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Abstract—Phase error in communications systems degrades error 

performance. In this paper, we present a simple approximation for the 

average error probability of the binary phase shift keying (BPSK) in 

the presence of phase error having a uniform distribution on arbitrary 

intervals. For the simple approximation, we use symmetry and 

periodicity of a sinusoidal function. Approximate result for the 

average error probability is derived, and the performance is verified 

through comparison with simulation result. 

 

Keywords—Average error probability, Phase shift keying, Phase 
error  

I. INTRODUCTION 

N communications systems, error performance is degraded 

by various factors, and one of the most significant 

degradation factors is a phase error. A phase error is the random 

fluctuation in the phase of a waveform, caused by various 

physical phenomena. For example, the imperfect frequency 

recovery of the receiver oscillators disturbs the phase reference 

of the received symbol, and the Doppler effect in wireless 

channel can also lead to the residual phase error in the received 

signal [1], [2]. 

To analyze the performance of communications systems in 

the presence of phase error, the average error probability should 

be obtained by integrating an instantaneous error probability 

for a given phase error which has a specific probability density 

function (pdf). For a additive white Gaussian noise (AWGN) 

channel, since the instantaneous error probability in the 

presence of phase error is expressed as a complementary error 

function of a cosine function, the exact average error 

probability should be evaluated by a numerical method. 

However, the numerical method requires high computational 

complexity and much operation time. For analytical purposes, 

approximations are useful, and some approximations for noisy 

phase reference have been studied in many places in the 

literature [3]-[5]. 

In the case of uniformly distributed phase error, a simple 

approximation for integration is available. In this paper, we 

present an approximation for the average error probability of 

BPSK in the presence of phase error having a uniform 

distribution on arbitrary interval, using symmetry and 

periodicity of a sinusoidal function.  

The organization of the rest of the paper is as follows: In 

section II, an average error probability of the received signal 
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with noisy phase reference is described. In section III, we 

present the simple approximation for integrating a 

complementary error function of a cosine function and derive 

approximated average error probability of BPSK in the 

presence of phase error. Then, in section IV, simulation results 

are shown. Finally, we conclude with a short discussion in 

section V. 

II. AVERAGE ERROR PROBABILITY WITH PHASE ERROR 

A coherent detect receiver achieves high performance in 

communications systems. Fig. 1 shows the coherent receiver 

structure [6]. 

 

 
Fig. 1 Coherent receiver structure 

 

In the coherent receiver, the matched filter provides the 

maximum signal-to-noise ratio (SNR) at its output. Then, the 

signal ɶz  sampled at each symbol duration T can be written as 
 

( )φ θ+= ⋅ +ɶ ii
z E e n                              (1) 

 

where E  is the signal power, φi
 is modulated phase, θ  is 

phase error, and n  is AWGN. In the case of BPSK, an 

instantaneous error probability in the presence of phase error 

and AWGN is given by 

 

( )1
( | ) cos

2
θ γ θ=eP E erfc

                  
(2)

  

where 
0/γ = E N  is the SNR at the detector output. And 

( )ierfc  is a complementary error function and defined as [7] 

 

22
( ) .

π

∞ −= ∫ u

x
erfc x e du

                       
(3) 

If we assume that the phase error is static, then (2) is directly 

used to evaluate the error probability. On the other hand, we 

have to integrate (2) against the specific pdf of the phase error 

when the phase error varies randomly throughout time. 

Considering random phase error, we would then expect the 

average error probability to be as follows: 
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where ( )θp  is the probability density function of the phase 

error. The exact value of the average error probability is 

obtained by a numerical method because a complementary 

error function in (4) includes a cosine function. In the next 

section, we present a simple approximation in the case of the 

phase error having a uniform distribution function on arbitrary 

interval. 

III. SIMPLE APPROXIMATION 

In this section, we present a simple approximation for 

integrating a complementary error function of a cosine function 

and derive the approximated average error probability of BPSK 

in the presence of a phase error. When the phase error has a 

uniform probability density on θ− < ≤c c , ( )θp is given by 

 

( )
1
,          

2

0 ,            

c c
p c

otherwise

θ
θ

 − < ≤
= 



                   (5)

 

 

where c  has a arbitrary value for 0
2

c
π

< ≤ . Putting (5) into 

(4), we obtain 

  

( ),  

1 1
( ) cos  .

2 2
γ θ θ

−
= ⋅∫

c

e avr
c

P E erfc d
c        

(6) 

 

Since (6) has a complementary error function of a cosine 

function, the exact average error probability should be 

evaluated by numerical integration. As a first step of 

approximation for (6), the cosine function is replaced by a sine 

function, and the interval of integration should be shifted. Fig. 2 

shows the symmetry and periodicity of a cosine and the sine 

function for the equivalent integration region. Fig. 3 represents 

a complementary error function of a cosine function. 

 
Fig. 2 Symmetry and periodicity of a cosine and sine function  

for the equivalent integration region 

 

 
Fig. 3 Complementary error function of a cosine function 

 

Because a cosine function is even-symmetric, 

( )cosγ θerfc  is also even-symmetric, as shown in Figure 3. 

Thus, the integration region can be reduced, and (6) be 

rewritten as 

 

( ),  
0

1
( ) cos  .

2
γ θ θ= ∫

c

e avrP E erfc d
c              

(7) 

 

Integration of ( )cosγ θerfc  for 0 θ< ≤ c is equal to 

integration of ( )sinγ θerfc  for 
2 2

π π
θ− < ≤c ; thus, the 

cosine function in (7) can be replaced by a sine function. By the 

symmetry and periodicity of sinusoidal functions, (7) can be 

rewritten as 

 

( )/2

, 
/2

1
( ) sin  .

2
e avr

c
P E erfc d

c

π

π
γ θ θ

−
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(8) 

 

The cosine function was replaced by a sine function, yet (8) 

is not enough to evaluate the average error probability directly. 

Because a sine function is monotonically increasing for 

0
2

π
θ< ≤ , we replace a sine function by a linear function as a 

last step of approximation. Then, we obtain 
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where α  is a coefficient of the linear function and its value is 
dependent on integration interval. The optimal values of α  are 
proposed by the simulation results in section IV. Because the 

sine function of (8) is replaced by an approximated linear 

function, (9) can be evaluated using [8, eq. (06.27.21.0002.01)]. 

Finally, the average error probability of BPSK in the presence 

of a phase error is obtained as 
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where 
2

π
β γ α= . Since (10) consists of complementary error 

functions and elementary functions, the average error 

probability for the arbitrary value of c  can be easily evaluated. 

IV. RESULT 

In the previous section, the linear function was used for 

approximation of the sinusoidal function. Thus, accuracy of 

(10) is highly dependent on the coefficient of the linear 

function, and the optimal values of the coefficient can be 

determined in order to minimize the error of (10). Fig. 4 shows 

the simulation results for the optimal values of α . 
 

 
Fig. 4 Optimal values of alpha versus c 

 

The optimal value of α  increases with increasing the upper 
bound c of phase error and converges on 1 at 90º. To verify the 

performance of the proposed approximation, we have simulated 

the average error probabilities for various phase errors and 

compared the simulation results with the approximated average 

error probability. Simulation and approximation results with a 

small phase error (c=10º) are shown in Fig. 5. 

 

 
Fig. 5 Average error probability with small phase error (c=10º) 

 

As shown in Fig. 5, the average error probability curve of (10) 

is very close to the simulation result when the phase error is 

small. Simulation and approximation results with a large phase 

error (c=30º, 50º) are shown in Fig. 6. 

 

 
Fig. 6 Average error probability with large phase error (c=30º, 50º) 

 

In the case of a large phase error, there is a little difference 

between the simulation and approximation results at low SNR, 

but the approximated average error probability shows accurate 

performance at high SNR. 

V. CONCLUSION 

In this paper, we present a simple approximation for the 

average error probability of BPSK in the presence of uniformly 

distributed phase error. This was achieved by using symmetry 

and periodicity of a sinusoidal function. The performance was 

verified by comparing the approximated average error 

probability with simulation results. The derived result should 

make the error probability analysis of wireless communication 

systems with phase error more efficient, and the presented 

approximation can be applied to other probability density cases. 
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