International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:10, No:11, 2016

Arabic Light Stemmer for Better Search Accuracy

Sahar Khedr, Dina Sayed, Ayman Hanafy

Abstract—Arabic is one of the most ancient and critical
languages in the world. It has over than 250 million Arabic native
speakers and more than twenty countries having Arabic as one of its
official languages. In the past decade, we have witnessed a rapid
evolution in smart devices, social network and technology sector
which led to the need to provide tools and libraries that properly
tackle the Arabic language in different domains. Stemming is one of
the most crucial linguistic fundamentals. It is used in many
applications especially in information extraction and text mining
fields. The motivation behind this work is to enhance the Arabic light
stemmer to serve the data mining industry and leverage it in an open
source community. The presented implementation works on
enhancing the Arabic light stemmer by utilizing and enhancing an
algorithm that provides an extension for a new set of rules and
patterns accompanied by adjusted procedure. This study has proven a
significant enhancement for better search accuracy with an average
10% improvement in comparison with previous works.

Keywords—Arabic data mining, Arabic Information extraction,
Arabic Light stemmer, Arabic stemmer.

1. INTRODUCTION

HE need to tackle Arabic language in the computational

linguistic field has grown rapidly in the past few years.
Many reports anticipate the need to properly learn and engage
more in Arabic language, as declared in a British Council
report. The report stated Arabic as one of the 10 languages
which will be of critical importance and impact in the world
for the coming years [1]. Arabic was also ranked as the fourth
most spoken language on the Internet according to Internet
World Stats [2]. From the industry perspective, it is clear that
many enterprises have begun to realize this fact. As a result,
there is more attraction towards Arabic as a language growing
in importance. For instance, the announcement by IBM that
states “IBM supercomputer and Jeopardy champion Watson is
learning ~ Arabic...” [3]. This involves tremendous
development for natural language processing and machine
learning artifacts. Yet in the open source domain, there are
still shortage in tools and libraries that provide adequate
handling for Arabic language challenges. Stemming is one of
these challenges. Stemmers are the fundamental unit that is
used in query systems, data mining, text search and
information retrieval. By chopping of few letters of the word
you can increase the probability of matching the word with
other similar ones. This work is inspired by extending
previous work done in regard to the Light stemmer by [8], and

Sahar Khedr is a software developer working as an intern in IBM, Cairo,
Egypt (e-mail: saharkhedr@gmail.com).

Dina Sayed is a senior software engineer specialized in Arabic support, she
is with Cairo Technology and development center, IBM, Cairo, Egypt (phone:
02-353-61426; e-mail: dsayed@ eg.ibm.com).

Ayman Hanafy is a senior research engineer with Watson group
Department, IBM, Cairo, Egypt, (e-mail: ahanafy@eg.ibm.com).

enhanced the Light Stemmer proposed by [5]. By adding new
patterns, rules and algorithm modification the approach was
able to successfully achieve better accuracy than prior works.
The paper starts by stating the related work done in this area,
and then walks through the detailed implementation for the
algorithm. It is followed by the experiment results compared
with similar systems. At the end, the conclusion and future
work are presented.

II. BACKGROUND AND RELATED WORK

Stemming is the process of reducing all morphological
variants of a given word to its basic form, which can be either
stem or root. Therefore, stemming has a significant impact on
the search effectiveness of Information Retrieval (IR) systems.
Stemming assists IR systems to match user’s queries with
relevant documents. Good stemming results in effective IR.

Julie Beth Lovins [6] and Porter [7] published the first
Stemming algorithms in 1968 and 1980, respectively. Both
algorithms were developed for the English language. The
algorithms were simple and based on suffix stripping, which
removes word suffixes by applying context rules. Other
stemmers have been developed for a range of languages like
French, Turkish and German. The same stemming approaches
that have been applied to most languages are not appropriate
for Arabic. This is because Arabic has significant differences
in terms of grammatical, lexical and rich morphological
features compared to other languages [4]. For example, Arabic
has different affixes structure from other indo-European
languages like English [9], and a rich morphology in word
form, where a word can take many different forms. Therefore,
Arabic poses special problems and complexities to NLP. To
build effective Arabic IR systems, Arabic requires a different
stemming process from other languages. Many studies
covered comparisons for different implementations of Arabic
stemmers as presented in [16] and [17]; these studies
elaborated diversity in approaches, results and applications for
various Arabic stemming techniques.

The introduced work does not support stemming that is
root-based, as in the Arabic Light Stemmer (ARS) by [12] and
[13]. Instead the approach focuses on light stemming rather
than heavy stemming. A light stemmer avoids over-stemming
errors by carefully removing limited affixes. Accordingly, the
drawback is having many under-stemming errors. On the
contrary, a heavy stemmer aggressively removes more affixes,
and thus introduces over-stemming errors; though light
stemming proved to be more accurate, as in case study by
Mustafa, Suleiman H [10].

Several works were done to implement Light stemmer for
Arabic. For instance, Kadri et al. introduced a rule-based
effective light stemmer [11]; however, it does not process

3587

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:10, No:11, 2016

word infix, and only supports prefix and suffix removal.
Similarly, infix support was not introduced in improving
Arabic light stemmer by [8]. The approach also is not context
aware as in the “Rule-Based Extensible Stemmer” by [14].
Instead, it operates depending on the mostly used Arabic
patterns accompanied with the stem list. The proposed
approach utilizes a stem list unlike Al-Shammari et al. [15],
which did not use a dictionary. The stem list helped in
boosting the results by storing only the stem word rather than
the all its inflected forms. One of the significant characteristics
for the current implementation is that it supports broken
plurals, which is not covered in most light stemmers.

III. ALGORITHM OVERVIEW

The proposed approach extends the El-Beltagy et al. [5]
stemmer by boosting the results through adding new patterns
combined with algorithm modifications, which lead to
increase the stemming accuracy. The approach of El-Beltagy
et al. [5] builds upon the Larkey et al. [8] stemmer, as it is
probably one of the most accurate existing stemmers. El-
Beltagy et al. [5] introduced support for broken plurals and
infix support. The algorithm proposed by this paper
implements the same procedure which removes prefixes,
suffixes and tackles infixes from the input word carefully to
stem the word correctly to the closest stem, and in some cases
the algorithm validates the result by a stem list before
returning it. However, the former works basically target
nouns. Additional work is done to handle more noun patterns
and some patterns of verbs that help in improving the
stemming accuracy. The proposed algorithm does not make a
validation for the transformed word with a local context
containing the input word, unlike El-Beltagy et al. [S]. The
reason for that is the algorithm is designed to be generic and
context independent. On the other hand, this validation step
will increase the time of the stemming processing. Thus, the
stemming procedures that have to validate their results only
validate it by the stem list.

The proposed algorithm is not error-free, especially for
broken plurals and verbs patterns. For example, the same rule
that stems “¢!,)5” (ministries) to “_:)5” (minister) will also
stem “<Wwl” (sons) to “ws” (boys). The same rule that stems
“osiud” (consult) to “JLiu” (consulted) will stem ©_pal
(Evangelize) to “_b=il (supporters). Accordingly, building a
clear stem list that is free of conflations and rich with common
or popular stems improves the accuracy of the stemming
process.

IV. METHODOLOGY

In general, the presented algorithm is divided into two
phases. The first phase is building a stem list domain specific
or general stem list. The second phase is the stemming phase
which will be detailed later.

A. Building the Stem List

According to the evaluation results that will be stated in
Section V, the best way to build the stem list is to extract the
stems from documents in the domain of the application or

general documents. The procedure of this phase is as follows:

1) Extract unique words from documents.

2) Get the stems of these words either manually or
automatically by referring to a dictionary. The approach
used an automatic procedure to get the stems of the
extracted words from ElixirFM [18]. The stem of the
word is the smallest form of that word, for example: if we
have the word “zxbas” (lamps) and its inflections, as
elaborated in Table I.

TABLEI
EXAMPLE FOR WORD “LAMB” INFLECTIONS

Then, the stem that will be added to the stem list is “zluas”
(lamp).
3) Create a text file containing the extracted unique stems,
i.e. the stem list.

B. Stemming Phase

The procedure of this phase begins by loading the stem list
file to validate with it through the stemming steps. This step is
performed only once.

Rather than performing the validation process after each
stemming step, it is carried out after some steps that showed it
is a must to be validated according to the analysis of the
stemming rules. Other steps usually result in accurate stems,
and thus the validating step will not be executed. This was
concluded after observing that restricting the validation after
each step or stemming rule may decrease accuracy as some
rules usually result in accurate stems, while some of these
stems may not exist in the stem list.

The general procedure of the stemming phase is as follows
and a flow chart for the same procedure is shown in Fig. 1.
Given the normalized word S:

— 1%Step: If an S occurs in the stem list, return to S. If not
remove prefixes from S and generate S’.

- o Step: If S’ is in the stem list, return to S’. If not, then
remove the suffixes of S* and generate S”’.

- 3¢ Step: If S”’ is in the stem list, return to S*’. If not, then
remove the verb infixes from S’” and generate S*”’.

— 4™ Step: If S** does not match S>>, return to S°”’.

- 5" Step: If S”* ends with “&s” (YEH with HAMZA above)
and S”’ does not match S’ and the character just before
“s” is “I” (ALEF), then change “s” (YEH with HAMZA
above) to “+” (HAMZA on the line) and generate S’””. If
S’’’ is in the stem list, return S**’. If not, then let S*” equal
S,

— 6" Step: If the removed suffixes of S’ contains one of the
plural suffixes shown in Table II then return to S*’.

- Step: Remove noun infixes from S’’ and generate S**’
and return S,

TABLE II
PLURAL SUFFIXES
Plural Suffixes <L < o5 s oo, o

The reason behind changing “” from the end of nouns
before removing infixes (i.e. 5" Step) is that some nouns end

3588

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:10, No:11, 2016

[ITPRL)

with “¢”, and the “¢” is changed to “%s” while attaching
suffixes to it. Therefore, the algorithm has to return it back to
its original spelling like “sbadl - agiledl” and “elaw - Lilaw?”,

Remove
prefixes

Yes
es
No
Remove 4,
verb |[No
infixes | |Remove
suffixes
Yes
Output

v

Remaove
noun
infixes

Fig. 1 Stemming procedure flow chart

C.Stemming Rules

The proposed stemming algorithm consists of three ordered
levels of affix removal: Prefix, suffix and infix removal. Each
of these levels has its own set of rules which will be described
in following sub-sections i, ii and iii. For the removal of any
affixes, the length of the resulting term should be two or more
letters otherwise the affix will not be removed.

1. Prefix Removal

TABLE III
SINGLE PREFIXES AND THEIR MEANINGS

Prefix ~Meaning

) And
=) Like
) Then
J For
& With/at

This algorithm uses the same procedure for prefix removal,
as in [5] stemmer and removes the same prefixes. The prefixes
are divided into single and compound prefixes, as shown in
Tables III and IV, which are reproduced from [5].

The procedure used for the prefix removal starts with
compound prefix removal. If the word remains unchanged,
then single prefix removal will be executed.

TABLE IV
COMPOUND PREFIXES AND THEIR MEANINGS

Prefix Meaning

y No

J The
Js And the
J With the
Js Like the
] Then the

J For

Jis And with the
Js, And like the
Jés And then the

D.Compound Prefix Removal

There are no rules or conditions on removing compound
prefixes, except for prefix “¥”. Thus, if a word matches with a
prefix in the compound prefix set, except prefix “¥”, it is
simply removed. There is no particular order in which these
prefixes should be checked.

The removal of the prefix “¥” has to be validated by
removing the first two letters of the word that starts with it and
then checking for the resulting word in the stem list. If a match
is found, the resulting word is returned. If no match is found,
the first letter is removed from the original word and the
validation method is called again. Once more, if a match is
found, the resulting word is returned, but if no match is found,
the original word is returned unaltered.

E. Single Prefix Removal

The prefix is removed and the resulting word is matched
against entries in the stem list. If a match is found, the
transformation is carried out safely. If not, the rest of the
stemming procedure is invoked on the transformed word. If
still no change occurs, then the stem is considered to be an
original term.

The presented approach attempted to remove the prefix “os”
(SEEN) if the word starts with “us” (SEEN) followed by “”
(ALEF) or “¢” (YEH) or “<” (TEH) to stem future verbs like
“lagw” (will begin) into “Iay” (begin), but that leads to more
errors in stemming, like stemming “aw” (mister) into “y”
(hand). Thus, this rule was not implemented. More details
about prefix removal can be found in El-Beltagy et al. [5].

1. Suffix Removal

TABLE V
SUFFIXES SETS HANDLED BY THE ALGORITHM
Suffix set 1 ~ El-Beltagy et al. [5] 43 el oy
Suffix set2 El-Beltagy et al. [S] 18 o «s ead cdy el 0l e el s ey el
Suffix set 3 New set g

After removing prefixes, the resulting word does not exist
in the stem list, it is time to remove the suffixes. In [5], there
are two sets of suffixes, while in the proposed algorithm a
third set is added. All of the three sets of suffixes are shown in
Table V.

3589

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:10, No:11, 2016

Remove suff
rSuff = suff

Length of s — length of suffix
>=27?

Suff = 1" or next
o suffix of suffix Yes:
s
setl

A
Yes End of suffix set 1?
Nor
End <« Output s’ <« Yes:
o '

Add "#'Tos’

A
X

Yes‘

No
v
Suff=1" or ength of s = Remove suff
next suffix of Yes: length of suffix >= Yes P rSuff = suff
suffix set 2 2
s=s' —No Yes

" Replace

ne pyy

End Yes: s

Fig. 3 Remove suffixes of suffix set 2 process flow chart

Suff = 1% or .
ength of s — length of suffi
next suffix of Yes 4 _ 3 Yes R
: >=27? suff
suffix set 3
No
Output
No s’
End of suffix set 3? >« No
\ 4
Yes y/ Outeut > End

S}

Fig. 4 Remove suffixes of suffix set 3 process flow chart

3590

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:10, No:11, 2016

/*Start with the procedure for removing or replacing infixes of verbs
patterns*/
String stemInfixVerb (String S){
If S matches P17
Apply R17 and generate S’
If S’ in the stem list
Return S’
Return S
Else
If (prepareForNounlInfix(S))
stemInfixNoun (S) and generate S’
Return S’
Return S

/* The following procedure prepares the term S for the procedure of
*/
/*removing infixes from nouns and checks if the term S is a
transformed */
/*singular term of a plural one or not */
Boolean prepareForNounlInfix (String S){

If S ends with “s” and S has suffixes removed from it and 2nd char

from the end = “” {
Replace “is” with “s” and generate S’
S=s
)

If S isn’t in the stem list {
If S removed suffix matches one of the suffixes in the plural suffixes
set
Return false;
Else return true;

/*the former means if S is already a stem and doesn’t need more */
/*transformation like the word “c¥lail” */
[*after suffix removal will be “Juai)”*/
/* If we didn’t prevent infix removal, it will returned */
/* as “Ja because it will match R9 */
Return false
¥
/*the following procedure applies the other 15 rules for removing
infixes from nouns */
String stemInfixNoun (String S){
Apply R4 on S and generate S’
If S’ in the stem list
Return S’
For each pattern P of pattern set PS (P1: P15
in the order: P16, P3, P12, P1, P11, P6, P8, P9, P2, P13, P7, P10, PS5,
P14 and P15){
If S matches P{
Apply corresponding R and generate S’
If R needs validation {
If S” in the stem list
Return S’
Else Return S
}
Return S’
§
)

Return S

Fig. 5 Infix removal procedure

For removal of any suffix in either of the suffix sets, the
length of the resulting term must be at least two characters in
length. If this condition is not met, the input term is returned
as-is. If an input term ends with any of the suffixes in suffix
set 1, the suffix is removed and validation is carried out. If a
match is found, the resulting word is returned. If no match is
found, the character “s” (TEH_MARBUTA) is added to the
resulting word and validation is carried out again. In case a
match is found, the resulting word is returned. If no match is

found in the proposed algorithm, unlike in El-Beltagy et al.
[5], the resulting word after removing the suffix and before
adding “®” is returned. The reason for that was that this rule
provided better accuracy in the results. If the input term does
not end with any of the suffixes in suffix set 1, t is checked
against each one of the suffixes in suffix set 2 in the order as
shown in Table IV from right to left. If the word ends with the
suffix, the suffix is removed and the resulting word is
validated. If a match is found, it is returned. Otherwise, a
check is made to see whether the resulting word ends with a
“<” (TEH). If it does, the “<” is replaced with a “3” and the
resulting word is validated again. If the generated term match
is found, it is returned as an output from this step. Otherwise,
the term resulting from removing the suffix of suffix set 2 is
checked for each of the suffixes in suffix set 3. If the word
ends with the suffix, the suffix is removed and the resulting
word is returned. If the input term does not end with any of the
suffixes in suffix set 2. It is checked for each of the suffixes in
suffix set 3. If the word ends with these suffix sets, the suffix
is removed and the resulting word is returned. The flow chart
shown in Figs. 2-4 clarifies the process of suffix removal.

In the step of checking the input term for each of the
suffixes in suffix set 2, It was observed that some patterns
should not continue the procedure of suffix removal, as these
patterns are needed unaltered to be an input for the infix
removal procedure to be stemmed correctly. The exceptional
patterns are shown in Table VI.

TABLE VI
EXCEPTIONAL PATTERNS OF SUFFIX REMOVING
Matching
Pattern Example
suffix P
WP o 66, o e Gl 23 ey
& Ist char = “I”” or “” or “< ‘;3\3
1st char = “” or 3rd char from the end ol ¢l
= o Ll ey g
o«
Last cjlaﬁ and 2nd char from the Ll Lla
/ end = “¢” and 3rd char from the end = L

“” and 2nd char !=“5”

In the procedure of removing the suffixes of suffix set 3,
there is also an exceptional case. The suffix “¢” should not be
removed unless the suffix “/”” in suffix set 2 is removed from
the input word to the stem, for example “ladi (Ll jnto « «all

2. Infix Removal

After suffix removal, infix removal takes place. Infixes
usually occur as a part of broken or irregular plurals. Some of
the commonly used broken plurals exhibit well-defined
patterns that can be detected and transformed. Examples of
patterns detected and handled by the developed stemming
algorithm are shown in Table VII.

The first 11 patterns (P1 to P11) are the same as [S]. The
12™ pattern, P12, is examined by [19], where they suggested
four transformations for that pattern; this approach adds
another new suggestion to them. The last five patterns (P13 to
P17) and their rules are new patterns suggested by this
algorithm.

3591

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:10, No:11, 2016

TABLE VII
EXAMPLES OF PATTERNS HANDLED BY THE ALGORITHM
Pattern code Examples Stems
P1 Vo cxilad (iilia Jaly chanaldiindia

P2 s 058 020 8 (il 5 Dl il ild dadl
P3 Laa dbla s bl daan dpa don

P4 salal calad ¢J g2 Lalal) dalas Al g

P5 G s i 5N G% b Ol LY
P6 Gl oSl s A)de Sy

P7 Gl ¢ et Gioa el

P8 i 35l s lea

P9 JIA il sl ol JF e el

P10 dgaa cJaghd (g aa ol can

P11 il 5a il se ccilsn Apdle Jile cils

P12 plaaw plaa odie plba) sl e (Ol (Jile b pd
P13 M (I e 3B Al cls

P14 by (Ol pely Gl

P15 o) ¢ S ¢ Jnald & sneal ¢ S (Sl
P16 Bl s aal 2 Ak

P17 Sy Opde iy Gl e Al QLA e B il g)

For each of the previous patterns, a transformation rule is
defined to transform that pattern to its stem. Some of these
rules results are returned only if validated; otherwise, the input
term is returned without transformation. And the other rules
results are returned either validated or not, as correctness is
proved their most of the time. All of these rules are outlined in
Table VIIIL.

Through the analysis of infix stemming, it was noticed that
the order in which the rules are applied affects the accuracy of
the returned stems. Therefore, the procedure of infix removal
was ordered, as shown in the pseudo code in Fig. 5 for the
Infix removal procedure.

V.EVALUATION

The evaluation of the proposed stemming algorithm is done
through stemming different data sets, using different stem lists
and calculating the accuracy, precision, recall and F-score. To
calculate these terms, the following equations are used:

no.of correct stems

Accuracy = (1)
total no.of words to be stemmed
. . no.of correctly stemmed words
Precision = s Y 2)
total no.of transformed words
no.of correctly stemmed words
Recall = L Y 3)

total no.of words that should have been transformed

F — score = Z*Pre'ci.sion*Recall (4)
Precision+Recall

ElixirFM dictionary was used to get the correct stem of any
word by building a stem list. The list contains correct stems
for the words that should be stemmed by the proposed
algorithm to compare with and calculate the accuracy. As
mentioned earlier, the stem of the word is the smallest form of
the word where this word is mentioned. But some words are

mentioned in different conflation forms. In this case, we took
the smallest form of the word in each line where this word is
mentioned and the output of the proposed algorithm is correct
if it matches one of these stems. For example, for the word
“OLEEP it occurs in these two inflections forms as seen in
Tables IX and X.

The output of the proposed algorithm is correct if it matches
either “ A& or “4dls”,

In the evaluation process for each dataset, a comparison of
the accuracy of the proposed algorithm versus the accuracy of
the algorithm of El-Beltagy et al. [5] was made. Also, adding
into the comparison the accuracy of [8] stemmer. The
proposed algorithm resulted in better accuracy than both of
these prior works. These results are detailed one by one in the
following sub-sections A, B, C and D. One drawback that was
noticed is that the proposed algorithm takes more execution
time compare to prior works, but this expected as more rules
and patterns are applied.

A. ElixirFM [3] Dataset

In this case, the dataset and stem list are extracted randomly
from Elixir. The stem list is based on the smallest inflection
form of the word. The stem list was created with different
sizes of 5,000 words, 6,000 words and 10,000 words to
conduct the evaluation. The testing data trials were extracted
with different sizes from 1,000 words to 56,000 words. These
datasets and stem lists helped in detecting more patterns. It
also helped in improving the accuracy of the proposed
algorithm. The evaluation results of these datasets are shown
in Table XI.

The dataset of ElixirFm is rich in different words and
patterns, but that does not mean that all of these patterns will
be met by the stemmers frequently, as there are many words in
the dictionary that are not used in real conversations or
articles. Therefore, another evaluation was conducted on other
types of documents as elaborated in the next subsections B, C
and D.

B. Arabic Wikipedia Documents Dataset

In this experiment a set of random Arabic Wikipedia
documents were collected. Approximately 2,500 unique words
were extracted and normalized from the set. The equivalent
stems were extracted from ElixirFM. In addition, stem list A
of 4,758 unique stems was extracted from other random
Arabic Wikipedia documents. Again the experiment included
stemming the same data using the Larkey et al. [8] stemmer,
and the algorithm of El-Beltagy et al. [5] and the proposed
algorithm. The resulted accuracy, precision and recall of were
calculated and recorded in Tables XII and XIII. The accuracy
resulting from [8] stemmer is 59.4%.

3592

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411
Vol:10, No:11, 2016

TABLE VIII
PATTERN DETECTION AND TRANSFORMATION RULES
Rule Condition Rule Example
1D
R1 Length =5 and 2nd char !=“s” and 4th char = Replace 3rd char with “s”, delete 4th char. If no match is found, add “3” to the end and return the =~ il
“s” and 3rd char = “” and Sth char !=“g” or result.
R2 Length =5 and 2nd char = “5” and 4th char = Delete 2nd char. If no match is found, add “#” to the end and return the result. s
“s” and 3rd char = “V” and 5th char =" or
R3 Length> 3 and last char = “V” and 2nd char Replace the last char with “3” and delete 3rd char from the end and return the result. Wan
from the end = “¢” and 3rd char from the end
=« and 2nd char 1= 5"
R4 No conditions. Add “#” to the end of the word. If no match is found replace “s” with *=”, if no match is found el
In El-Beltagy and Rafea paper the condition is return the input term as is.
length =3
R5 Length =4 and 3rd char = “5” and 4th char != Delete 3rd char. If no match is found, add “#” to the end. If no match is found, replace “8” with o
“” or “I” or “” or “¢” and lst char !=“g” or “s”_If no match is found, return the transformed word before adding “#”
“5”or “" or ‘&’
The condition of not ending with ““«™ is added
by the proposed algorithm not to transform
words like “c s> and “s 5™
R6 Length =5 and 3rd char = “V” and Ist char = Delete 3rd char and add “#” to the end. If no match is found, replace “s” with “s”. If no match is =S
“<” and 5th char =" found, return the transformed word before adding “3”.
The condition of not ending with ““»” is added
by the proposed algorithm not to transform
words like “*s)L and “salp
R7 Length =4 and 1st char = “V” Delete 1st character. If no match is found, add “3” to the end. If no match is found, replace “3” el
with “”. If no match is found, return the input word as is.
R8 Length =5 and Ist char = “/” and 5th char = If 3rd character = “(s” replace it with “3”, -the following transformations are applied on the input %3
“s” and 3rd char =1 term length of ﬁve characters, either the 3rd character = “is” or not - Replace the 5th character
The condition 3rd char !=““I"" is added by the with the 4th character, replace the 4th character with “/”, delete the 1st character and return the
proposed algorithm not to transform words result.
like “*s_lil” Changing “ to “5” is added by the proposed algorithm to transform words like ‘4" and
“5x81” correctly to “Jis~"" and “2 3 not to “Jiw’ and ““als”
R9 Length =5 and 1st char = “/” and 4th char = “I” Delete the 4th character and the 1st character and add “” to the end. If no match is found, replace sl
and 2nd char !=“g” “8” with “»”. If no match is found, return the transformed word before adding “3”
R10 Length =4 and 3rd char = “s” and 2nd char = Delete the 4th character and the 3rd character and add “3” to the end. If no match is found replace 25w
4th char “8” with “*”. If no match is found, return the transformed word before adding “”
RI1 Length =5 and 3rd char = “/” and 2nd char = Delete the 3rd character V. If no match is found, add “*” to the end. If no match is found replace <l
“s”and Ist char !=“<” or “¢” or “I”” and last “8” with “*”. If no match is found, delete the 2nd character of the input term before the
char != " transformation ““s”. If no match is found, add “s” and return the result.
The condition of not starting with “/” or “=” The Ist trial of deleting the 3rd character and adding “3” is added by the proposed algorithm to
“&” is added by the proposed algorithm not transform words like “isJ) sk and “2=) & correctly to “is_J” and “32=8” -if they are in the stem
to transform verbs like “s)) s, 2el 5 and list- not to “4) sk and “sac &7,
“@ s, Also the condition of not ending with
“s” not to transform words like “43) 527
R12 Length = 5 and 4th char = “)” and 5th char = If Ist character = “)”, replace the 5th character with the 3rd character, replace the 4th character ANz
“g” with “¢” and delete the 1st character. If no match is found, -the following transformations are
applled on the input term of length five characters either starts with “/”” or not- replace the 4th
character with the 3rd character and replace the 3rd character with “s” and delete the 5th
character. If no match is found, replace the 3rd character with “V”. If no match is found, replace
the 3rd character with the 2nd character and replace the 1st character with “V”. If no match is
found, delete the 2nd character. If no match is found return the input term as is.
R13 Length =4 and 2nd char = “J” and 3rd char = Delete the 3rd character. If no match is found and the 3rd character = the 2nd character, delete the NS
“p 3rd character. If no match is found, add “4”to the end. If no match is found, return the input term
as is.
R14 Length = 4 and 3rd char = “1” Replace the 3rd character with the 2nd character and replace the 2nd character with “V”. If no aly
match is found, return the input term as is.
R15 Length = 6 and 3rd char = “/” and 5th char = If the 2nd character = “5”, delete 2nd character and replace 4th character with “§”. If no match is ~ Juald
“g” found, add “3” to the end. If no match is found, replace “4” with “¢”. If no match is found, -the
following transformations are applied on the input term of length six characters, either the 2nd
character = “s” or not- delete the 3rd character. If no match is found, replace the 4th character
with “”. If no match is found, replace the 4th character with “s”. If no match is found, replace the
4th character with “g”. If no match is found, return the input term as is.
R16 Length = 3 and 3rd char = 2nd char Replace the 3rd character with “4”. If no match is found, replace the 3rd character with “*”. If no aal
match is found, return the input term as is.
R17 Length is greater than or equal to 3 or less ~ Replace the Ist character with “”. If no match is found and the 2nd character from the end = “¢”, sl

than 6 or length = 6 and 3rd char !=“V” and

last char != “0” and 1st char = “s” or

Prex) @
(]

replace “¢” with “/”. If no match is found return the input term as is.

(R1 to R11 are the same rules of El-Beltagy et al.

[5] with some modifications while R12 to R17 are new boosting rules)

3593

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:10, No:11, 2016

TABLE IX TABLE X
INFLECTIONS FORM FOR THE WORD (S84 INFLECTIONS FORM FOR THE WORD 4l
PRI Fp A T] I W P QGS\J\ L) gﬁm\ gm\ clalay) ol Waw) s 4swy) 2.,.5&:1 a8la5)
TABLE XI
EVALUATION RESULTS FOR ELIXIRFM DATASET
#of input Larkey etal. Time El-Beltagy Time The prop: osed Time The prop osed Time The proposed L
words [8] Acc (%) inms [5] Acc (%) inms algorl(tol}ogn Ace in ms algorl(tul/lor)n Ace inms algorithm Acc (%) Time in ms
stem list: 5000 stem list: 5000 stem list: 6000 stem list: 10000
1000 354 6 53.1 0 67.7 16 70.6 15 70.6 16
2000 37.25 1 57.15 6 67.3 15 69.25 15 69.2 16
3000 339 3 58 11 66.83 16 67.97 16 68.6 16
4000 35.23 3 56.78 11 68.18 15 69.28 15 69.13 0
5000 353 0 56.34 9 66.76 16 67.72 15 67.8 16
6000 37.58 2 57.85 11 68.63 15 69.48 16 69.65 15
7000 34.87 1 55.41 9 67.66 16 68.16 16 68.06 15
8000 35.6 2 56.26 19 68.5 16 67.99 36 68.04 31
9000 35.1 4 55.77 14 68.61 31 68.22 16 68.28 16
10000 34.55 1 56.14 15 68.54 16 68.29 31 68.32 31
12000 35.28 1 55.61 15 67.98 47 67.73 31 67.89 62
14000 36.79 2 56.23 16 69.3 31 68.9 31 68.89 31
16000 35.13 2 54.99 31 68.33 32 68.19 33 68.05 31
18000 34.37 2 53.69 32 67.19 31 66.86 31 66.67 31
20000 35.23 0 54.54 47 68.42 31 68.22 31 68.12 31
23000 28.4 2 31.57 38 48.45 110 48.76 113 50.32 110
26000 37.03 5 56.19 37 68.82 46 68.72 47 69.09 63
29000 34.68 9 53.01 42 67.78 63 67.58 67 67.41 62
32000 36.43 4 55.06 43 68.53 62 68.5 63 68.71 65
36000 35.59 5 53.6 60 68.19 63 68.28 79 68.13 62
40000 38.09 7 52.64 64 68.97 93 69.49 94 70.19 79
45000 36.73 8 55.33 63 68.86 95 68.9 95 68.8 94
50000 35.76 15 53.08 70 67.68 94 67.64 93 67.77 95
56000 36.03 6 53.53 75 67.7 110 67.68 112 67.71 111
19666.67 35.43 3.79 54.24 30.75 67.29 45.00 67.60 46.29 67.73 45.79

(The last row contains the average values for the number of input words, accuracy and time)

C.Arabic Wikipedia Documents and Articles from Arabic
Newspapers Dataset

In this experiment, a new set of words collected from
Arabic newspapers [20], in addition to the previous set of
input words from Wikipedia. Stem list A was used. The total
number of input words was 5,400 unique words. The results
were recorded in Tables XII and XIII, while the Larkey et al.
[8] stemmer resulted in an accuracy of 54.1%.

For the same dataset, stem list B of 4,990 most used words
of modern standard Arabic was collected from the web. The
list of words was evaluated and found to be very common. It is
noticed that the accuracy of Larkey et al. [8] did not change as
it does not use a stem list, while the other two algorithms had
different results, as shown in Tables XII and XIII.

D.Arabic Newspapers Articles Dataset

Using stem list B a new dataset collected from 60 Arabic
newspapers articles of six different categories (4,689 unique
words) [21]. After testing the calculated accuracy, precision
and recall for El-Beltagy et al. [5] and the proposed algorithm,
were reported in Tables XII and XIII, while the Larkey et al.
[8] stemmer reported an accuracy of 53.657497%.

Finally, for the same dataset, stem list C was built

containing stems of 5,000 of the most used words in Arabic
subtitles [22] and used this stem list in stemming the input
words. The Larkey et al. [8] stemmer accuracy did not change,
as it does not depend on the stem list, while the other two
algorithms recorded the accuracy, precision and recall shown
in Tables XII and XIII.

TABLE XII
EVALUATION RESULTS FOR THE EL-BELTAGY ET AL. [5] ALGORITHM
Data set B C D Average
Stem list A A B B C
Accuracy 76.12% 67.8% = 66.22% 65.57% 63.4% = 67.83%
Precision ~ 79.5% 7291% 69.76% 70.11% 66.76% 71.81%
Recall 47.61% 43.84% 43.39% 43.62% 41.22% 43.94%
F-score 59.56% 54.75% 53.50% 53.78% 50.97% = 54.52%
TABLE XIII
EVALUATION RESULTS FOR THE PROPOSED ALGORITHM
Data set A B C Average
Stem list A A B B C
Accuracy 84.6% 78.9% 77.39% 76.9% 75.68% 78.7%
Precision 82.61% 77.54% 7531% 75.61% 74.07% 77.03%
Recall 59.53% 58.71% 59.21% 58.93% 57.1% 58.7%
F-score 69.2% 66.82% 66.29% 66.23% 64.49% 66.61%

3594

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:10, No:11, 2016

Both of the proposed algorithm and the algorithm of El-
Beltagy et al. [5] resulted in better accuracy when used with a
domain specific stem list.

VI. CONCLUSION AND FUTURE WORK

This work presented a new extension for Light stem in
order to improve the Arabic IR system. The algorithm
adequately utilized prior work done in this domain. The
approach enhanced the algorithm and rules that governs the
methodology for stem extraction. These enhancements
included detecting new Arabic word patterns and built it on
top of the previous works of El-Beltagy et al. [5S] and Ababneh
et al. [19]. The procedure was boosted for finding the stem and
building a stem list from several resources. Comparing this
work with former works, it has proven to achieve significant
results for enhancing stem accuracy by an average 10%. The
results were presented for each testing set. Since this work is
intended to be part of an open source implementation, the
factor of execution speed was recorded. It was noticed how the
execution will take more time proportionally with the number
of words undertaken by the stemming our algorithm. This is a
drawback that can be tackled in future work. One of the
approaches to tackle is issue is in having a massive amount of
words to stem; however, in the massive parallel processing
domain, different architecture and tools can help in
maintaining a proper speed while still excelling in stem
accuracy. The motivation for this work originated from the
need to empower the open source community through
providing effective and practical implementation of the
algorithm for Arabic stemming. This target was successfully
achieved by providing better search results compared to
similar approaches.

REFERENCES

[1] Tinsley, Teresa, and Kathryn Board. "Languages for the future: Which
languages the UK needs most and why." British Council (2013).

[2] http://www.internetworldstats.com/stats7.htm.(accessed August 1, 2016)

[3] http:/fortune.com/2015/07/14/ibm-watson-home-middle-east/ (accessed
August 1, 2016)

[4] Larkey, Leah S., Lisa Ballesteros, and Margaret E. Connell. "Improving
stemming for Arabic information retrieval: light stemming and co-
occurrence analysis." Proceedings of the 25th annual international ACM
SIGIR conference on Research and development in information
retrieval. ACM,

[5] El-Beltagy, Samhaa R., and Ahmed Rafea. "An accuracy-enhanced light
stemmer for arabic text." ACM Transactions on Speech and Language
Processing (TSLP) 7.2 (2011): 2.

[6] Ding, Wei, and Gary Marchionini. "A study on video browsing
strategies." (1998).

[7] Porter, Martin F. "An algorithm for suffix stripping." Program 14.3
(1980): 130-137.

[8] Larkey, Leah S., Lisa Ballesteros, and Margaret E. Connell. "Light
stemming for Arabic information retrieval." Arabic computational
morphology. Springer Netherlands, 2007. 221-243.

[9] El-Sadany, Tarek A., and Mohamed A. Hashish. "An Arabic
morphological system." IBM Systems Journal 28.4 (1989): 600-612.

[10] Mustafa, Suleiman H. "Word stemming for Arabic information retrieval:
The case for simple light stemming." Abhath Al-Yarmouk: Science &
Engineering Series 21.1 (2012): 2012.

[11] Kadri, Youssef, and Jian-Yun Nie. "Effective stemming for Arabic
information retrieval." The Challenge of Arabic for NLP/MT, Intl Conf.
at the BCS. 2006.

[12] Al-Omari, Asma, and Belal Abuata. "Arabic light stemmer (ARS)."
Journal of Engineering Science and Technology 9.6 (2014): 702-717.

[13] Khoja, Shereen, and Roger Garside. "Stemming arabic text." Lancaster,
UK, Computing Department, Lancaster University (1999).

[14] Harmanani, Haidar M., Walid Keirouz, and Saced Raheel. "A Rule-
Based Extensible Stemmer for Information Retrieval with Application to
Arabic." Int. Arab J. Inf. Technol. 3.3 (2006): 265-272.

[15] Al-Shammari, Eiman Tamah, and Jessica Lin. "Towards an error-free
Arabic stemming." Proceedings of the 2nd ACM workshop on
Improving non english web searching. ACM, 2008.

[16] El-Defrawy, Mahmoud, Yasser El-Sonbaty, and Nahla A. Belal.
"Enhancing Root Extractors Using Light Stemmers." (2015).

[17] Dahab, Mohamed Y., Al Ibrahim, and Rihab Al-Mutawa. "A
Comparative Study on Arabic Stemmers." International Journal of
Computer Applications 125.8 (2015).

[18] http://quest.ms.mff.cuni.cz/cgi-bin/elixir/index.fcgi.(accessed May 15,
2016)

[19] Ababneh, Mohamad, et al.. "Building an Effective Rule-Based Light
Stemmer for Arabic Language to Improve Search Effectiveness."
International Arab Journal of Information Technology (IAJIT) 9.4
(2012).

[20] http://arabic-media.com/egypt-news.htm. (accessed July 12, 2016)

[21] https://sourceforge.net/projects/arabiccorpus/files/watan-2004corpus/.
(accessed July 17, 2016)

[22] https://invokeit.wordpress.com/FREQUENCY-WORD-LISTS/
(accessed July 20, 2016)

3595

