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Arc Length of Rational Bézier Curves and Use for

CAD Reparametrization
Maharavo Randrianarivony

Abstract—The length Λ of a given rational Bézier curve is
efficiently estimated. Since a rational Bézier function is nonlin-
ear, it is usually impossible to evaluate its length exactly. The
length is approximated by using subdivision and the accuracy
of the approximation Λn is investigated. In order to improve
the efficiency, adaptivity is used with some length estimator.
A rigorous theoretical analysis of the rate of convergence of
Λn to Λ is given. The required number of subdivisions to
attain a prescribed accuracy is also analyzed. An application
to CAD parametrization is briefly described. Numerical results
are reported to supplement the theory.
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I. INTRODUCTION

RATIONAL Bézier curves are important CAGD entities

in computational geometry because they can represent

both the free-form setting and the algebraic one. Thus, they

can describe circular arcs and most interesting conic sections.

On the other hand, free-form Bézier curves are special case

of them. The main contribution in this paper is as follows:

• Algorithm for length estimation of such curves,

• Theoretical investigation using subdivisions and bounds,

• Exponential convergence speed O(2−n),
• Practical computer implementation of the theory.

Related works are as follows. Roulier has proposed a length

estimation algorithm but only for Bézier curves [11]. Walter

et al. did not really evaluate lengths but they have approxi-

mated the arc length parametrization which is a very closely

related task. A similar approach was proposed by Floater

who used cubic spline for the approximation [5]. Subdivision

technique was used by Hain who proposed some approach to

stop the subdivision recursion [6]. In this paper, subdivisions

are also used but for the rational case. The structure of this

paper is as follows. It starts by formulating the problem more

accurately in the next section. The main result of this paper

is found in section III where the approximation method is

introduced and the error is analyzed. A possible improvement

of the method by using adaptivity is found in section IV.

Section V will be devoted to a brief application in CAD

parametrizations. Finally, numerical results are shown at the

end of the paper.
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II. PROBLEM FORMULATION

The objective is to design an algorithm for estimating the

length of a curve x inside an interval [a, b]. That is, the

following expression should be evaluated

Λ :=

∫ b

a

‖x′(t)‖dt. (1)

Without loss of generality, it is assumed that the curve is

defined on [0, 1] (i.e. a = 0, b = 1) and the whole length

is computed . The general case where [a, b] 6= [0, 1] can be

treated in a very similar way.

The curve is supposed to be a rational Bézier curve

x(t) :=

∑m

i=0 ωibiB
m
i (t)

∑m

i=0 ωiB
m
i (t)

, (2)

where Bm
i denotes the Bernstein polynomial [3], [2] and

bi = [bi,1, bi,2, bi,3] ∈ R
3 are the control points. Addition-

ally, the weights ωi are assumed to be uniformly bounded.

That is, there exist two positive constants R1, R2 such that

R1 <

∣

∣

∣

∣

∣

m
∑

i=0

ωiB
m
i (t)

∣

∣

∣

∣

∣

< R2 ∀ t ∈ [0, 1]. (3)

It is denoted by x̃(t) = [x̃1(t), x̃2(t), x̃3(t)] and ω(t) the

numerator and the denominator of formula (2) where x(t) =
[x1(t), x2(t), x3(t)]. The numerator x̃ is a Bézier curve where

its control points are given by b̃i := ωibi.

Since the expression in (2) contains rational quotient and

the one in (1) has square root and derivatives such as

Λ =

∫ 1

0

√

x′1(t)
2 + x′2(t)

2 + x′3(t)
2 dt, (4)

it is very difficult to compute the integral exactly. In fact, the

integrand is given by

1

ω(t)2

√

√

√

√

3
∑

j=1

[

x̃′j(t)ω(t) − ω′(t)x̃j(t)
]2
. (5)

For the same reason, traditional methods using polynomial

approximation of the integrand would require too high poly-

nomial degree. Hence, geometric methods are used for the

approximation.
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Fig. 1. Degree elevation in which L[b
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i

,bi,b
(1)
i+1] ≤ L[b
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i

,b
(1)
i+1].

III. APPROXIMATION AND ITS ACCURACY

In this section, the exact length Λ will be approximated by

a sequence Λn and the error |Λ − Λn| is analyzed. Before

going into the technical details, a short motivation about the

approach is given now. The value of Λn is computed by

finding a lower bound Ln and an upper bound Un such that

Ln ≤ Λ ≤ Un for every n ≥ 0. (6)

If those bounds have the property that their difference

|Ln − Un| converges to zero, then a good choice for the

approximation is their average Λn := 0.5(Ln + Un) or any

other convex combination:

Λn := αLn + (1 − α)Un for 0 < α < 1. (7)

Thus, the speed of convergence of Λn to Λ depends on that

of the decay |Ln−Un| of the bounds. The main advantage of

this method is that the bounds Ln and Un can be computed

algorithmically and the rate of convergence is exponential.

Quadrature rules will not be used to estimate the integral

in (1) because the structure of the function x is known

[11], [13]. The preferred method here is to apply subdivision

recursively while using some flatness criterion [6], [4] in

order to know if the curve is close to be linear.

A. Preliminary results

Before stating the main theorem, consider the following

simple lemma. At first glance the lemma seems evident

because of the famous convex hull property [3]. But a closer

look reveals that the convex hull property alone cannot justify

the claim, especially if it takes the weights into consideration.

The lemma is proved by using rational degree elevation. Note

that the degree elevation is not used in practice for that it is

exclusively for proving purpose. Before going any further,

note that the following bound is not yet the upper bound Un

which is sought.

Lemma 1: For any rational Bézier curve of the form (2),

its length is smaller than

m−1
∑

i=0

‖bi − bi+1‖. (8)

Proof: For a finite sequence of 3D points P = {pi}
n
i=0,

denote

L[P] := L[p0, ...,pn] :=

n−1
∑

i=0

‖pi − pi+1‖. (9)

The degree elevated rational Bézier curve of x is given [3]

by

x(t) =

∑m+1
i=0 ω

(1)
i b

(1)
i Bm

i (t)
∑m

i=0 ω
(1)
i Bm

i (t)
, (10)

where the new weights are

ω
(1)
i := ci,mωi−1 +(1− ci,m)ωi with ci,m := i/(m+1),

and the new control points are

b
(1)
i :=

ci,mωi−1bi−1 + (1 − ci,m)ωibi

ci,mωi−1 + (1 − ci,m)ωi

. (11)

Thus, b
(1)
i is a convex combination of bi−1 and bi because

the weights are positive. Therefore, it yields (see Fig. 1)

L[b
(1)
i ,b

(1)
i+1] ≤ L[b

(1)
i ,bi,b

(1)
i+1]. (12)

Denote by B
(0) the initial control polygon and by B

(p) (p ≥
1) the next control polygons after repeated degree elevations.

Since b
(1)
i is a convex combination of bi−1 and bi, it gives

L[B(0)] = L[b0,b
(1)
1 ,b1,b

(1)
2 ,b2, ...,bm−1,b

(1)
m ,bm].

Relation (12) produces L[B(1)] = L[b
(1)
0 , ...,b

(1)
m+1] ≤

L[B(0)]. A repeated application of that gives

L[B(p)] ≤ L[B(p−1)] ≤ · · · ≤ L[B(1)] ≤ L[B(0)]. (13)

Since it is well known [3] that the control polygon of the

curve tends to the curve itself, it gives Λ = L[B(∞)] ≤
L[B(0)].

B. Rational Bézier subdivision

First, some notions related to successive subdivisions [7]

of an arbitrary Bézier function C are recalled:

C(t) =

m
∑

i=0

siB
m
i (t). (14)

Let s
(j)
i be the points which are found by using the de Castel-

jau [3] algorithm at t = 0.5, i.e. s
(j+1)
i := 0.5(s

(j)
i + s

(j)
i+1)

and s
(0)
i := si. The function C [0,1] := C can be split

into two Bézier functions C [1,1] and C [1,2] (see Fig. 2)

which have respectively the control points s
[1,1]
i := s

(i)
0 and

s
[1,2]
i := s

(m−i)
i and such that

C [0,1](t) =

{

C [1,1](t) ∀ t ∈ [0, 0.5],
C[1,2](t) ∀ t ∈ [0.5, 1].

(15)

That process can be applied successively in order to obtain

from each Bézier function C [p−1,i] two Bézier functions

C [p,2i−1] and C [p,2i]. That is, after applying subdivisions

n times, the curves C [n,1], C[n,2], ..., C[n,2n] are obtained as
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Fig. 2. Subdividing a given Bézier curve: the breakpoint is at t = 0.5.
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x
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x
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Fig. 3. (a) Recursive subdivisions (b) Local lower bound from x
[n,k](θi,k).

explained in Fig. 3(a). Each function C [n,k] coincides with C

on the interval [pk−1, pk] where pk := k/2n and its control

points are denoted by s
[n,k]
i for k = 1, ..., 2n and i = 0, ...,m.

Now, the above subdivision technique is applied to the

numerator and denominator. The functions x̃(·) and ω(·)
will be subdivided into functions x̃

[n,k] and ω[n,k] having

the control points b̃
[n,k]
i and ω

[n,k]
i . On each subinterval

[pk, pk+1], the rational Bézier x
[n,k] := x̃

[n,k]/ω[n,k] is

used. Thus, defining b
[n,k]
i := b̃

[n,k]
i /ω

[n,k]
i gives for all

τ ∈ [pk, pk+1]:

x
[n,k](τ) =

∑m

i=0 ω
[n,k]
i b

[n,k]
i Bm

i (s)
∑m

i=0 ω
[n,k]
i Bm

i (s)
with s =

τ − pk

pk+1 − pk

.

(16)

Furthermore, the next restriction property is valid:

x̃
[n,k] = x̃|[pk−1

,pk]
, and ω[n,k] = ω|[pk−1

,pk]
. (17)

By considering the interval [pk−1, pk], the next expression is

introduced for i = 0, ...,m

θi,k := (i/m)pk+(1−i/m)pk−1 with pk = k/2n. (18)

Theorem 1: Suppose that the rational Bézier in (2) has

been subdivided n times. Then, the following accuracy order

is valid for all k = 1, ..., 2n and i = 0, ...,m:

‖x[n,k](θi,k) − b
[n,k]
i ‖ = O(2−2n). (19)

Proof: The boundedness (3) and the restriction property

(17) yield |ω[n,k](t)| = |ω(t)| > R1. Hence, there exists K1

such that
∥

∥

∥

∥

∥

x
[n,k](θi,k) −

ω
[n,k]
i b

[n,k]
i

ω[n,k](θi,k)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

x̃
[n,k](θi,k) − ω

[n,k]
i b

[n,k]
i

ω[n,k](θi,k)

∥

∥

∥

∥

∥

≤ K1

∥

∥

∥
x̃

[n,k](θi,k) − ω
[n,k]
i b

[n,k]
i

∥

∥

∥
. (20)

Similarly,
∥

∥

∥

∥

∥

b
[n,k]
i −

ω
[n,k]
i b

[n,k]
i

ω[n,k](θi,k)

∥

∥

∥

∥

∥

≤ K2

∣

∣

∣
ω[n,k](θi,k) − ω

[n,k]
i

∣

∣

∣
. (21)

As a consequence, it gives

‖x[n,k](θi,k) − b
[n,k]
i ‖ ≤ K1

∥

∥

∥
x̃

[n,k](θi,k) − ω
[n,k]
i b

[n,k]
i

∥

∥

∥
+

K2

∣

∣

∣
ω[n,k](θi,k) − ω

[n,k]
i

∣

∣

∣
.

(22)

On the other hand, consider the blossom function P of the

polynomial x̃
[n,k]. A relation with the control points [12] is

obtained:

b̃
[n,k]
i = P(pk−1, ..., pk−1

︸ ︷︷ ︸

m−i

, pk, ..., pk
︸ ︷︷ ︸

i

). (23)

Thus, the following Taylor development holds:

b̃
[n,k]
i = P(θi,k, ..., θi,k) +

m−i
∑

p=1

(pk−1 − θi,k)
∂

∂xp

P(θi,k, ..., θi,k) +

m
∑

p=m−i+1

(pk − θi,k)
∂

∂xp

P(θi,k, ..., θi,k) +

O(|pk − pk−1|
2).

Since P is symmetric, all partial derivatives in the above re-

lation are the same. The fact that (m−i)(pk−θi,k)+i(pk−1−

θi,k) = 0 induces b̃
[n,k]
i = P(θi,k, ..., θi,k)+O(|pk−pk−1|

2).

As a consequence, b̃
[n,k]
i = x̃

[n,k](θi,k)+O(2−2n). The same

analysis can be repeated to the blossom of the polynomial ω

in order to obtain ω
[n,k]
i = ω(θi,k) + O(2−2n). Therefore, it

is deduced from (22) that ‖x[n,k](θi,k)−b
[n,k]
i ‖ = O(2−2n).

C. Upper and Lower Bounds

At the n-th subdivision, the true length Λ is the sum of the

lengths λ(k, n) of the subcurves x
[n,k] such as

Λ =
∑

k

λ(k, n). (24)

The approximation result (19) can now be used to deduce

the accuracy in length computation.

Theorem 2: Define for all k = 0, ..., 2n − 1

l(k, n) :=

m−1
∑

i=0

‖x[n,k] (θi,k) − x
[n,k] (θi+1,k) ‖, (25)

u(k, n) :=

m−1
∑

i=0

‖b
[n,k]
i − b

[n,k]
i+1 ‖. (26)

For any α ∈]0, 1[, the sequence Λn :=
∑

k(αl(k, n) + (1 −
α)u(k, n)) converges to the exact length Λ in dyadic order:

|Λ − Λn| = O(2−n). (27)
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Proof: The length λ(k, n) of the curve x
[n,k] verifies the

next relation

l(k, n) ≤ λ(k, n) ≤ u(k, n), (28)

where the second inequality is due to the preceding Lemma

and the first one is obvious (Fig. 3(b)). On the other hand,

the difference D(k, n) := |u(k, n) − l(k, n)| of those local

bounds can be estimated as follows

D(k, n) =
∑m−1

i=0 ‖b
[n,k]
i − b

[n,k]
i+1 ‖ −

‖x[n,k] (θi,k) − x
[n,k] (θi+1,k) ‖

≤
∑m−1

i=0 ‖[b
[n,k]
i − x

[n,k] (θi,k)] −

[b
[n,k]
i+1 − x

[n,k] (θi+1,k)] +

[x[n,k] (θi,k) − x
[n,k] (θi+1,k)]‖ −

‖x[n,k] (θi,k) − x
[n,k] (θi+1,k) ‖

≤
∑m−1

i=0 ‖[b
[n,k]
i − x

[n,k] (θi,k)]‖ +

‖[b
[n,k]
i+1 − x

[n,k] (θi+1,k)]‖.

By using the previous theorem with the last inequality, it is

deduced that

D(k, n) = |u(k, n) − l(k, n)| = O(2−2n). (29)

As a consequence, it gives |u(k, n) − λ(k, n)| = O(2−2n)
and |l(k, n) − λ(k, n)| = O(2−2n). Hence, the accuracy of

the length estimation is given as

|Λ − Λn| =

∣

∣

∣

∣

∣

2n

∑

k=0

λ(k, n) − [αl(k, n) + (1 − α)u(k, n)]

∣

∣

∣

∣

∣

≤

2n

∑

k=0

|α(λ(k, n) − l(k, n)) +

(1 − α)(λ(k, n) − u(k, n))|

= 2nO(2−2n) = O(2−n).

By using relation (24), the lower and upper bounds Ln and

Un that were introduced in the beginning are

Ln :=
∑

k

l(k, n) ≤ Λ ≤ Un :=
∑

k

u(k, n). (30)

Corollary 1: For any prescribed accuracy ε > 0, the

expected number n of subdivisions to have an accuracy

|Λ − Λn| < ε is of order

⌈

log2

1

ε

⌉

, (31)

where ⌈x⌉ denotes the smallest integer larger than x.

IV. IMPROVEMENT BY USING ADAPTIVITY

In the preceding section, a method which always subdi-

vides each rational Bézier curve into two was developed. In

this section, an improvement of that approach is discussed.

In fact, it will be shown how to develop an adaptive strategy

in order to only apply subdivisions at positions where they

Fig. 4. Globally continuous mappings on some four-sided CAD patches.

are necessary. In practice, when the rational Bézier curve

is almost linear, there is no need to subdivided it any

more. The goal is then to identify positions where further

subdivisions are required without deteriorating the accuracy.

As a consequence, a certain metric to quantify the error inside

a subcurve is needed. The quantities l(k, n) and u(k, n)
of relation (28) are appropriate values for evaluating the

flatness of the subcurve x
[n,k]. It was proven in (29) that the

difference between l(k, n) and u(k, n) decays to zero. That

is, subdivisions should be applied only at positions where

D(k, n) = |l(k, n) − u(k, n)| is large. One can even devise

an adaptive strategy which subdivides only the rational Bézier

curves corresponding to

D(k, n) ≥
ε

2n
. (32)

It is because if D(k, n) < ε/2n, then all subcurves of

x
[n,k] have error smaller than ε/2n so that refinement is

unnecessary. By doing that, subdivisions are needed only at

subintervals where the flatness metric D(k, n) indicates that

the local upper bound l(k, n) and lower bound u(k, n) are

still very different from one another. That adaptive method is

summarized in the next algorithm where a list of subcurves

S = {x0,x1, ...} is updated. The value D(k, n) of a subcurve

xp ∈ S is denoted by ESTIM(xp).

Algorithm: Adaptive length computation of x

1: Choose accuracy ǫ > 0.

2: Estimate n by using (31).

3: Initialize the set of subcurves as S := {x}.

4: for (i = 1, · · · , n)

5: Find all xp ∈ S with ESTIM(xp) ≥ ε/2n.

6: Subdivide xp and compute l(k, n) and u(k, n).
7: Λn := Λn + 0.5(l(k, n) + u(k, n)). Update S.

8: end for
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V. BRIEF APPLICATION TO CAD PARAMETRIZATION

In some earlier works [8], [9], [10], a model composed of

trimmed surfaces [1] should be split into four-sided patches

Pi. Some functions ψi were needed such that for (u, v) ∈
[0, 1]2,

ψi(u, v) ∈ R
3 and Pi = Im(ψi). (33)

The generation of such mappings was mainly a composition

of a base function given by a CAD exchange like IGES

and Coons maps [3] which are defined on the unit square

[0, 1]2. The main goal was that the mappings are globally

continuous. Such a task can be illustrated by Fig. 4. For

two incident four-sided patches Pi and Pj , the images of

u-constant or v-constant isolines of ψi and ψj should match

at the interface. It was proved [10] that if the chord length

reparametrization of the boundary curves is used then two

adjacent Coons patches verify such matching conditions. That

is, each boundary curve κ must be reparametrized into κ̃

where κ = κ̃ ◦ χ in which

χ(t) =

∫ t

a

∥

∥

∥

∥

dρ

dt
(θ)

∥

∥

∥

∥

dθ (34)

where ρ is a well chosen function. The work presented in

this paper is important when generating the chord length

reparametrization. A complete detail of such a reparametriza-

tion using curve length could be found in [10].

VI. NUMERICAL RESULTS

In order to observe the practical efficiency of the former

theory, it has been implemented in C/C++. Now, numerical

investigation will be shown for the dependence on n of the

error |Λ−Λn| and the bounds Ln, Un. Thus, a rational Bézier

curve is considered in which m = 3 and the control points

with the corresponding weights are

b0 = [0.143, 3.021, 2.045], ω0 = 1.2,

b1 = [1.945, 4.192, 2.223], ω1 = 0.9,

b2 = [2.043, 0.012, 2.185], ω2 = 1.5,

b3 = [3.543, 2.078, 2.865], ω3 = 0.6,

where the expected value of the length is 4.9918739152.

A plot of the error in terms of n is depicted in Fig. 5

which confirms the theory. Note that the vertical axis is

logarithmically scaled. Additionally, the numerical behavior

of the difference of the lower bound Ln and upper bound Un

is seen in Table. I which is also conform to the theoretical

prediction.

VII. CONCLUSION

A method based on subdivision for estimating the lengths

of a rational Bézier curve was presented. A lower bound and

an upper bound which are easy to estimate were found such

that their difference decays to zero exponentially. Addition-

ally, an adaptive strategy has been devised to locate positions

to apply further subdivisions. The theoretical approach has

been supported by numerical results and CAD applications.
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10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Fig. 5. Logarithmically scaled error |Λ − Λn| in function of n.

TABLE I
BEHAVIOR OF THE UPPER AND LOWER BOUNDS WITH RESPECT TO n.

n Lower bound Ln Upper bound Un Difference |Ln − Un|

0 4.5703476367 8.9798491325 4.4095e+00

2 4.9693082543 5.2046867676 2.3538e-01

4 4.9904688238 5.0045723724 1.4104e-02

5 4.9915226799 4.9950382924 3.5156e-03

7 4.9918519637 4.9920714912 2.1953e-04

9 4.9918725432 4.9918862629 1.3720e-05

10 4.9918735722 4.9918770021 3.4299e-06

11 4.9918738294 4.9918746869 8.5748e-07

13 4.9918739098 4.9918739634 5.3592e-08

15 4.9918739148 4.9918739182 3.3495e-09

16 4.9918739151 4.9918739159 8.3744e-10
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