kind of databases has
arisen: NoSQL databases [5][6]. The main difference to
traditional (SQL) databases is that the focus is on scalability.
Large-scale applications grow within time. There must be the
possibility to scale up both the systems and the databases.
NoSQL databases are normally characterized through weak
schema restriction, so that it is easy to upgrade the data
records. It also should be much easier to replicate the data in
NoSQL databases than in traditional databases.

In most cases, in NoSQL databases ACID (Atomicity,
Consistency, Isolation, Durability) is not the right concurrency
control method. In this method a data record is locked until
one operation has finished. This could be obstructive in large-
scale systems, because such systems must be available at any
time. At least they must receive read and write operations at
any time. This means that availability and scalability are much
more important than consistency. Instead of ACID, NoSQL
databases often use BASE (Basically Available, Soft-State,
Eventual Consistency). The idea is that consistency should be
reached eventually, but availability is of the highest priority.
Data records are not locked when they are in use.

There are three main types of NoSQL databases: column-
oriented databases, document stores and key-value stores.

Column-oriented databases: These databases are called
column-oriented because of the way how the data records are

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:11, 2013

1380

persisted. Traditional databases are called line-oriented
because all attributes are consecutive in one line of the table.
In a column-oriented database every column can be persisted
in a separate file. This means a value of a special attribute
does not follow the value of the next special attribute of the
same tuple. Instead, a value of a special attribute follows the
value of the same attribute of the next tuple [7], [8].

The main disadvantage of traditional databases: If a sum
over more than one line of the table should be formed, it needs
computing time. This is not a problem for traditional systems
as they are optimized for those operations. But it is a problem
for a very large amount of data. In such systems a lot of
computing time will need. Because of that, it makes sense to
persist the sum every time when it changed. This happens
essentially in column-oriented databases. Data records are
stored in a way that values can be summed up with as little
input/output activity as possible.

Google's Big Table (http://www.neogrid.de/was-ist/Google-
BigTable) is an example of column-oriented databases.
Google has to deal with a high volume of data, which lays in
the dimension of petabytes. Because of that, Google
developed BigTable. BigTable can be used for large amounts
of structured data or for systems which need low response
times. Several concepts are united in this database: scalability,
high performance, low downtime.

The data model is a weak, distributed, persistent
multidimensional sorted map. The index consists of a row key,
a column key and a timestamp. Every value in the map is an
uninterpreted array of bytes [3].

Row keys are arbitrary strings. Every writing or reading
with a certain row-key is atomic, no matter how many rows or
lines are addressed. So it is easier for the clients to justify the
system behavior if there are concurrent updates on the same
line. The data are sorted in alphabetical order of the row-keys.
A row range is called tablet which is split dynamically.
Tablets are the units for load balancing – very important for
the horizontal scalability. In this way reading of small tablets
becomes more efficient and only the communication with a
small amount of machines is usually needed.

Column keys are grouped into sets which are called column
families. They are the basic unit of the access control and also
of the memory accounting. Values which are stored in one
column family are usually of the same type. Every column key
can use the column families. There is usually a small number
of column keys, which are rarely changed.

Every column can contain different versions of the same
data. They are indexed with timestamps. BigTable can assign
timestamps automatically, but the client can also assign the
timestamps by itself. Different versions are stored, so that
always the newest version is read at first.

Google offers the BigTable API to access the database. The
API provides functions to create and to delete tables and
column families. In addition to that, it offers functions to
change clusters, tables, column family metadata and access
control rights. Clients can write or delete values in the tables.
Furthermore they can search for certain values and iterate over

a certain set of values. There are different functions to
manipulate the data. Single-row transactions are used for
atomic read-modify-write sequences on stored data with a
certain single row key. Furthermore BigTable allows using
columns as integer counters. Finally BigTable provide the
execution of scripts which are offered to the client.

BigTable can be used in MapReduce (which will be
explained later). The API offers different wrappers, which
provide the usage of BigTable as an input/output source.

BigTable is based on various components of the Goggle
infrastructure. It uses GFS to store log and data files.
Furthermore it needs a cluster management system to control
jobs, to manage resources on divided machines, to handle
machine failures and to monitor the machine status.

BigTable consists of three main components: a library,
which every client has to contain, a master server and several
tablet server which can be added or deleted dynamically.

Document stores: Document stores can store any text in the
form of documents. This allows for a search based on the
document content. An example for such a document is shown
in Fig. 2. A query like “Vorname” = “Wallace” would provide
only documents, which contains the attribute “Vorname” with
the value “Wallace”.

Fig. 2 Example of a JSON document

The main advantage of document stores over traditional
databases is a less strong structure. Attributes can be added or
removed more flexibly [7], [9].

CouchDB (http://couchdb.apache.org/) is an example of
document store, where documents with any syntax can be
stored. Documents are JSON documents here. Such data
structures are equivalent to tuples of relational databases.
Every document gets a document-ID and a revision-ID for
indexing. Then they are stored in B-trees. For each update the
revision-ID will adjust. In this way an incremental search of
the changes is possible.

CouchDB is oriented towards BigTable’s database engine
and thus at the access control over the MapReduce algorithm.
CouchDB relies on proven principles. The developers are
focusing on the easy use of the database. It takes under
consideration that a network connection is not open all the
time and that there can be errors in distributed systems.

CouchDB supports all ACID properties. But reading access
is implemented with multi-version concurrency control
(MVCC), which ensures the replication of changes on other
nodes. Every user gets a consistent snapshot of the database
from the beginning till the end of the read operation. Thereby
MVCC controls the access to the data [2].

As earlier mentioned, the documents are JSON documents.
JSON-Objects consist of a comma-separated list of properties.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:11, 2013

1381

Each property is a key-value pair in which the value can also
be a property. Basic types include, e.g., objects, arrays, strings
etc. CouchDB also offers adding attachments to the
documents.

If the data between applications are exchanged in JSON
documents, this can also be used for storage and so increasing
the performance for the involved applications.

The integrated view model enables the aggregation and
representation of the documents. Views can be created
dynamically and they have no impact on underlying data.

CouchDB offers the possibility to replicate data
incrementally on multiple nodes with bidirectional conflict
detection and conflict management. In this way reading data
can be parallelized. The continuous replication is either
triggered by an application or by the database system itself.
The distribution of CouchDB is done by replication.

Replication is also the foundation for scaling. CouchDB
does not provide partitioning and sharding. Those features
need an additional binding to additional open-source
frameworks like CouchDB-Lounge.

Key-value stores: The principle of key-value stores is
simple. A key has a value, for example an arbitrary string.

These databases can be divided into two subgroups: in-
memory-variant and on-disk-version [7]. The first option
ensures a high performance. It maintains the data in memory.
Through that the database can be used as a distributed cache
memory system. The second option stores the data directly on
disk. Through that the database can be used as a data storage.

Redis (http://redis.io/) is an example of a key-value store of
the subgroup on-disk-variant. It is fast because all data are
stored in RAM. It synchronizes with disk from time to time.
This also means that a lot of RAM must be available.

There is a similarity to column-oriented databases because
Redis also store lists, sets and hashes, in addition to strings.
Lists are important because the functions LPUSH and RPUSH
allow writing to the database with constant complexity (so
very quickly). Sets are important because they allow for many
set operations and thus rich queries.

Redis has two modes of execution: snapshotting and
append only file [2]. In the first mode, by default the
configuration of Redis provides that all data are stored onto
RAM and in certain time intervals onto disk. In case of a
crash, the past operations are reloaded to restore the original
state. The database admin can configure the storage interval
(maximum number of writings, time limit). The second mode
writes all data to disk. During a restart all operations can be
executed again to restore the previous state (pre-cash state).

Redis also offers a compression (or compact) mode, which
restores the last state of the database in a separate process.
After that, it replaces the actual file through the new file.

Redis offers a rather abstract API. But many Client-APIs
for different languages like Ruby, Python, PHP, etc. are
available.

For replication, Redis works with master-slave architecture.
There can be one master and any number of slaves. Slaves can
be connected in row or in series. This gives the possibility of

different useful architectures. For example, the configuration
of the master can specify that there is no writing to disk, but
the slaves store the data. In this way the slaves can respond to
very complex queries and relieve the master simultaneously.

C. Map Reduce Algorithm
Hadoop (http://hadoop.apache.org/) is a free, Java-based

framework for large-scale systems. One fundamental part of
this framework is an implementation of the MapReduce
algorithm. Hadoop has been developed to work effective with
large clusters (up to 10,000 nodes). One of the biggest
Hadoop clusters worldwide is used by Yahoo. It consists of
approximately 4,000 nodes with 32,000 cores and 16
petabytes of data. Analyzing and sorting of a data block with 1
petabyte file size takes about 16 hours in this cluster.

Hadoop basically consist of the two main components:
Hadoop Distributed File System and MapReduce algorithm.

Hadoop Distributed File System: Hadoop Distributed File
System (HDFS) is a distributed scalable and highly available
file system, which is necessary for processing extremely large
amounts of data. The MapReduce algorithm needs such a file
system in order to be robust and scalable. Therefore, Hadoop
provides HDFS, which is based on the GFS implementation.
The architecture of HDFS (see Fig. 3) is based on one master
node (NameNode) and many slave nodes (DataNodes). The
master node’s main task is to manage the data notes. In
addition to that, the master node can simultaneously work as
an additional data node, too. Primarily the master node does
not store any real data. Rather, it stores only metadata, which
describe the file system itself. Therefore the capacity of the
HDFS cluster is limited by the memory size of the master
node. The HDFS splits files into fragments and distributes
them within the cluster. By default the fragment is stored
twice on the same rack and once on another rack for
reliability, so that even if an entire rack fails at least one of the
three fragments is available. This kind of distribution allows
parallel access to the stored data and increases reliability and
access speed as a positive side-effect. Optionally, the data
integration can be maintained by a checksum and in cause of a
potential data corruption it redirects to an alternative intact
fragment.

Beside all beneficial aspects of this architecture, there is
one major disadvantage, which lays in the occurrence of just a
single master node. This set up creates a single point of failure
for file system access. Any attempt to access the file system
will not be possible in case of a master node downtime. The
cause of a low failure probability, unlike e.g. to raid memory
models, HDFS uses a flat memory model. This model reduces
recovery time after a failure and thereby, it reduces the risk of
data loss due to multiple errors.

Another task of the master node is to delegate tasks to the
place, where the task-associated data is stored. This approach
reduces the network load dramatically, since data must not
first be transferred to its processing node. It can be edited
directly, ideally on the same machine or in the same rack.

Since each access to the file system results in a first-

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:11, 2013

1382

instance master node request, since the master node is
responsible for managing file metadata. These metadata do
contain information about file fragmentation and file system
addressing. After that, the master node delegates the request
of the clients to the nearest data nodes, which also starts the
file transfer by itself. This division ensures that the master
node is not overloaded and quickly available for other tasks.
At the same time this division allows a distributed data traffic
between the data nodes and the requesting client.

For file transfer from a client to HDFS there is a similar
sequence. The client tells the master node that it wants to put
some files to HDFS. The master node creates some entries in
its metadata storage for the new files and allows the client to
start with the transaction. Because of the internal fragment
replication inside the HDFS cluster, the files will be
fragmented into byte blocks on the client side before the real
transaction into HDFS starts. Once a block of bytes has
reached a certain size, the client tells the master node that it is
ready for some transaction. The master node answers with a
specific location for the byte block inside HDFS. At the same
time the master node sets a list of data nodes, which should
receive the replicas of the byte block. The real transfer is often
referred as a kind of pipelining. The client transmits the block
of bytes to the data node, which it gets from the master node
right before. If the byte block has completely arrived at the
target data node, the node by itself starts to replicate this block
to the next node on the list generated by the master node. This
process is repeated several times (how often depends on the
configuration of HDFS) and remains invisible for the client,
so that the client can already transfer the next block of bytes.

In large-scale systems, hardware failures are rather seen as
a pre-calculated state than as a failure. Because of that the data
nodes send heartbeats to the master node at configurable
intervals, which can determine whether a data node is still
available. In case of a permanent data node downtime, the
master node instructs the data nodes, containing the failure
nodes duplicated data, to replicate the data within the cluster
to ensure a high data availability again.

Fig. 3 Architecture of HDFS [12]

MapReduce Algorithm: Hadoop's implementation of the
MapReduce algorithm, which uses HDFS, is very similar to
Google’s MapReduce implementation, which uses GFS. It is
intended for massive parallel computation with large amounts

of input data. The implementation of the MapReduce
algorithm is ideally based on the architecture of HDFS (see
Fig. 3) so that it has also one master node (the job tracker) and
many slave nodes (the task trackers). The job tracker receives
the work tasks and delegates them to the task trackers.

Basically the MapReduce algorithm consists of the two
components Map and Reduce. The MapReduce algorithm
divides the calculation of a certain task into two phases. The
first phase (Map) calculates intermediate results of the task.
After completion of the Map phase, the Reduce phase starts.
The calculation in this phase is based on results of the first
phase. Both phases are executed massively parallel, which
makes the MapReduce algorithm high efficient, especially in
relation to large amounts of data.

A simple example to illustrate the Map and Reduce phases
is the determination of word frequencies within a text file. In
this example, the Map phase would generate for each word in
the text file a list with a structure like (word [1,…, 1]).
If no list for a specified word is found, a new list will be
generated for the given word. Otherwise, if there is already a
list, another “1” is appended at the end of the list. Each “1”
represents a hit for the given word in the text. After the Map
phase has finished, the intermediate result storage is filled
with n lists like (word [1,…, 1]) for n different words in
this text. The subsequently introduced the Reduce phase uses
the previously filled intermediate result as input and counts
for each list and counts the occurrence of “1”, which
represents the frequency of this word for each list. After all
lists are processed by the reduce phase, the MapReduce
algorithm has finished its task and returns with n lists of the
form (word [Frequency of the word]) for n
different words [10].

As mentioned earlier the idea of HDFS was that data
operations taken place as near as possible to the data needed
for the operation. This idea also takes place in the architecture
of the MapReduce algorithm (see Fig. 4), which is also based
on the architecture of HDFS. Basically a MapReduce cluster
consists of one task tracker and many job trackers. Similar to
the name node at HDFS, the task tracker is used for managing
task inside the MapReduce algorithm. It is often installed
together with the name node on the same machine, because it
has to know the location of every stored data at any time.
Most of the calculations are based on large amounts of data,
for this reason it becomes important to decrease delays
through I/O and network processing. This is maintained by the
task tracker delegates the map and reduce tasks to the worker
nodes so that they are close to the stored data. At the same
time, the task tracker has to look after all other worker nodes
and their intermediate results and I/O data.

To reduce the complexity of a MapReduce task, it is
possible to specify the input and output reader in order to
fragment a complex task into several easier MapReduce jobs
with works together.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:11, 2013

1383

Fig. 4 Architecture of Map Reduce algorithm [12]

D. Caching
One aspect of a system’s performance is to have the right

data at the right place at the right time. This applies to both
hardware and software. Caching mechanisms are a common
and efficient way to temporarily store data in a fast memory
near the location they are needed (presumably). A prominent
example on the hardware side is multi-level caching that keeps
data as close as possible to the CPU. In magnetic hard disk
drives, caching is used to avoid unnecessary slow mechanical
access. On the software side, caching is heavily used inside
browsers. Resources such as pictures are stored on the local
machine, which reduces network traffic and bypasses the
bottleneck of a remote connection.

In large-scale systems caching can increase the overall
performance. As explained above, large-scale systems consist
of distributed file systems, NoSQL databases and algorithms
that work on huge amounts of data. These components may all
be considered as bottlenecks, even more if they have to play
together to perform a given task. Therefore, the avoidance of
performing a certain complex query more often than necessary
is more crucial than in traditional systems.

One major problem with all caching mechanisms is how to
keep the cached data up-to-date. If caches are updated
permanently, there may be no gain of performance anymore,
due to the produced overhead. On the other hand, an
application may be hardly able to benefit from out-of-date
data that are provided by infrequently updated caches. It
depends on the type of query and application, whether a big-
scaled caching system should be used. Considering a stock
exchange system that heavily depends on up-to-date data, an
intensive caching might not be applicable, due to the time-
sensitiveness of the data involved in the process. In social web
application like Facebook actuality of data is less critical.
Tasks like updating a message board or sharing a picture do
not have to be performed in real time, but may benefit from
caching when data are frequently accessed in the future.

Memcached (http://memcached.org/) is a frequently used
caching solution that can be easily integrated into large
systems. It is an open source and has been introduced in 2003
to improve the performance of dynamic web applications [17].
Mainly used to cache frequently requested websites to avoid
accessing the database, Memcached can be used to cache

arbitrary data, so called chunks. Basically Memcached can be
regarded as a high performance, distributed memory object
model, a “short-term memory” for applications.

Internally, Memcached uses a vast hash table. It can be
distributed across multiple machines while its keys can be up
to 250 bytes long. Servers keep the entire hash table inside the
RAM to avoid performance leaks caused by hard disk drive
accesses.

Memcached is based on a client/server architecture. The
server manages the cache. In detail, there may be several
servers, which work independently from each other. Servers
do not know other servers and there is no synchronization or
broadcasting between them.

Every component in the system, which provides data to the
cache, may act as a client. Every client knows all servers.
When asking for a certain chunk, a client calculates the
chunk’s hash value to determine the server, which is caching
that chunk. The server itself has to calculate its own hash
value from that key to get the location of the chunk. This
applies for both reading and writing. If all clients share one
hashing algorithm, they are able to share one cache.

Memcached combines the memory of several servers to one
big virtual memory, as shown in Fig. 5. Many small, server-
depended memories are inflexible and hard to share. A shared,
logical cache provides easy sharing of data among clients and
allows horizontal scalability by just adding new servers or
memory. Latter are available as dedicated hardware units.
This allows independent scalability of calculation power and
cache-size.

Fig. 5 Usage of Memcached [17]

Like every memory system, Memcached is limited in its
size. Once the cache is completely filled, chunks have to be
removed. Here, a common last-recently-used algorithm is used
to ensure the cache stays up-to-date as much as possible.
Therefore, Memcached must not be treated as an in-memory
database, because it cannot provide permanent persistence.
Anyway, a persistence enabled variant of Memcached called

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:11, 2013

1384

MemcacheDB is available.
Since Memcached is a hash-based key-value store, it does

not provide any kind of queries, nor set operations.
In its standard implementation, Memcached does not

provide any security features such as encryption or
authorization. This is because Memcached is optimized for
performance and security features would take some of it. This
may not be a disadvantage in most cases, since caching is
supposed to be run in a DMZ. If needed anyway, there is an
optional Simple Authentication and Security Layer (SASL)
support, when recompiling Memcached [17].

Memcached is used by many large-scale systems such as
Wikipedia, Flickr, Youtube, Twitter, Facebook among others
[16]. It provides API for most popular languages, such as
Java, C#, C++, Pearl, etc. In the Java world it is well
integrated using an advanced programming interface and
integration into Spring and Tomcat sessions.

Another caching solution that may be used in large-sale
systems is Redis (discussed before).

IV. EXAMPLES OF LARGE-SCALE SYSTEMS
Playfish and Facebook are two important examples of

large-scale systems.

A. Playfish
Playfish [13] provides social games for platforms like

Facebook, MySpace and iPhone. There are 10 million active
users a day and hundreds of server machines. And more and
more games are released so that it will continue to grow. Here
are some facts about the architecture of Playfish.
1. Playfish provides social games, meaning that there is

interaction between the users. But the games are
asynchronous. The players can play at different times. In
this way it is possible that the players play on their own
client.

2. Each individual game is easy to scale because there are
only a few users. But the whole system is harder to scale
because of the sheer number of users actively playing
games.

3. There is a rapid expansion of social games so the
architecture has to deal with a continuous stream of new
users.

4. At the beginning no one knows how successful a single
game will be. If the game becomes successful there must
be a possibility to expand immediately.

5. A smart client can decrease a server’s read access, so
most of the database activity is to write heavily.

6. The whole system has the need to be scalable in different
dimensions. “Playfish needs to scale up to support more
users, more games, more data per user, more accesses per
user, more development staff” [13].

All these points have to be addressed in the architecture.
For that, Playfish uses the following scaling strategies:
1. Playfish was cloud-based from the very beginning. They

launched their first game as a beta on Amazons Elastic
Compute Cloud EC2. The cloud can solve a high rate of

issues, which are related to a changing demand of
resources. Depending on the success of a game they can
spin up more resources or they can simply give the
instances back. The IaaS (Infrastructure as a Service) is
profitable for Playfish.

2. On the server side they use SOA (Service-oriented
Architecture) as an organizing structure of the system.
Each game is a separate service and each service can be
released independently.

3. Playfish went to a sharded architecture. This is the only
real way to scale up write activity. For data storage they
use the key/value approach with a MySQL Database. The
values are stored in a BLOB format and the data are
sharded across different MySQL clusters. Each cluster
has its own master and read replica. Why do they not use
a NoSQL database instead of MySQL? The developers
thought about this option. Till that point of time they used
MySQL. So they have the requirements for which
NoSQL databases are made, but they have also a running
solution. For scaling they needed something like sharding
but then many SQL features like indexing will not be
available. Furthermore they would give up flexibility of
access patterns when they use NoSQL. So instead of a
NoSQL database they continued to use MySQL. With the
BLOB format they can misuse MySQL as a key-/value-
store.

4. Asynchronicity is also an important point for scaling at
Playfish. A server’s write access is handled
asynchronous. On this way they try to hide the latency
from the user as much as possible.

5. Furthermore they use the proposed Map Reduce
Algorithm supported by Amazon.

Fig. 6 Architecture of Playfish

Fig. 6 shows the architecture of Playfish. On the client side
they use Flash. With the number of users the number of client
side CPUs and resources grow. That’s why they put as much
processing as possible to the client. The writing of changes to
the server is asynchronous. The communication between the
Flash client and the Java server is ensured by a service level
API.

The backend is implemented in Java. For the architecture
they use SOA. Therefore Playfish uses Jetty Server as Java
Application Servers. They are stateless, which simplifies the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:11, 2013

1385

deployments and upgrades, and improves the availability. As
previously described, they use MySQL as their data tier. They
store the data in BLOBs instead of normalization into rows
because they want to optimize the size of user records to fit
more users in memory. Because of their key/value-strategy
there is one database record per user. 60% of the workload is
writing. They use sharding to get more performance.

Because of the Flash clients, Playfish does not need scaling
techniques like Memcached. Most of what would be cached
by Memcached is cached in the client. The backups from the
databases are performed on S3.

The complexity of the architecture is an advantage. The
developers are trying to transfer the system’s workload to the
clients so that they do not have to deal with any trouble to
upscale on the server side on this point. Every game is a
service so each game can be integrated into the architecture
easily. They use the Amazon cloud for the Jetty server so they
can scale out very easy when they have a rising demand on
system resources. On their database tier they use MySQL
databases. Within time they gained expert experience in the
field of MySQL which makes it to their designated database
engine. To shard the data tier they use MySQL as a key-
/value-store. So they found a good way to build a large-scale
system with well-known widely used techniques.

B. Facebook
With over 500 Million users, Facebook

(http://facebook.com) is the largest social network in the
world. Each month the page is visited more than 200 billion
times. This includes also over 15,000 websites which uses
Facebook Connect e.g. the Like-Button. Due to this high
access rate it is not very surprising that Facebook causes about
10% of the worldwide internet traffic today. Facebook does
not publish much information about its IT architecture but
some key data are transparent to the public. Facebook scales
between its own nine data centers. Among these data centers
more than 60,000 servers are distributed. Based on this fact,
Facebook can certainly be viewed as a large-scale system.

The architecture of Facebook itself is fundamentally based
on a LAMP architecture (see Fig. 7). For this reason,
Facebook's operational IT infrastructure is based on open
source software. It is founding on Linux, Apache, MySQL
and PHP (LAMP) containing one of the biggest MySQL
clusters in the world [20].

Facebook does not use the basic LAMP components out of
the box, mostly it uses high specialized versions, which are
only built by and for Facebook. Since a compiled code usually
runs faster as runtime interpreted code like PHP, Facebook
often codes critical functions in C++ code and uses them as a
RPC service. RPC services often use previously described
technologies like databases and frameworks such as Hadoop,
Cassandra, Hive or Scribe [18].

Fig. 7 Basic architecture of Facebook [20]

PHP: Facebook uses PHP as a preferred basic programming
language for their basic framework, because PHP lives from
its active developer community. Other advantages are the
good library support for web applications. Also the dynamic
typing and interpretation of PHP as a script language is an
advantage, too [20].

Memcached: This is a high-performance, distributed
memory object caching system, which reduces the load on the
database. This benefit is caused by caching the result of
frequent queries. However, Facebook has thousands of servers
and every server runs hundreds of Apache processes, which
all communicate with Memcached. Memcached usually sets a
buffer for each TCP connection, which allocates memory.
Since Facebook’s IT infrastructure has to process a high rate
of queries in a really short time, Memcached has a high
demand on system memory just for connection buffering. To
deallocate this memory, Facebook invented a “per-thread”
shared buffer pool for UDP and TCP sockets. These and other
specializations from the Facebook developers are allowing
Facebook’s Memcached to answer up to 200,000 UPD queries
per second with an average latency of 173 milliseconds.
Comparing Facebook’s Memcached to its standard version,
which can handle for about 50,000 queries per second, it is
obvious that Facebook’s customization of Memcached came
along with a big performance improvement [11].

MySQL: The main fact why Facebook uses MySQL is the
good data integrity. MySQL is using checksums and has other
possibilities to ensure data integrity. However, Facebook does
not take advantage that MySQL is a relational database.
Facebook's MySQL does not have any joins in its code. Every
value has its own UID. Because of scaling is easier at the web
tier, Facebook does not have much functionality in their
database servers. The databases scale themselves across
multiple data centers and they are using Memcached proxies
to take care of deleting or updating all copies of the data. To
take benefit of this advantage, Facebook has extended
MySQL language to include instructions for the Memcached
proxies [20].

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:11, 2013

1386

Due to the fact that Facebook will not be so successful
without a vibrant open source community, Facebook often
publishes its own experiences and projects as open source in
order to help other developers.

V. CONCLUSION
Large-scale systems are systems that exceed traditional

software in various dimensions. Large-scale systems are
systems that cannot be build, because they exceed the way
software is engineered today, meaning that they are systems of
systems [14]. The main challenge when building a large-scale
system is to provide an architecture that allows the whole
system or its parts to grow into dimensions that are not known
at the time of birth of the system. With today’s engineering
technology this is achieved by using distributed systems that
are able to scale horizontally on every level of the
architecture.

This article showed how horizontal scaling approaches are
used in file systems, databases and algorithms to let large-
scale systems grow dynamically. The investigation of the
Google File System and BigTable, Redis and CouchDB
database implementations proved that even the very basic
elements of a a large-scale system are highly optimized for
certain tasks. Parallelized algorithms such as MapReduce
require a fast underlying hardware and software structure to
be able to show their performance. Caching is one mechanism
that is used to get around decelerating network connections.

Large-scale systems are always complex and adopt
solutions, which are assembled from optimized components
and systems. Here the choice of technologies depends on the
domain of the systems.

The inspection of today’s biggest and most frequented
applications such as Facebook and Playfish has shown that
large-scale systems are already a reality today. Here again
hardware and software are stressed to their limits, which
cannot be solved by using today’s methods and technologies.

In the future, further research will be required to meet the
demands of tomorrow’s large-scale systems. This includes the
areas of parallel-working hardware, optimized algorithms,
engineering technologies as well as the development process
and how we think about putting systems together [15].

ACKNOWLEDGMENT
Irina Astrova’s work was supported by the Estonian Centre

of Excellence in Computer Science (EXCS) funded mainly by
the European Regional Development Fund (ERDF). Irina
Astrova’s work was also supported by the Estonian Ministry
of Education and Research target-financed research theme no.
0140007s12.

We would like to thank Mats Lennart Henke from the
University of Applied Sciences and Arts Hannover, Germany,
for his help in preparing this paper.

REFERENCES
[1] D. Masak, “SOA?: Serviceorientierung in Business und Software”

Springer, 2007.
[2] S. Edlich, A. Friedland, J. Hampe, B. Brauer, „NoSQL - Einstieg in die

Welt nichtrelationaler Web 2.0 Datenbanken 2010“, Hanser, 2007.
[3] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T.

Chandra, A. Fike, R. Gruber, “Bigtable: A Distributed Storage System
for Structured Data”, Goole Inc., 2006.

[4] http://www.oser.org/~hp/bsyII/node6.html, “Skalierbarkeit”, 2007.
[5] http://blog.namics.com/2009/05/skalierbare-dat.htm, „Skalierbare

Datenbanksysteme: ACID versus BASE“, 2009.
[6] http://nosql-database.org/, “NoSQL - Your Ultimate Guide to the Non -

Relational Universe!”, 2011.
[7] http://www.heise.de/open/artikel/NoSQL-im-Ueberblick-1012483.html,

„NoSQL im Überblick“, 2010.
[8] http://www.gi.de/service/informatiklexikon/informatiklexikon-

detailansicht/meldung/spaltenorientierte-datenbanken-267.html,
„Spaltenorientierte Datenbanken“, 2010.

[9] http://eliteinformatiker.de/2011/05/18/nosql-document-store-couchdb-
mongodb/, „NoSQL: Dokumentenorientierte Datenbanken (CouchDB,
MongoDB)”, 2011.

[10] Cloud Computing: Web-basierte dynamische IT-Services (Informatik im
Fokus) , 2. Auflage, Springer ,ISBN 978-3-642-18435-2.

[11] “Scaling memcached at Facebook”, Paul Saab, December 2008,
Facebook Engineering, http://www.facebook.com/
note.php?note_id=39391378919.

[12] Oliver Fischer, “MapReduce: Programmiermodell und Framework”,
April 2010, http://www.heise.de/developer/artikel/Programmiermodell-
und-Framework-964823.html.

[13] “Playfish's Social Gaming Architecture - 50 Million Monthly Users And
Growing”, http://highscalability.com/blog/2010/9/21/playfishs-social-
gaming-architecture-50-million-monthly-user.html, 2010.

[14] Richard P. Gabriel, “Can’t Be Built” IBM Research, 2007.
[15] Eeles2008, Peter Eeles, Presentaion on “Architecting Large-Scale

Systems, IBM, 2008.
[16] Paul Saab, “Scaling memcached at Facebook”, 2008, via Facebook.com
[17] Brad Fitzpatrick , “Distributed Caching with Memcached”, 2004, on

http://www.linuxjournal.com/article/7451?page=0,1.
[18] Realtime Hadoop usage at Facebook: The Complete Story, Dhruba

Borthakur, http://hadoopblog.blogspot.com/search/label/
hadoop%20and%20facebook.

[19] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung,” The Google
File System”, Google Coorp., 2003.

[20] Facebook: Science and the social Graph, Aditya Agarwal, May 2009,
http://www.infoq.com/presentations/Facebook-Software-Stack.

[21] AmazonStatistics; Jeff Barr, “Amazon S3 Blog” July 2011
http://aws.typepad.com/aws/2011/07/amazon-s3-more-than-449-billion-
objects.html.

