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Abstract— This paper presents an architecture to assist in the
development of tools to perform experimental analysis. Existing
implementations of tools based on this architecture are also described
in this paper. These tools are applied to the real world problem of
fault attack emulation and detection in cryptographic algorithms.
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I. INTRODUCTION

TYPICALLY, experimental analysis is performed using
software with an ad hoc design. This approach reduces

the ability of the tool and its components to be modified for
use in other types of experiments. It is also difficult to combine
these tools so as to enable more sophisticated experiments and
analysis to be performed.

To overcome these problems this paper proposes an archi-
tecture for the development of experimental analysis tools.
This architecture, as described in section II, is a generalisation
of an existing architecture [22]. The architecture is also
influenced by the xUnit architecture [15].

Through applying the proposed architecture developers will
be able to create tools for experimental analysis that can evolve
and be combined with other tools with the same architecture.
Section III contains details of an experimental analysis tool for
obtaining execution times. A benchmarking application, that
has been refactored to adhere to the architecture, is presented
in section IV. Section V gives an overview of a tool for
emulating fault attacks.

Section VI demonstrates how the three experimental anal-
ysis tools just mentioned were applied to evaluate both the
success and cost of error detection mechanisms within code.
Error detection mechanisms are checks embedded into code
that are used to detect faults such as errors in data.

II. AN ARCHITECTURE FOR

EXPERIMENTAL ANALYSIS TOOLS

The Experimental Analysis Tool Architecture is shown in
figure 1. It describes a tool that consists of eight subsystems.
The Controller coordinates all the activities of the other
subsystems. The Experiment Manager stores the experiments
to be performed. The Activator starts the system under test.
The Experimenter performs the experiment on the system and
the results of the experiments are recorded by the Reporter.
The Analyst evaluates the results of the experiment and the
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Presenter creates graphs and tables based on the analysis.
The User Interface allows the user to select the types of
experiments, the analysis to be performed and the manner of
reporting and presenting the results.

Fig. 1 The Experimental Analysis Tool Architecture

A possible sequence of interactions is as follows. The
Controller obtains from the User Interface the information con-
cerning all the experiments to be performed. This information
is then passed from the Controller to the Experiment Manager.
The Controller then requests from the Experiment Manager
the required information for one experiment and instructs the
Activator to start the system, or subsystem, that the experiment
is to be performed on. Following this, the Controller directs
the Experimenter to perform the relevant experiment. Upon
completion of the experiment, the Experimenter reports the
relevant data to the Controller that records this information
using the Reporter. The Controller then requests the next
experiment from the Experiment Manager and repeats the
sequence above.

When all the experiments have been carried out, the Con-
troller triggers the Analyst to perform the desired analysis
of the data obtained during the experiments. Note that the
architecture is flexible enough to allow for real time analysis
of the experimental results - in this case the Controller would
trigger the Analyst before commencing the experiments. The
results obtained by the Analyst are then returned to the
Controller to be recorded by the Reporter and passed to the
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Presenter. The Presenter produces the necessary graphs, tables
and other representations required by the end user of the tool
to assist in his/her evaluation of the system under test. The
Reporter and Presenter subsystems may send information to
the User Interface, via the Controller, in the case of a Graphical
User Interface. The Reporter and Presenter subsystems are
similar in that they are responsible for handling the output
of the experiments performed. However, they differ in that the
Reporter will record all the data resulting from the experiment,
including results that may not be easily comprehended by the
end user, and the Presenter will present the data, or a subset
of the data, and its analysis in human readable format such as
graphs.

The architecture proposed here has the benefit of allowing
the individual subsystems of the experimental analysis tool,
such as the experimenters, analysts, presenters, etc., to be mod-
ified without affecting the other subsystems. It also permits
the developer of the tool to reuse those subsystems in other
experimental analysis tools.

The architecture presented here can be found in three
existing tools: a tool for obtaining timings of algorithm im-
plementations, a modified version of the JavaGrande Forum
Sequential Benchmark and a fault attack emulation tool. Each
of these tools will be described in turn in the following
sections.

III. TIMING TOOL

A unit of code is typically a method or a function. An API
for obtaining timings of code units was developed based on the
architecture design described in this paper. Further information
about this tool can found in [9].

Figure 2 illustrates how the Timing Tool follows the Exper-
imental Analysis Tool Architecture.

Fig. 2 The Timing Tool following the Experimental Analysis
                                          Analysis Tool Architecture

The Reflective Activator was created to invoke methods
using the Java Reflection API [11]. The command line based
user interface accepts a flat file containing the experiments -
the instances and methods of those instances that timings are
required of. The Experiment Manager passes all the relevant
information for each experiment to the Reflective Activator,
by way of the Controller, that then creates and invokes those
instances.

The Experimenter consists of a timing mechanism, the
Stopwatch. The Stopwatch mimics the functionality of a
conventional physical stopwatch. Note that the Stopwatch
cannot be more precise than the underlying operating system.
A threshold parameter is used to ensure that all timings exceed
the granularity of the operating system by a significant amount.
The experiment is performed repeatedly until the threshold is
reached.

The total running time and number of times the system
under test was invoked are reported, not just the average
running time. This would allow for the calculation of the
standard deviation, variance and other statistical calculations.
Consequently, statistical decision theory could be employed to
determine if improved timings of enhanced code are general
or just specific to the test data.

A disadvantage of this approach to obtaining timings is that
the result may include more than the code’s execution time.
Time used by other processes on the system or incurred during
communication within the tool may result in inaccurately high
timings. To resolve this an error value is calculated by invoking
an empty method the same number of times as the system
under test was invoked during the experiment and observing
the time taken.

The results of the experiments are recored using the Re-
porter API. This API is based on the Observer Design Pattern
[12, §5.7]. An instance of the Dispatch Reporter contains
a list of all the reporters used by the Reporter subsystem.
When a result is reported, the Dispatch Reporter passes the
result to all the other reporters, as determined by the user of
the tool, so that the results can be published in eXtensible
Markup Language (XML), Comma-Separated Value (CSV), a
Graphical User Interface (GUI) and other formats at the same
time. The Permission Reporter allows the user to select the
information to be reported to a particular report such as, for
example, the GUI Reporter where not all the information may
be required by the user.

A simple Analyst was created to obtain the average running
times. Presenters were implemented to create graphs using
Matlab [17] and tables suitable for TEX [13], [21] (as shown
in table I). Automatically generating the graphs and tables
ensures the consistency between the different forms of result
presentations.

IV. BENCHMARKING TOOL

The JavaGrande Forum1 (JGF) Sequential Benchmark2 is
a benchmarking tool for the Java Virtual Machine (JVM).
This benchmark was selected due to the availability of the

1http://www.javagrande.org/
2http://www.epcc.ed.ac.uk/javagrande/
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TABLE I

THIS TABLE WAS CREATED FROM AN AUTOMATICALLY GENERATED TEX FILE BASED ON THE RESULTS OBTAINED BY TIMING A COMPONENT OF AN

APPLICATION. NOTE THAT THE RESULTS DISPLAYED HERE CORRESPOND TO THOSE IN FIGURE 4(A)

512 version 1 384 version 1 256 version 1 224 version 1 192 version 1 160 version 2 160 version 1 128 version 2 128 version 1 112 version 2 112 version 1 average rank
Affine 3.14 2.08 1.17 1.02 0.86 0.68 0.88 0.56 0.56 0.45 0.46 0.0047 1

Projective 3.62 2.35 1.37 1.19 1 0.79 0.8 0.65 0.65 0.5 0.49 0.0053 2
Jacobian 4.23 2.83 1.65 1.45 1.21 0.94 0.94 0.77 0.77 0.62 0.61 0.0063 4

Chudnovsky 5.26 3.46 2.07 1.78 1.46 1.17 1.16 0.95 0.93 0.76 0.75 0.0078 6
Jacobian and Affine 4.12 2.64 1.53 1.32 1.13 0.87 0.87 0.72 0.71 0.56 0.59 0.0059 3

Jacobian and Chudnovsky 4.67 2.99 1.76 1.51 1.28 1.01 1 0.83 0.82 0.66 0.67 0.0068 5

source code that allows users to understand precisely what the
benchmark is testing. Furthermore, the JGF benchmarks are
available free of charge [4].

The JGF Sequential Benchmark consists of three sections.
Each section consists of many experiments. Timings are ob-
tained for each experiment. Analysis is performed on these
timings to obtain a value, referred to as the JGF number,
relative to a reference system. Further information about the
JGF benchmarks may be found in [5].

The benchmark has been refactored by the authors to
conform to the architecture pattern just described. Beforehand,
a user of the benchmark had to run each section of the
benchmark separately and in its entirety. Alternatively, the user
had to write customized code to perform a subset of the bench-
mark. It is now possible to perform a custom made selection
of benchmark tests using configuration files. Functionality was
added to allow the benchmark to be interrupted and resumed
without the need to rerun experiments that had already been
completed.

The results of the benchmark were reported to the console
only. It was necessary to manually redirect this output to a
file before any analysis could be performed. This could result
in the loss of data. The results were also interpreted before
being reported to the console - an approach not in keeping
with scientific standards of observation and measurement. The
benchmark now uses the Reporter API to record the results in
the desired output formats.

The analysis of the JGF benchmark resulted in the gen-
eration of a HTML file. This file simply contained a series
of tables containing the JGF numbers, obtained during the
analysis, in a plain and unintuitive format. By reusing the
Presenters created for the timing tool it is possible to compare,
at a glance, the performance of two or more different machines
to the benchmark machine (see figure 3).

V. FAULT ATTACK EMULATION TOOL

Researchers tend to develop software fault injection tools to
emulate fault attacks rather than obtain expensive specialized
hardware [16]. The authors have developed a fault attack
emulation tool based on the experimental analysis architecture
pattern using the Java Debugger Interface (JDI). The JDI is
one component of the Java Platform Debugger Architecture3

(JPDA) included in the Java 2 Standard Edition (J2SE) plat-
form. The JPDA is intended for developers to create end-
user debugger applications but has been appropriated for our
purposes. This is a common approach in developing software
fault injection tools [20].

3http://java.sun.com/products/jpda/

Fig. 3 A graph showing the results of the JGF Sequential Benchmark for
two machines relative to the benchmark machine

The advantage of using the JDI as a basis for a software fault
injection tool is that it removes the need for any modification
of the code under test. It also allows the entire software
fault injection tool to operate on a different machine, virtual
or physical. A disadvantage of using JDI is the lack of
documentation on the topic.

The Reflective Activator, developed for the timing tool,
was extended to create a Standalone Reflective Activator. This
enabled the activator to run the system under test on a separate
virtual or physical machine - a necessary requirement for using
the Java Debug Interface (JDI). The faults are injected into
variables within the system during its execution.

An Experimenter, the Reflective Fault Injector, was created
for this tool. It performs the actual injection of the faults into
the system. It uses the Reflection API to determine the type of
a specific variable and to inject a fault into a primitive variable
within that variable’s object. For example, the BigInteger
class used in many cryptographic applications uses an array
of integers to store its value. The fault is injected by flipping a
single bit of an integer within the array. The recursive nature
of the Reflective Fault Injector allows for high level classes,
such as those representing points on an elliptic curve, to be
injected with faults without the need to create any specialized
code to handle those high level classes.
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The remainder of the subsystems of the tool are reused from
the previously mentioned tools. Figure 5(a) shows the number
of faults injected into a system under test that had an effect on
the result of the system. It also shows that none of the faults
were detected. This was due to the lack of Error Detection
Mechanisms (EDMs) within the code of the system under test.

VI. A PRACTICAL APPLICATION OF THE EXPERIMENTAL

ANALYSIS TOOLS

This section contains a practical application of the archi-
tecture to a real world problem. The tools are combined to
emulate fault attacks and to evaluate the effectiveness and cost
of mechanisms designed to detect those attacks.

Fault analysis uses calculation faults that are deliberately
generated or occur naturally within a program. These attacks
may be targeted attacks to obtain secret information [3] or
nuisance attacks to corrupt the results of the software [14],
[25]. For a broad survey of cryptographic fault attacks and
suggested countermeasures see [1].

In order to detect faults within an application the developer
must introduce Error Detection Mechanisms (EDMs) into
the software. A generalized approach to including EDMs
in source code was proposed in [23]. It is based on the
Simple Duplication with Comparison (SDC) countermeasure
where every variable is duplicated and compared after every
read operation. The comparison after every read operation
minimises the error latency time - the time between when
the fault occurs and when it may have an effect on the system
under test.

While the SDC EDM is a very general countermeasure
there exists alternative EDMs that are appropriate for specific
applications. An example of this is the Elliptic Curve Point
Validation (ECPV) EDM for an Elliptic Curve Cryptosystems
(ECC). Further details of elliptic curves and their use in
cryptography can be found in [2], [18].

The authors of [7] describe a possible attack on an ECC
through the injection of faults into the elliptic curve arithmetic
operations of the cryptosystem. The attack allows for the
recovery of the private key by a malicious third party. In the
same paper a technique, the ECPV EDM, to detect this attack
is presented. The points P (x, y) used in the elliptic curve
arithmetic are verified using the curve parameter a6 such that
y2 + a1xy + a3y − x3 − a2x

2 − a4x = a6. If the point passes
this check then it is a valid point on the curve. If it fails then
a fault has been detected and an exception is thrown.

Of the one hundred and ten attempts to inject a fault into
an operation only a certain number will have an affect on the
result of the operation. This may be due to the fault being
injected into a variable at a point in time where it is no
longer in use by the implementation. The faults injected into
the implementation that do affect the result of the operation
are considered to be effective faults. The success of an EDM
is determined by the number of the effective faults that are
detected. Of interest to the authors is the question of whether
the ECPV EDM or SDC EDM is better with regards to speed
and to the rate of success at detecting faults.

The cost of using the SDC EDM approach in point addition
implementations, where a point addition is one of the basic

arithmetic operations in ECC, is shown in figure 4(b). A
cursory comparison of figures 4(a) and 4(b) shows a significant
increase in the running times of the arithmetic operation taking
from 10 to 15 times longer to run. Figure 4(c) shows the cost
of using the ECPV EDM is approximately half that of SDC. In
terms of speed, it is preferable to use ECPV EDMs to detect
faults in operations of ECC implementations rather than SDC
EDMs. The question remains, which EDM has a better success
rate at detecting faults?

However, it is not immediately clear if ECPV EDM (figure
5(c)) is better, worse or the same as SDC EDM (figure
5(b)) in catching faults that occur within implementations.
Also, the results are just for a sample of test data based
on the SECG recommended elliptic curve parameters. Given
that implementations with ECPV EDM are faster than those
with SDC EDM, it is desirable to know if ECPV EDM is
as capable as detecting faults as SDC EDM. To this end,
statistical decision theory was used to determine the answer.

A Difference of Proportions Test of Significance Analyst
component was developed to be used by the Fault Attack
Emulation tool. This component accepts as input the results of
emulating fault attacks on implementations with SDC EDMs
and ECPV EDMs. It carried out the calculations required for
the test of significance and determined that ECPV EDMs have
a greater success rate in detecting faults than the SDC EDMs.

Therefore, the ECPV EDMs are both faster and have a better
success rate than SDC EDMs. However, the ECPV EDMs
are specific to implementations of elliptic curve arithmetic
whereas the SDC EDMs can be used in any implementation.
Furthermore, the SDC EDMs may be extended to Multiple
Duplication and Comparison (MDC) EDMs. In MDC EDMs
every operation is performed thrice and a majority vote taken
in the event of a fault allowing the EDM to correct the fault
and continue performing the operation.

Further details of the above experiment and the statistical
analysis of the results may be found in [10]. Please consult
[8], [24] for more information on statistical decision theory.
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(a) Timings of Point Addition Implementations on SECG
                                   Elliptic Curves with no EDMs

(b) Timings of Point Addition Implementations on SECG
                              Elliptic Curves with SDC EDMs

(c) Timings of Point Addition Implementations on SECG
                                Elliptic Curves with ECPV EDMs

Fig. 4 Timings of Point Addition Operations on the SECG Elliptic Curves

(a) Faults Injected and Detected in Point Addition Im-
plementations on SECG Elliptic Curves with no EDMs

(b) Faults Injected and Detected in Point Addition Imple-
mentations on SECG Elliptic Curves with SDC EDMs.

(c) Faults Injected and Detected in Addition Implemen-
tations on SECG Elliptic Curves with ECPV EDMs

Fig. 5 Faults Injected and Detected in Point Addition Operations
                                   on the SECG Elliptic Curves
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VII. CONCLUSIONS AND FUTURE WORK

This paper presented an architecture pattern for the de-
velopment of tools for experimental analysis of algorithm
implementations. It also described three tools built according
to this architecture pattern and demonstrated their use in
solving a practical problem.

Power analysis attacks measure the power consumed by a
specific task to get the secret key [19]. By reusing components
of the existing tools it our intention to develop a tool to
emulate Simple and Differential Power Analysis. This will
be achieved through extensive reuse of components of the
tools described in this paper. This will enable developers to
investigate the susceptibility of their code to these types of
attacks.

The modular nature of the framework will assist the integra-
tion of the experimental analysis tools into other products. The
authors plan to extend the existing tool to enable the timing of
operations on the JavaCard platform [6]. This only requires the
development of a new Activator, the APDU Activator (APDU
stands for Application Protocol Data Unit, the basic unit of
communication with a smart card). The rest of the code can
remain unchanged. The new tool may also form the basis of
an open source JavaCard benchmarking tool.
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