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Abstract—The Shortest Approximate Common Superstring 
(SACS) problem is : Given a set of strings f={w1, w2, … , wn}, 
where no wi is an approximate  substring of wj, i ≠ j, find a shortest 
string Sa, such that, every string of f is an approximate substring of 
Sa. When the number of the strings n>2, the SACS problem becomes 
NP-complete. In this paper, we present a greedy approximation 
SACS algorithm. Our algorithm is a 1/2-approximation for the SACS 
problem. It is of complexity O(n2*(l2+log(n))) in computing time, 
where n is the number of the strings and l is the length of a string. 
Our SACS algorithm is based on computation of the Length of the 
Approximate Longest Overlap (LALO). 
 

Keywords—Shortest approximate common superstring, 
approximation algorithms, strings overlaps, complexities.  

I. INTRODUCTION 
HE Shortest Approximate Common Superstring (SACS) 
problem is : Given a set of strings f={w1, w2, … , wn} 

where no wi is an approximate substring of wj, i≠j, find a 
shortest string Sa, such that, every string of f is an 
approximate substring of Sa. When the number of the strings 
n>2, the SACS problem becomes NP-complete [1, 2, 3, 4, 5]. 

Motivation: DNA Sequence Assembly [6, 7, 8, 9, 10, 11, 
12]: The SACS problem is actually a reduction of the DNA 
Sequence Assembly (DSA) one, since the strings of f code 
fragments of, only, one strand of a DNA macromolecule. 

Microarray Production [13]: During microarray production, 
several thousands of oligonucleotides (short DNA sequences) 
are synthesized in parallel, one nucleotide at a time. We are 
interested in finding the shortest possible nucleotide 
deposition sequence to synthesize all oligos in order to reduce 
production time and increase oligo quality. Thus we study the 
shortest common superstring problem of several thousand 
short strings over a four-letter alphabet. 

Previous works: Among the approximation algorithms that 
deal with the SACS problem, we mention Peltola et al.'s one 
[6], Ukkonen's one [14], Kececioglu's one [15], that is an 
adaptation of Tarhio and Ukkonen's greedy one [16], Teng 
and Yao's one [17]. Kececioglu conjectures that his adaptation 
is a (1-f(ε))/2-approximation for the SACS problem, where ε 
is the error rate and f(ε)→0 as ε→0. Peltola 
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adaptation is a (1-f(ε))/2-approximation for the SACS 
problem, where ε is the error rate and f(ε)→0 as ε→0. Peltola 
et al. give no guarantee on the performance of their algorithm. 

 
Our result: In this paper, we present a greedy 

approximation SACS algorithm. Our greedy algorithm is 
comparable to the greedy one, described in [18, 19, 16], to 
construct the longest hamiltonian path [20]. Our greedy 
algorithm is a 1/2-approximation for the SACS problem. Our 
greedy algorithm is of complexity O(n2*(l2+log(n))) in 
computing time, where n is the number of the strings and l is 
the length of a string. Our SACS algorithm is based on the 
computation of the Length of the Approximate Longest 
Overlap (LALO). 

In the first section of this paper, we present some 
definitions and notations. 

In the second section, we present our algorithm of 
computation of the LALO 

In the third section, we present our greedy approximation 
SACS algorithm. 

Finally, in the last section, we present our conclusion and 
pose open problems. 

II. DEFINITIONS AND NOTATIONS 
Let A be a finite alphabet, a string is an element of A*, it is 

a concatenation of elements of A. The length of a string w, 
denoted by |w|, is the number of the characters that constitute 
this string. The null length string will be denoted by ν. The ith 
character of w will be denoted by wi. A portion of a string w 
that begins at the position i and ends at the position j, 1≤i≤j 
≤n, is called substring of w and will be denoted by wi,j. When 
i=1 and 1≤j≤n then the substring w1,j is called prefix of w and 
when 1≤i≤n and j=n then the substring wi,n is called suffix of 
w. The set of the suffixes of w will be denoted by S(w) and the 
set of the prefixes of w will be denoted by P(w). 

The Levenshtein distance, denoted by dσ,γ,δ, is the 
minimum cost of a sequence of edit operations, i.e., change of 
cost σ, insert of cost γ and delete of cost δ, that change one 
string w into another string w' : 

 
dσ,γ,δ(w,w')=mini{σ*mi+γ*ni+δ*li}                (1)                  

 
with mi, ni and li are, respectively, the numbers of changes, 
inserts and deletes necessary to change w into w'. 

Let S and w be two strings, |S|>|w |, and ε be an error rate, 
ε>0, we say that w is an approximate substring of S, if and 
only if, there exists a substring w' of S such that : 
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Let w and w' be two strings and ε be an error rate, ε>0, we 

say that w approximately overlaps with w', if and only if, 
there exist x1 and x2, respectively, a prefix and a suffix of w 
and there exist x'1 and x'2, respectively, a prefix and a suffix 
of w' such that : 
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If x2 is the longest suffix of w and x'1 is the longest prefix of 
w' that resemble the most to each other, i.e. : 
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then : 

(i) If |x2|>|x'1| then the length |x2| is the Length of the 
Approximate Longest Overlap (LALO), the string x1x'1x'2, 
also denoted by Ca(w,w'), is the Approximate Compact String 
(ACS) and is of weight ωa(w,w')=|x2|. 

(ii) Otherwise, the length |x'1| is the LALO, the string 
x1x2x'2, also denoted by Ca(w,w'), is the ACS and is of 
weight ωa(w,w')=|x'1|. 

Let f={w1, w2, … , wn} be a set of strings, where no wi is 
an approximate substring of wj, i≠j, we define on f an order 
relation, denoted by ⇒a, satisfying the following properties :  

(i) if wi⇒awj then wi approximately overlaps with wj. 
(ii) if wi⇒awj then for any k, k≠j, we cannot have wi-

awk 
An approximate common superstring associated with the set f 
and the order relation →a defined on f, wi1→awi2→a … 
→awin, wik∈f for 1≤k≤n, is the string Sa=Ca(Ca( … 
Ca(Ca(wi1,wi2),wi3) … ,win-1),win). With each approximate 
common superstring Sa=Ca(Ca( … Ca(Ca(wi1,wi2),wi3) … 
,win-1),win), we associate a positive weight, denoted by 
Ωa(Sa), that expresses the amount of compression of Sa : 
 

Ω a(Sa ) =
k = 1

n −1

Σ ωa (wik ,wik +1
)                    (5) 

      
The weight Ωa(Sa) can also be expressed by the following 
equation : 
 

Ω a(Sa ) = (
i = 1

n

Σ | wi |)−| Sa |                         (6)                  

Hence, since |wi |
i = 1

n
∑  is a constant for a given family f, we 

can define, by using equation (6), the SACS to f as the one 
that maximizes Ωa. 

By using our definition of a SACS, we can reformulate the 
SACS problem as follows : Given a set of strings f={w1, w2, 
… , wn}, where no wi is an approximate substring of wj, i≠j, 
find an order relation →a defined on f, wi1→awi2→a … 
→awin, wik∈f for 1≤k≤n, such that the string Sa=Ca(Ca( … 
Ca(Ca(wi1,wi2),wi3) … ,win-1),win) maximizes Ωa. 

An algorithm A is an α-approximation for a minimization 
problem P with respect to a function f, if and only if, it gives 
in a polynomial time a solution S for P such that 
f(S)≤α*f(Smin), where Smin is a solution to P that minimizes f 
and α>1. An algorithm A is an α-approximation for a 
maximization problem P with respect to a function f, if and 
only if, it gives in a polynomial time a solution S for P such 
that f(S)≥α*f(Smax), where Smax is a solution to P that 
maximizes f and 0<α<1. 

III. COMPUTATION OF THE LALO 
The computation of the LALO between two strings boils 

down to find the longest suffix of the first string and the 
longest prefix of the second one that resemble the most to 
each other. Our algorithm of computation of the LALO, 
Algorithm 1, is a dynamic programming one [21, 22]. By 
using this algorithm, we proceed within three steps :  

(i) During the first step, we compute the Levenshtein 
distances between the different suffixes of the first string and 
the different prefixes of the second one : the computation of 
the distances between the longer prefixes and the shorter 
suffixes is done by using the results of the computations of 
the distances between the shorter prefixes and the longer 
suffixes. We reiterate this process, until the distances between 
the different suffixes and prefixes are computed. 

(ii) During the second step, we locate the pairings that 
generate the longest suffix x of the first string and the longest 

prefix x' of the second one such that 
d σ ,γ , δ (x, x' )
max(|x|,|x' |)  is 

minimum: during each iteration, we consider a prefix x' of the 
second string. For this prefix, we determine the pairings that 
generate the longest suffix x of the first string such that 
dσ,γ,δ(x,x') is minimum. The pairings between the longer 
suffixes of the first string and the shorter prefixes of x' are 
located according to the pairings between the shorter suffixes 
of the first string and the longer prefixes of x'. We reiterate 
this process, until we locate all the pairings that generate the 
longest suffix x of the first string such that dσ,γ,δ(x,x') is 

minimum. If suffix x and prefix x' are such that 
dσ ,γ , δ (x, x' )
max(|x|,|x' |)  

is also minimum then they will be considered during the third 
step. 

(iii) Finally, during the third step, we consider suffix x and 

prefix x', located during the second step. If 
dσ ,γ , δ (x, x' )
max(|x|,|x' |) ≤ ε , 

i.e., x is the longest suffix and x' is the longest prefix that 
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resemble the most to each other, then from |x| and |x'| we 
compute the LALO and construct the ACS. 

Algorithm 1 is comparable to Wagner and Fischer's 
algorithm [23] to compute the Levenshtein distance between 
two strings, to Sellers's one [24] to have a string-matching 
with k-differences, to Peltola et al.'s one [6] to compute an 
overlap between two strings and to Elloumi's one [25] to have 
an approximate string-matching. 

We define the cost σi,j of the change operation of the ith 
character of a string w' by the jth character of a string w as 
follows : 

{   if   0
0 otherwise,   

 

 ,

ji ww' =
≠

=
σσ

σ ji                   (7)                     

 
Algorithm 1. 
(i) (i.a) Construct a matrix M of size (|w'|+1)*(|w|+1);{ filling 
} 
     (i.b) for i:=1 to |w'| do M[i,0]:=i*δ endfor;  
  for j:=0 to |w| do M[0,j]:=0 endfor; 
   for i:=1 to |w'| do 
     for j:=1 to |w| do 
       M[i,j]:=min{M[i-1,j]+δ, M[i,j-1]+γ, M[i-1,j-1]+σi,j} 
    endfor 
  endfor; 
(ii) ρ:=+∞; iρ:=0; jρ:=0;      { traceback } 
     for i:=1 to |w'| do 
     j:=|w|; i':=i; 
    (ii.a) while i'≠1 and j≠0 do 
   if M[i',j]=M[i',j-1]+γ then j:=j-1 
    else 
      if M[i',j]=M[i'-1,j-1]+σi',j then j:=j-1; i':=i'-1 
       else i':=i'-1  
      endif 
   endif 
           endwhile; 
    (ii.b) if w'1≠wj then j:=j+1 endif 
    (ii.c) if ρ≥M[i,|w|]/max(|w|-j+1,i) then 
 ρ:=M[i,|w|]/max(|w|-j+1,i); iρ:=i; jρ:=j 
           endif 
     endfor. 
(iii) if ρ≤ε then         { evaluation } 
       if (|w|-jρ+1)<iρ then 
        iρ is the LALO; 
        ww'iρ+1,|w'| is the ACS of weight ωa(w,w'):=iρ 
       else 
        (|w|-jρ+1) is the LALO; 
        w1,jρ-1w' is the ACS of weight ωa(w,w'):=(|w|-jρ+1) 
       endif 
      else 
        w do not approximately overlap with w' 
      endif. 
 
Proposition 1. Let w and w' be two strings and ε be an error 
rate, ε>0, Algorithm 1 tests if w approximately overlaps with 
w' and, if so, computes the LALO and constructs the ACS. 
Proof. During step (i), we compute the Levenshtein distances 
between the different suffixes of w and the different prefixes 

of w' : we construct a matrix M of size (l+1)2 and fill it in the 
same way as Wagner and Fischer's dynamic programming 
algorithm [23] but we set M[0,j]:=0, for any j, 0≤j≤|w|. 

During step (ii), we locate the longest suffix x of w and the 

longest prefix x' of w' such that 
dσ ,γ , δ (x, x' )
max(|x|,|x' |)  is minimum : 

during each iteration of the "for" loop, we consider a prefix 
w'1,i, 0≤i≤|w'|, of w' by starting from cell M[i,|w|]. For this 
prefix, we determine the longest suffix x of w such that 
dσ,γ,δ(x,w'1,i) is minimum. This can be done thanks to a 
traceback in the matrix M, by using the "while" loop of 
substep (ii.a) : let M[i,j] be the current cell, the next cell to be 
visited is M[i',j'], where : 

M[i',j']=M[i,j-1], if M[i,j]=M[i,j-1]+γ else 
M[i',j']=M[i-1,j-1], if M[i,j]=M[i-1,j-1]+σi,j else 
M[i',j']=M[i-1,j]. 

Hence, at each iteration of the "while" loop, we try to go to 
the leftmost side of w, then, try to have a longer suffix of w. 
The "while" loop stops when we reach row 1. It stops, too, 
when we reach column 0, i.e., if the whole string w is an 
approximate prefix of w'. Now, let j be the column reached 
when we reach row 1. Suffix wj,|w| is the suffix of w such that 

 
dσ , γ ,δ (wj ,|w| ,w' 1, i )  =  min

x ∈S (w)
{dσ ,γ ,δ (x ,w' 1,i )} . During 

substep (ii.c), if prefix w'1,i and suffix wj,|w| are such that 

 

dσ ,γ ,δ (w j ,|w| ,w'1,i )

max (|w j ,|w| |,|w'1,i |)
 =  min

(x,x ') ∈S (w )×P (w' )
{

dσ ,γ ,δ (x, x' )
max (|x|,|x'|)}  then 

we set ρ= 
dσ , γ ,δ (w j ,|w| ,w' 1,i )

max(|w j ,|w| |,|w' 1,i |)
 and locate prefix w'1,i and 

suffix wj,|w| by setting iρ:=i and jρ:=j; to consider them during 
step (iii). 

Finally, during step (iii), we check-up if w approximately 
overlaps with w' and, if so, we compute the LALO and 
construct the ACS : : if ρ≤ε  then, if |wjρ,|w||<|w'1,iρ| then 
|w'1,iρ| is the LALO and ww'iρ+1,|w'| is the ACS of weight 
ωa(w,w'):=|w'1,iρ| otherwise |wjρ,|w|| is the LALO and w1,jρ-
1w' is the ACS of weight ωa(w,w'):= |wjρ,|w||. 
 
Proposition 2. Algorithm 1 is of complexity O(l2) in 
computing time and in memory space, where l is the length of 
a string. 
 
Proof. During step (i), we fill linewise matrix M of size 
(l+1)2. So, time complexity of step (i) is O(l2). 

During step (ii), for each prefix of w', we do a traceback in 
matrix M. This traceback is done in a time of the order of 
O(|w|). In all, we have |w'| prefixes in w', so step (ii) is 
achieved in a time of the order of O(|w'|*|w|), i.e., of the order 
of O(l2). 

Hence, Algorithm 1 is of complexity O(l2) in computing 
time. 

Finally, matrix M is of size (l+1)2 then Algorithm 1 is of 
complexity O(l2) in memory space.  
Example. Let us take w=ecaabeabdc and w'=fabdbcaeba and 
set ε=0.50, σ=2 and δ=γ=1. The longest suffix of w and the 
longest prefix of w' that resemble the most to each other are, 
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respectively, x=abdc and x'=fabdbc. We have 

  
 
d 2,1,1 (x,x' )
max(|x|,|x' |)

 <  0.50

 
d2,1,1(x,x' )
max(|x|,|x' |)

 =0.33=  min
(xi ,x' j )∈S (w )×P (w' )

{
d 2,1,1 (xi,x ' j )
max (|xi |,|x ' j |)

}{
       
       Fig. 1 Computation the LALO 

 
e       c       a       a       b       e       a        b     d          c 

0       0       0       0       0       0       0       0       0    0         0 

2       2       2       1       1       2       2       1       2    2         2 a 1

1       1       1       1       1       1       1       1       1    1         1 f 1

3       3       3       2       2       1       2       2       1      2           3 b 0 .7 5

4       4       4       3       3       2       3       3       2    1          2 d 0 .5 0

5       5       5       4       4       3       4       4       3    2         3 b 0 .6 0

7       7       6       5       5       5       6       5       5    4        3 a 0 .4 3

1 0       9       9       8       7       7       7       6       7     7        6 a 0 .6 0

9       8       8       7       7       6       6       7       6    6        5 b 0 .5 6

8       7       7       6       6       6       5       6       6    5        4 e 0 .5 0

6       6       5       5       5       4       5       5       4    3        2 c 0 .3 3

ν 
ν 
w 

w ' 
x

x ' 

L e g e n d 
: 
  P a t h   t o   f o l l o w 

: w ' ' i = w j 

ρ=

d 2,1,1 ( x i , x j)/ max (x i ,x j)

 
 

Fig. 2 x is the longest suffix of w and x' is the longest prefix of w' 
that resemble the most to each other 

                 x 
 

    w       e  c  a  a  b  e   a  b  d  c  
 

 
     w'         f   a  b  d  b  c    a  e  b  a 

 
 
             x’ 
Proposition 3. Let f be a set of strings and ε be an error rate, 
ε>0, by using Algorithm 1, the computation of the LALOs 
between all the strings of f is done in a time of the order of 
O(n2*l2) and by using a memory space of the order of O(l2), 
where n is the number of the strings and l is the length of a 
string. 
 
Proof. According to Proposition 2 : 

(i) Algorithm 1 is of complexity O(l2) in computing time. 
In all, we have of the order of O(n2) couples of strings, then, 
we have of the order of O(n2) LALOs to be computed. Hence, 
the computation of the LALOs between all the strings of f is 
done in a time of the order of O(n2*l2). 

(ii) By using Algorithm 1, the computation of the LALO 
between two strings w and w' is done by using a matrix M of 
size (|w'|+1)*(|w|+1), i.e., of size (l+1)2. The same matrix is 
used to compute all the LALOs between all the strings of f. 
Hence, the computation of the LALOs between all the strings 
of f is done by using a memory space of the order of O(l2).  

IV. CONSTRUCTION OF A SACS 
Let f={w1, w2, … , wn} be a set of strings, where no wi is 

an approximate substring of wj, i≠j, and Sa be a SACS to f. 
Our SACS algorithms are based on following observation: the 
greater Sa's weight is the shorter Sa's length is. 

Our Approximation Algorithm 
Our approximation SACS algorithm is a greedy one, it 

operates as follows:  
(i) First, we compute all the weights ωa(wi,wj), 1≤i, j≤n, 

eliminate from f all the strings that are approximate 
prefix/suffix of others, eliminate the weights related to these 
strings from the set of the computed weights, and sort this set 
of weights. 

(ii) Then, during each iteration, we select from f two 
strings wi and wj such that ωa(wi,wj) is maximum, remove 
from f the strings wi and wj and add to f the ACS Ca(wi,wj). 
We repeat this process until f contains only one string. This 
string is considered to be a solution to the SACS problem. 

 
Proposition 4. Our greedy SACS algorithm is a 1/2-
approximation for the SACS problem. 
 
Proof. Let Sa be the approximate common superstring 
constructed thanks to our greedy SACS algorithm and Smaxa 
be the SACS. To show that :  
 

)()(*
2
1

aaa SS
amax Ω≤Ω          (8)

             
 (i) First, we show that for every constructed ACS 

Ca(wi,wj), we have :  
 

),) ,(,( *2
)),((),(

jiaa
wwCwwC

wwww yx

jiayx

ωω ≤Σ
∈ E

a   

(9) 

where E(Ca(wi,wj)) is the set of ACSs that are portions of the 
SACS and that were eliminated, from the set of ACSs to be 
considered for during the future iterations, when constructing 
the ACS Ca(wi,wj). 

(ii) Then, we show that : 

).

)

,(

,(

*2

 

),(

)),((),(),(
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a
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(10) 
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So, during each iteration of our algorithm, we select from f 
two strings wi and wj such that ωa(wi,wj) is maximum, i.e., we 
construct an ACS Ca(wi,wj) of weight ωa(wi,wj) that is 
maximum. When constructing the ACS Ca(wi,wj), we 
eliminate from the set of ACSs to be considered for during the 
future iterations, at most, two ACSs that are portions of the 
SACS : 

(i) The ACS, let us call it Ca(wi,wr), that has wi as an 
approximate prefix, 

(ii) Or/and the ACS, let us call it Ca(ws,wj), that has wj as 
an approximate suffix. 

Case 1 : |E(Ca(wi,wj))|=0. 
In this case, we have then E(Ca(wi,wj))=Ø. An ACS 
Ca(wu,wv)∈Ø implies that Ca(wu,wv)=ν. Then we have : 

ωa(wu,wv)=|ν|=0  
Since ωa(wi,wj) is positive, we have then :  
 

)

0))

,(

,(,(

*2

)),((),(

jia

aa
wwCwwC

ww

wwww vuyx

jiayxa

ω

ωω

<

==

∈
Σ

E

(11) 

 
Case 2 : |E(Ca(wi,wj))|=1. 

In this case, we have then E(Ca(wi,wj))={Ca(wi,wr)} or 
E(Ca(wi,wj))={Ca(ws,wj)}. Let us consider the subcase where 
E(Ca(wi,wj))={Ca(wi,wr)}. Since ωa(wi,wj) is maximum, we 
have then :  
 
ωa(wi,wr)≤ωa(wi,wj),               (12) 

 
Then, we have : 
 

)))

))

,(,(

,(,(

*2

 
)),((),(

jiajia

aa
wwCwwC

wwww

wwww riyx

jiayxa

ωω

ωω

<

=

∈

≤

Σ
E

   

(13) 

i.e. : 
 

  
C

a
(w

x
,w

y
) ∈E (C

a
(w

i
, w

j
))

Σ ωa(wx ,wy ) < 2 * ωa(wi ,wj )

  

(14) 

 
We process in the same way the subcase where 
E(Ca(wi,wj))={Ca(ws,wj)}. 

Case 3 : |E(Ca(wi,wj))|=2. 
In this case, we have then E(Ca(wi,wj))={Ca(wi,wr), 
Ca(ws,wj)}. Since ωa(wi,wj) is maximum, we have then :  
 
ωa(wi,wr)≤ωa(wi,wj),               (15) 

 
ωa(ws,wj)≤ωa(wi,wj).               (16) 

 
Then, we have : 

ωa(wi,wr)+ωa(ws,wj)≤2*ωa(wi,wj),             
(17) 

i.e. : 
 

 
C

a
(w

x
,w

y
) ∈E (C

a
(w

i
, w

j
))

Σ ωa(wx ,wy ) ≤ 2 * ωa(wi ,wj )

  

(18) 

 
Now, if we consider all the ACSs Ca(wi,wj), 1≤i, j≤n, 
constructed thanks to our algorithm, we have then : 
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(19) 

 
i.e. :  
 
Ωa(Smaxa)≤2*Ωa(Sa).               (20) 

 
Hence : 
 
1
2

* Ω a (Smaxa ) ≤ Ω a(Sa ).                (21) 

  
Proposition 5. Our greedy SACS algorithm is of complexity 
O(n2*(l2+log(n))) in computing time. 
 
Proof. By using our greedy SACS algorithm, we operate as 
follows :  

(i) First, we compute all the weights ωa(wi,wj), 1≤i, j≤n. 
That is, we compute all the LALOs. According to Proposition 
3, this phase is of complexity O(n2*l2) in computing time. 
Then, we sort the computed weights. It is well known that the 
sorting of k integers can be done in a time of the order of 
O(k*log(k)) [26]. We have of the order of O(n2) weights to be 
sorted, so the sorting phase of our algorithm can be achieved 
in a time of the order of O(n2*log(n)). Hence, the first step of 
our greedy SACS algorithm is of complexity 
O(n2*(l2+log(n))) in computing time. 

(ii) Then, during each iteration, we select from f two 
strings wi and wj such that ωa(wi,wj) is maximum, remove 
from f the strings wi and wj and add to f the ACS Ca(wi,wj). 
We repeat this process until f contains only one string. Then, 
each iteration is achieved in a constant time. We have of the 
order of O(n) iterations, then the second step of our greedy 
SACS algorithm is of complexity O(n) in computing time. 

Hence, our greedy SACS algorithm is of complexity 
O(n2*(l2+log(n))) in computing time.   

V. CONCLUSION AND OPEN PROBLEMS 
We have presented a SACS greedy approximation 

algorithm. Our algorithm is comparable to the greedy one, 
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described in [18, 19, 16], to construct the longest hamiltonian 
path [20]. Our greedy algorithm is a 1/2-approximation for the 
SACS problem. Our greedy SACS algorithm is of complexity 
O(n2*(l2+log(n))) in computing time, where n is the number 
of the strings and l is the length of a string. Our SACS 
algorithm is based on computation of the Length of the 
Approximate Longest Overlap (LALO). We have presented an 
algorithm of computation of the LALO. This algorithm is of 
complexity O(l2) in computing time and in memory space. 

Finally, to conclude we pose the following open problems: 
Can the factor α=1/2 be improved on in the worst case? Can 
the complexity of the proposed LALO algorithm be reduced? 
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