
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:12, 2007

605

Abstract—The Shortest Approximate Common Superstring
(SACS) problem is : Given a set of strings f={w1, w2, … , wn},
where no wi is an approximate substring of wj, i ≠ j, find a shortest
string Sa, such that, every string of f is an approximate substring of
Sa. When the number of the strings n>2, the SACS problem becomes
NP-complete. In this paper, we present a greedy approximation
SACS algorithm. Our algorithm is a 1/2-approximation for the SACS
problem. It is of complexity O(n2*(l2+log(n))) in computing time,
where n is the number of the strings and l is the length of a string.
Our SACS algorithm is based on computation of the Length of the
Approximate Longest Overlap (LALO).

Keywords—Shortest approximate common superstring,
approximation algorithms, strings overlaps, complexities.

I. INTRODUCTION
HE Shortest Approximate Common Superstring (SACS)
problem is : Given a set of strings f={w1, w2, … , wn}

where no wi is an approximate substring of wj, i≠j, find a
shortest string Sa, such that, every string of f is an
approximate substring of Sa. When the number of the strings
n>2, the SACS problem becomes NP-complete [1, 2, 3, 4, 5].

Motivation: DNA Sequence Assembly [6, 7, 8, 9, 10, 11,
12]: The SACS problem is actually a reduction of the DNA
Sequence Assembly (DSA) one, since the strings of f code
fragments of, only, one strand of a DNA macromolecule.

Microarray Production [13]: During microarray production,
several thousands of oligonucleotides (short DNA sequences)
are synthesized in parallel, one nucleotide at a time. We are
interested in finding the shortest possible nucleotide
deposition sequence to synthesize all oligos in order to reduce
production time and increase oligo quality. Thus we study the
shortest common superstring problem of several thousand
short strings over a four-letter alphabet.

Previous works: Among the approximation algorithms that
deal with the SACS problem, we mention Peltola et al.'s one
[6], Ukkonen's one [14], Kececioglu's one [15], that is an
adaptation of Tarhio and Ukkonen's greedy one [16], Teng
and Yao's one [17]. Kececioglu conjectures that his adaptation
is a (1-f(ε))/2-approximation for the SACS problem, where ε
is the error rate and f(ε)→0 as ε→0. Peltola

A.S. Rebaï is with Computer Science Doctoral School, Faculty of Sciences
of Tunis, El Manar 2092 Tunis, Tunisia (e-mail: samirebai@webmails.com).

M. Elloumi is with Computer Science Department, Faculty of Economic
Sciences and Management of Tunis, Faculty of Economic Sciences and
Management of Tunis, El Manar 2092 Tunis, Tunisia (e-mail:
Mourad.Elloumi@fsegt.rnu.tn).

adaptation is a (1-f(ε))/2-approximation for the SACS
problem, where ε is the error rate and f(ε)→0 as ε→0. Peltola
et al. give no guarantee on the performance of their algorithm.

Our result: In this paper, we present a greedy

approximation SACS algorithm. Our greedy algorithm is
comparable to the greedy one, described in [18, 19, 16], to
construct the longest hamiltonian path [20]. Our greedy
algorithm is a 1/2-approximation for the SACS problem. Our
greedy algorithm is of complexity O(n2*(l2+log(n))) in
computing time, where n is the number of the strings and l is
the length of a string. Our SACS algorithm is based on the
computation of the Length of the Approximate Longest
Overlap (LALO).

In the first section of this paper, we present some
definitions and notations.

In the second section, we present our algorithm of
computation of the LALO

In the third section, we present our greedy approximation
SACS algorithm.

Finally, in the last section, we present our conclusion and
pose open problems.

II. DEFINITIONS AND NOTATIONS
Let A be a finite alphabet, a string is an element of A*, it is

a concatenation of elements of A. The length of a string w,
denoted by |w|, is the number of the characters that constitute
this string. The null length string will be denoted by ν. The ith
character of w will be denoted by wi. A portion of a string w
that begins at the position i and ends at the position j, 1≤i≤j
≤n, is called substring of w and will be denoted by wi,j. When
i=1 and 1≤j≤n then the substring w1,j is called prefix of w and
when 1≤i≤n and j=n then the substring wi,n is called suffix of
w. The set of the suffixes of w will be denoted by S(w) and the
set of the prefixes of w will be denoted by P(w).

The Levenshtein distance, denoted by dσ,γ,δ, is the
minimum cost of a sequence of edit operations, i.e., change of
cost σ, insert of cost γ and delete of cost δ, that change one
string w into another string w' :

dσ,γ,δ(w,w')=mini{σ*mi+γ*ni+δ*li} (1)

with mi, ni and li are, respectively, the numbers of changes,
inserts and deletes necessary to change w into w'.

Let S and w be two strings, |S|>|w |, and ε be an error rate,
ε>0, we say that w is an approximate substring of S, if and
only if, there exists a substring w' of S such that :

Approximation Algorithm for the Shortest
Approximate Common Superstring Problem

A.S. Rebaï, and M. Elloumi

T

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:12, 2007

606

εδγσ ||
)',(

,, ≤w

wwd
 (2)

Let w and w' be two strings and ε be an error rate, ε>0, we

say that w approximately overlaps with w', if and only if,
there exist x1 and x2, respectively, a prefix and a suffix of w
and there exist x'1 and x'2, respectively, a prefix and a suffix
of w' such that :

εδγσ |)'||,(|
)',(

,,

≤
12
12

xxmax
xxd

 (3)

If x2 is the longest suffix of w and x'1 is the longest prefix of
w' that resemble the most to each other, i.e. :

{ }'||,(|
)'

{||,(|
)'

||,(|
)'

|)

,(

|)'

,(

|)'

,(

,,,,

,,

)'()()',(ji

ji

12
12

12
12

ji
min xxmax

xx
xmax

xx

xmax
xx

d

x

d

x

d

wwxx
δγσδγσ

δγσ
ε

PS ×∈
=

≤

 (4)

then :

(i) If |x2|>|x'1| then the length |x2| is the Length of the
Approximate Longest Overlap (LALO), the string x1x'1x'2,
also denoted by Ca(w,w'), is the Approximate Compact String
(ACS) and is of weight ωa(w,w')=|x2|.

(ii) Otherwise, the length |x'1| is the LALO, the string
x1x2x'2, also denoted by Ca(w,w'), is the ACS and is of
weight ωa(w,w')=|x'1|.

Let f={w1, w2, … , wn} be a set of strings, where no wi is
an approximate substring of wj, i≠j, we define on f an order
relation, denoted by ⇒a, satisfying the following properties :

(i) if wi⇒awj then wi approximately overlaps with wj.
(ii) if wi⇒awj then for any k, k≠j, we cannot have wi-

awk
An approximate common superstring associated with the set f
and the order relation →a defined on f, wi1→awi2→a …
→awin, wik∈f for 1≤k≤n, is the string Sa=Ca(Ca(…
Ca(Ca(wi1,wi2),wi3) … ,win-1),win). With each approximate
common superstring Sa=Ca(Ca(… Ca(Ca(wi1,wi2),wi3) …
,win-1),win), we associate a positive weight, denoted by
Ωa(Sa), that expresses the amount of compression of Sa :

Ω a(Sa) =
k = 1

n −1

Σ ωa (wik ,wik +1
) (5)

The weight Ωa(Sa) can also be expressed by the following
equation :

Ω a(Sa) = (
i = 1

n

Σ | wi |)−| Sa | (6)

Hence, since |wi |
i = 1

n
∑ is a constant for a given family f, we

can define, by using equation (6), the SACS to f as the one
that maximizes Ωa.

By using our definition of a SACS, we can reformulate the
SACS problem as follows : Given a set of strings f={w1, w2,
… , wn}, where no wi is an approximate substring of wj, i≠j,
find an order relation →a defined on f, wi1→awi2→a …
→awin, wik∈f for 1≤k≤n, such that the string Sa=Ca(Ca(…
Ca(Ca(wi1,wi2),wi3) … ,win-1),win) maximizes Ωa.

An algorithm A is an α-approximation for a minimization
problem P with respect to a function f, if and only if, it gives
in a polynomial time a solution S for P such that
f(S)≤α*f(Smin), where Smin is a solution to P that minimizes f
and α>1. An algorithm A is an α-approximation for a
maximization problem P with respect to a function f, if and
only if, it gives in a polynomial time a solution S for P such
that f(S)≥α*f(Smax), where Smax is a solution to P that
maximizes f and 0<α<1.

III. COMPUTATION OF THE LALO
The computation of the LALO between two strings boils

down to find the longest suffix of the first string and the
longest prefix of the second one that resemble the most to
each other. Our algorithm of computation of the LALO,
Algorithm 1, is a dynamic programming one [21, 22]. By
using this algorithm, we proceed within three steps :

(i) During the first step, we compute the Levenshtein
distances between the different suffixes of the first string and
the different prefixes of the second one : the computation of
the distances between the longer prefixes and the shorter
suffixes is done by using the results of the computations of
the distances between the shorter prefixes and the longer
suffixes. We reiterate this process, until the distances between
the different suffixes and prefixes are computed.

(ii) During the second step, we locate the pairings that
generate the longest suffix x of the first string and the longest

prefix x' of the second one such that
d σ ,γ , δ (x, x')
max(|x|,|x' |) is

minimum: during each iteration, we consider a prefix x' of the
second string. For this prefix, we determine the pairings that
generate the longest suffix x of the first string such that
dσ,γ,δ(x,x') is minimum. The pairings between the longer
suffixes of the first string and the shorter prefixes of x' are
located according to the pairings between the shorter suffixes
of the first string and the longer prefixes of x'. We reiterate
this process, until we locate all the pairings that generate the
longest suffix x of the first string such that dσ,γ,δ(x,x') is

minimum. If suffix x and prefix x' are such that
dσ ,γ , δ (x, x')
max(|x|,|x' |)

is also minimum then they will be considered during the third
step.

(iii) Finally, during the third step, we consider suffix x and

prefix x', located during the second step. If
dσ ,γ , δ (x, x')
max(|x|,|x' |) ≤ ε ,

i.e., x is the longest suffix and x' is the longest prefix that

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:12, 2007

607

resemble the most to each other, then from |x| and |x'| we
compute the LALO and construct the ACS.

Algorithm 1 is comparable to Wagner and Fischer's
algorithm [23] to compute the Levenshtein distance between
two strings, to Sellers's one [24] to have a string-matching
with k-differences, to Peltola et al.'s one [6] to compute an
overlap between two strings and to Elloumi's one [25] to have
an approximate string-matching.

We define the cost σi,j of the change operation of the ith
character of a string w' by the jth character of a string w as
follows :

{ if 0
0 otherwise,

 ,

ji ww' =
≠

=
σσ

σ ji (7)

Algorithm 1.
(i) (i.a) Construct a matrix M of size (|w'|+1)*(|w|+1);{ filling
}
 (i.b) for i:=1 to |w'| do M[i,0]:=i*δ endfor;
 for j:=0 to |w| do M[0,j]:=0 endfor;
 for i:=1 to |w'| do
 for j:=1 to |w| do
 M[i,j]:=min{M[i-1,j]+δ, M[i,j-1]+γ, M[i-1,j-1]+σi,j}
 endfor
 endfor;
(ii) ρ:=+∞; iρ:=0; jρ:=0; { traceback }
 for i:=1 to |w'| do
 j:=|w|; i':=i;
 (ii.a) while i'≠1 and j≠0 do
 if M[i',j]=M[i',j-1]+γ then j:=j-1
 else
 if M[i',j]=M[i'-1,j-1]+σi',j then j:=j-1; i':=i'-1
 else i':=i'-1
 endif
 endif
 endwhile;
 (ii.b) if w'1≠wj then j:=j+1 endif
 (ii.c) if ρ≥M[i,|w|]/max(|w|-j+1,i) then
 ρ:=M[i,|w|]/max(|w|-j+1,i); iρ:=i; jρ:=j
 endif
 endfor.
(iii) if ρ≤ε then { evaluation }
 if (|w|-jρ+1)<iρ then
 iρ is the LALO;
 ww'iρ+1,|w'| is the ACS of weight ωa(w,w'):=iρ
 else
 (|w|-jρ+1) is the LALO;
 w1,jρ-1w' is the ACS of weight ωa(w,w'):=(|w|-jρ+1)
 endif
 else
 w do not approximately overlap with w'
 endif.

Proposition 1. Let w and w' be two strings and ε be an error
rate, ε>0, Algorithm 1 tests if w approximately overlaps with
w' and, if so, computes the LALO and constructs the ACS.
Proof. During step (i), we compute the Levenshtein distances
between the different suffixes of w and the different prefixes

of w' : we construct a matrix M of size (l+1)2 and fill it in the
same way as Wagner and Fischer's dynamic programming
algorithm [23] but we set M[0,j]:=0, for any j, 0≤j≤|w|.

During step (ii), we locate the longest suffix x of w and the

longest prefix x' of w' such that
dσ ,γ , δ (x, x')
max(|x|,|x' |) is minimum :

during each iteration of the "for" loop, we consider a prefix
w'1,i, 0≤i≤|w'|, of w' by starting from cell M[i,|w|]. For this
prefix, we determine the longest suffix x of w such that
dσ,γ,δ(x,w'1,i) is minimum. This can be done thanks to a
traceback in the matrix M, by using the "while" loop of
substep (ii.a) : let M[i,j] be the current cell, the next cell to be
visited is M[i',j'], where :

M[i',j']=M[i,j-1], if M[i,j]=M[i,j-1]+γ else
M[i',j']=M[i-1,j-1], if M[i,j]=M[i-1,j-1]+σi,j else
M[i',j']=M[i-1,j].

Hence, at each iteration of the "while" loop, we try to go to
the leftmost side of w, then, try to have a longer suffix of w.
The "while" loop stops when we reach row 1. It stops, too,
when we reach column 0, i.e., if the whole string w is an
approximate prefix of w'. Now, let j be the column reached
when we reach row 1. Suffix wj,|w| is the suffix of w such that

dσ , γ ,δ (wj ,|w| ,w' 1, i) = min

x ∈S (w)
{dσ ,γ ,δ (x ,w' 1,i)} . During

substep (ii.c), if prefix w'1,i and suffix wj,|w| are such that

dσ ,γ ,δ (w j ,|w| ,w'1,i)

max (|w j ,|w| |,|w'1,i |)
 = min

(x,x ') ∈S (w)×P (w')
{

dσ ,γ ,δ (x, x')
max (|x|,|x'|)} then

we set ρ=
dσ , γ ,δ (w j ,|w| ,w' 1,i)

max(|w j ,|w| |,|w' 1,i |)
 and locate prefix w'1,i and

suffix wj,|w| by setting iρ:=i and jρ:=j; to consider them during
step (iii).

Finally, during step (iii), we check-up if w approximately
overlaps with w' and, if so, we compute the LALO and
construct the ACS : : if ρ≤ε then, if |wjρ,|w||<|w'1,iρ| then
|w'1,iρ| is the LALO and ww'iρ+1,|w'| is the ACS of weight
ωa(w,w'):=|w'1,iρ| otherwise |wjρ,|w|| is the LALO and w1,jρ-
1w' is the ACS of weight ωa(w,w'):= |wjρ,|w||.

Proposition 2. Algorithm 1 is of complexity O(l2) in
computing time and in memory space, where l is the length of
a string.

Proof. During step (i), we fill linewise matrix M of size
(l+1)2. So, time complexity of step (i) is O(l2).

During step (ii), for each prefix of w', we do a traceback in
matrix M. This traceback is done in a time of the order of
O(|w|). In all, we have |w'| prefixes in w', so step (ii) is
achieved in a time of the order of O(|w'|*|w|), i.e., of the order
of O(l2).

Hence, Algorithm 1 is of complexity O(l2) in computing
time.

Finally, matrix M is of size (l+1)2 then Algorithm 1 is of
complexity O(l2) in memory space.
Example. Let us take w=ecaabeabdc and w'=fabdbcaeba and
set ε=0.50, σ=2 and δ=γ=1. The longest suffix of w and the
longest prefix of w' that resemble the most to each other are,

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:12, 2007

608

respectively, x=abdc and x'=fabdbc. We have

d 2,1,1 (x,x')
max(|x|,|x' |)

 < 0.50

d2,1,1(x,x')
max(|x|,|x' |)

 =0.33= min
(xi ,x' j)∈S (w)×P (w')

{
d 2,1,1 (xi,x ' j)
max (|xi |,|x ' j |)

}{

 Fig. 1 Computation the LALO

e c a a b e a b d c

0 0 0 0 0 0 0 0 0 0 0

2 2 2 1 1 2 2 1 2 2 2 a 1

1 1 1 1 1 1 1 1 1 1 1 f 1

3 3 3 2 2 1 2 2 1 2 3 b 0 .7 5

4 4 4 3 3 2 3 3 2 1 2 d 0 .5 0

5 5 5 4 4 3 4 4 3 2 3 b 0 .6 0

7 7 6 5 5 5 6 5 5 4 3 a 0 .4 3

1 0 9 9 8 7 7 7 6 7 7 6 a 0 .6 0

9 8 8 7 7 6 6 7 6 6 5 b 0 .5 6

8 7 7 6 6 6 5 6 6 5 4 e 0 .5 0

6 6 5 5 5 4 5 5 4 3 2 c 0 .3 3

ν
ν
w

w '
x

x '

L e g e n d
:
 P a t h t o f o l l o w

: w ' ' i = w j

ρ=

d 2,1,1 (x i , x j)/ max (x i ,x j)

Fig. 2 x is the longest suffix of w and x' is the longest prefix of w'
that resemble the most to each other

 x

 w e c a a b e a b d c

 w' f a b d b c a e b a

 x’
Proposition 3. Let f be a set of strings and ε be an error rate,
ε>0, by using Algorithm 1, the computation of the LALOs
between all the strings of f is done in a time of the order of
O(n2*l2) and by using a memory space of the order of O(l2),
where n is the number of the strings and l is the length of a
string.

Proof. According to Proposition 2 :

(i) Algorithm 1 is of complexity O(l2) in computing time.
In all, we have of the order of O(n2) couples of strings, then,
we have of the order of O(n2) LALOs to be computed. Hence,
the computation of the LALOs between all the strings of f is
done in a time of the order of O(n2*l2).

(ii) By using Algorithm 1, the computation of the LALO
between two strings w and w' is done by using a matrix M of
size (|w'|+1)*(|w|+1), i.e., of size (l+1)2. The same matrix is
used to compute all the LALOs between all the strings of f.
Hence, the computation of the LALOs between all the strings
of f is done by using a memory space of the order of O(l2).

IV. CONSTRUCTION OF A SACS
Let f={w1, w2, … , wn} be a set of strings, where no wi is

an approximate substring of wj, i≠j, and Sa be a SACS to f.
Our SACS algorithms are based on following observation: the
greater Sa's weight is the shorter Sa's length is.

Our Approximation Algorithm
Our approximation SACS algorithm is a greedy one, it

operates as follows:
(i) First, we compute all the weights ωa(wi,wj), 1≤i, j≤n,

eliminate from f all the strings that are approximate
prefix/suffix of others, eliminate the weights related to these
strings from the set of the computed weights, and sort this set
of weights.

(ii) Then, during each iteration, we select from f two
strings wi and wj such that ωa(wi,wj) is maximum, remove
from f the strings wi and wj and add to f the ACS Ca(wi,wj).
We repeat this process until f contains only one string. This
string is considered to be a solution to the SACS problem.

Proposition 4. Our greedy SACS algorithm is a 1/2-
approximation for the SACS problem.

Proof. Let Sa be the approximate common superstring
constructed thanks to our greedy SACS algorithm and Smaxa
be the SACS. To show that :

)()(*
2
1

aaa SS
amax Ω≤Ω (8)

 (i) First, we show that for every constructed ACS

Ca(wi,wj), we have :

),) ,(,(*2
)),((),(

jiaa
wwCwwC

wwww yx

jiayx

ωω ≤Σ
∈ E

a

(9)

where E(Ca(wi,wj)) is the set of ACSs that are portions of the
SACS and that were eliminated, from the set of ACSs to be
considered for during the future iterations, when constructing
the ACS Ca(wi,wj).

(ii) Then, we show that :

).

)

,(

,(

*2

),(

)),((),(),(

][

jia

SwwC

a
wwCwwCSwwC

ww

ww

aajia

yx

jiayxa
aajia

ω

ω

⊂

∈⊂

Σ

ΣΣ

≤

E

(10)

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:12, 2007

609

So, during each iteration of our algorithm, we select from f
two strings wi and wj such that ωa(wi,wj) is maximum, i.e., we
construct an ACS Ca(wi,wj) of weight ωa(wi,wj) that is
maximum. When constructing the ACS Ca(wi,wj), we
eliminate from the set of ACSs to be considered for during the
future iterations, at most, two ACSs that are portions of the
SACS :

(i) The ACS, let us call it Ca(wi,wr), that has wi as an
approximate prefix,

(ii) Or/and the ACS, let us call it Ca(ws,wj), that has wj as
an approximate suffix.

Case 1 : |E(Ca(wi,wj))|=0.
In this case, we have then E(Ca(wi,wj))=Ø. An ACS
Ca(wu,wv)∈Ø implies that Ca(wu,wv)=ν. Then we have :

ωa(wu,wv)=|ν|=0
Since ωa(wi,wj) is positive, we have then :

)

0))

,(

,(,(

*2

)),((),(

jia

aa
wwCwwC

ww

wwww vuyx

jiayxa

ω

ωω

<

==

∈
Σ

E

(11)

Case 2 : |E(Ca(wi,wj))|=1.

In this case, we have then E(Ca(wi,wj))={Ca(wi,wr)} or
E(Ca(wi,wj))={Ca(ws,wj)}. Let us consider the subcase where
E(Ca(wi,wj))={Ca(wi,wr)}. Since ωa(wi,wj) is maximum, we
have then :

ωa(wi,wr)≤ωa(wi,wj), (12)

Then, we have :

)))

))

,(,(

,(,(

*2

)),((),(

jiajia

aa
wwCwwC

wwww

wwww riyx

jiayxa

ωω

ωω

<

=

∈

≤

Σ
E

(13)

i.e. :

C

a
(w

x
,w

y
) ∈E (C

a
(w

i
, w

j
))

Σ ωa(wx ,wy) < 2 * ωa(wi ,wj)

(14)

We process in the same way the subcase where
E(Ca(wi,wj))={Ca(ws,wj)}.

Case 3 : |E(Ca(wi,wj))|=2.
In this case, we have then E(Ca(wi,wj))={Ca(wi,wr),
Ca(ws,wj)}. Since ωa(wi,wj) is maximum, we have then :

ωa(wi,wr)≤ωa(wi,wj), (15)

ωa(ws,wj)≤ωa(wi,wj). (16)

Then, we have :

ωa(wi,wr)+ωa(ws,wj)≤2*ωa(wi,wj),
(17)

i.e. :

C

a
(w

x
,w

y
) ∈E (C

a
(w

i
, w

j
))

Σ ωa(wx ,wy) ≤ 2 * ωa(wi ,wj)

(18)

Now, if we consider all the ACSs Ca(wi,wj), 1≤i, j≤n,
constructed thanks to our algorithm, we have then :

),

)

,(

,(

*2

),(

)),((),(),(

][

jia

SwwC

a
wwCwwCSwwC

ww

ww

aajia

yx

jiayxaaajia

ω

ω

⊂

∈⊂

Σ

ΣΣ

≤

E

(19)

i.e. :

Ωa(Smaxa)≤2*Ωa(Sa). (20)

Hence :

1
2

* Ω a (Smaxa) ≤ Ω a(Sa). (21)

Proposition 5. Our greedy SACS algorithm is of complexity
O(n2*(l2+log(n))) in computing time.

Proof. By using our greedy SACS algorithm, we operate as
follows :

(i) First, we compute all the weights ωa(wi,wj), 1≤i, j≤n.
That is, we compute all the LALOs. According to Proposition
3, this phase is of complexity O(n2*l2) in computing time.
Then, we sort the computed weights. It is well known that the
sorting of k integers can be done in a time of the order of
O(k*log(k)) [26]. We have of the order of O(n2) weights to be
sorted, so the sorting phase of our algorithm can be achieved
in a time of the order of O(n2*log(n)). Hence, the first step of
our greedy SACS algorithm is of complexity
O(n2*(l2+log(n))) in computing time.

(ii) Then, during each iteration, we select from f two
strings wi and wj such that ωa(wi,wj) is maximum, remove
from f the strings wi and wj and add to f the ACS Ca(wi,wj).
We repeat this process until f contains only one string. Then,
each iteration is achieved in a constant time. We have of the
order of O(n) iterations, then the second step of our greedy
SACS algorithm is of complexity O(n) in computing time.

Hence, our greedy SACS algorithm is of complexity
O(n2*(l2+log(n))) in computing time.

V. CONCLUSION AND OPEN PROBLEMS
We have presented a SACS greedy approximation

algorithm. Our algorithm is comparable to the greedy one,

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:12, 2007

610

described in [18, 19, 16], to construct the longest hamiltonian
path [20]. Our greedy algorithm is a 1/2-approximation for the
SACS problem. Our greedy SACS algorithm is of complexity
O(n2*(l2+log(n))) in computing time, where n is the number
of the strings and l is the length of a string. Our SACS
algorithm is based on computation of the Length of the
Approximate Longest Overlap (LALO). We have presented an
algorithm of computation of the LALO. This algorithm is of
complexity O(l2) in computing time and in memory space.

Finally, to conclude we pose the following open problems:
Can the factor α=1/2 be improved on in the worst case? Can
the complexity of the proposed LALO algorithm be reduced?

REFERENCES
[1] D. Maier, J. A. Storer, A note on complexity of the superstring problem,

TR-233, Princeton University, Dept. EECS : (1977).
[2] D. Maier, The complexity of some problems on subsequences and

supersequences, J. of ACM, Vol. 25, N°2 : (April 1978), p322-336.
[3] M. R. Garey, D. S. Johnson, Computers and intractability, Freeman

(Ed.) : (1979).
[4] J. K. Gallant, D. Maier, J. Storer, On finding minimal length

superstrings, J. Computer and System Sciences, Vol. 20, N°1 : (1980),
p50-58.

[5] D. S. Hirschberg, Recent results on the complexity of common-
subsequence problems, Time Warps, String Edits and Macromolecules
The Theory and Practice of Sequence Comparison, Sankoff and Kruskal
(Eds.), Addison-Wesley Pub. Inc. : (1983), p325-330.

[6] H. Peltola, H. Söderlund, E. Ukkonen, SEQAID : A DNA sequence
assembling program based on a mathematical model, Nucleic Acids
Research, Vol. 12, N°1 : (1984), p307-321.

[7] S. Dear, R. Staden, A sequence assembly and editing program for
efficient management of large projects, Nucleic Acids Research, Vol. 19
: (1991), p3907-3911.

[8] X. Huang, A contig assembly program based on sensitive detection of
string overlaps, Genomics, N°14 : (1992), p18-25.

[9] J. Kececioglu, E. Myers, Combinatorial algorithms for DNA sequence
assembly, Algorithmica, Vol. 13, N°12, Springer International Eds. :
(1995), p7-51.

[10] G. G. Sutton, O. White, M. D. Adams, A. R. Kerlavage, TIGR
Assembler: A new tool for assembing large shotgun sequencing projects,
Genome Science & Technology, Vol. 1, N°1, Mary Ann Liebert, Inc. :
(1995), p9-19.

[11] M. Elloumi, DNA Sequence Assembly Algorithms Based on Clustering
Approaches, The 2000 International Conference on Mathematics and
Engineering Techniques in Medicine and Biological Sciences,
METMBS'2000 (Las Vegas, Nevada, USA) : (June 2000).

[12] J. Cohen, Bioinformatics-An Introduction For Computer Scientists,
ACM Computing Surveys, Vol 36, No 2, June 2004, p122-158.

[13] S. Rahmann, The Shortest Common Supersequence Problem In a
Microarray Production Setting, Bioinformatics, Vol 19, (2003), p ii156-
ii161.

[14] E. Ukkonen, A Linear time algorithm for finding approximate shortest
common superstrings, Algorithmica, N°5: (1990), p313-323.

[15] J. Kececioglu, Exact and approximation algorithms for DNA sequence
reconstruction, Ph.D. dissertation, Technical Report, N°91-26, Dept. of
Computer Science, The University of Arisona, Tucson, AZ 85721 :
(1991).

[16] J. Tarhio, E. Ukkonen, A greedy approximation algorithm for
constructing shortest common superstrings, Theo. Comput. Sci., N°57:
(1988), p131-145.

[17] S. Teng, F. Yao, Approximation shortest superstrings, 34th IEEE
Symposium on Foundation of Computer Science : (1993).

[18] T. A. Jenkyns, The greedy travelling salesman's problem, Networks N°9
: (1979), p363-373.

[19] J. K. Gallant, The complexity of the overlap method for sequencing
biopolymers, J. Theor. Biol., N°101 : (1982), p1-17.

[20] J. Van Leeuwen, Graph algorithms, Handbook of Theoretical Computer
Science, Vol. A : Algorithms and Complexity, J. Van Leeuwen (Ed.),
Elsevier Science Pub. B. V. : (1990), p527-631.

[21] R. E. Bellman, Dynamic Programming, Princeton University Press, New
Jersey : (1957)

[22] R. E. Bellman, S. E. Dreyfus, Applied Dynamic Programming, Princeton
University Press, New Jersey : (1962)

[23] R. A. Wagner, M. J. Fischer, The string-to-string correction problem, J.
of ACM, Vol 21 No 1 : (1974), p168-173.

[24] P. H. Sellers, The theory and computation of Evolutionary distances :
Pattern recognition, J. Algorithms, No 1 : (1980) p359-373.

[25] M. Elloumi, An algorithm for the approximate string-matching problem,
Atlantic Symposium on Computational Biology, Genome Information
Systems & Technology, CBGI'2001, (Durham, North Carolina,
U.S.A.) : (March 2001).

[26] J. S. Vitter, Ph. Flajolet, Average-case analysis of algorithms and data
structures, Handbook of Theoretical Computer Science, Vol. A :
Algorithms and Complexity, J. Van Leeuwen (Ed.), Elsevier Science
Pub. B. V. : (1990), p431-524.

