International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:6, 2016

Approximately Similarity Measurement of Web Sites
Using Genetic Algorithms and Binary Trees

Doru Anastasiu Popescu, Dan Radulescu

Abstract—In this paper, we determine the similarity of two
HTML web applications. We are going to use a genetic algorithm in
order to determine the most significant web pages of each application
(we are not going to use every web page of a site). Using these
significant web pages, we will find the similarity value between the
two applications. The algorithm is going to be efficient because we
are going to use a reduced number of web pages for comparisons but
it will return an approximate value of the similarity. The binary trees
are used to keep the tags from the significant pages. The algorithm
was implemented in Java language.

Keywords—Tag, HTML, web page, genetic algorithm, similarity
value, binary tree.

1. INTRODUCTION

ENETIC algorithms are used to solve optimization

problems. They belong to the class of Evolutionary
Algorithms and they can be used in a big variety of fields such
as 1image processing, computational physics, artificial
intelligence and even agriculture (as in [4]). The genetic
algorithms have been inspired by natural processes and it is
considered a heuristic algorithm. Also, there have been
developed methods for determining the similarity of two web
sites but they are not efficient as they work with a big number
of web pages. Examples of such algorithms are written in [5]
and [6]. Other applications of the genetic algorithm can be
found in [1]-[3]. In [7], it is described a similarity
measurement algorithm using genetic algorithms. Papers [8]-
[10] show different ways of determining the similarity
between two web sites. A very interesting application is using
the edit distance, which can be combined with a genetic
algorithm as in [11]-[13].

In our paper, the genetic algorithm will return a
chromosome for each web application. These chromosomes
will be represented by a binary tree which keeps a set of
distinct tags from our applications. We will present in detail
the genetic elements and the structures used in the algorithm
in Section II. We will also give an example to show the exact
meaning of the presented definitions. In Section III, we will
present the algorithm sequences and in Section IV, we will
present the results obtained from testing and we are going to
group the data into a table and diagrams. In Section V, we
present the conclusions and information about future work and
in the last one the references.

Doru Anastasiu Popescu is with the University of Pitesti, Faculty of
Mathematics and Computer Science, Romania (e-mail:
dopopan@yahoo.com).

Dan Radulescu is with the Department of Computing, National College
“Radu Greceanu”, Slatina, Romania (e-mail: dan_radulescu96@yahoo.com).

II. PRESENTING THE ALGORITHM AND EXAMPLES

Our algorithm is divided in two important steps. The first
step is the one where we determine a significant set of tags for
each web site. And in the second step, we determine the
similarity value by using a specific method.

Firstly, let’s present the genetic elements. We will start with
a population of chromosomes containing a certain number of
chromosomes; each chromosome contains the same number of
genes. Each chromosome will be characterized by a set of web
pages (kept by an array) and by a binary tree (formed with the
distinct tags from the web pages found in the array presented
above). We will have a sequence for mutation one for cross-
over and one for selection. Now we are going to present the
performance function (also called fitness function). We will
have an array in which “element i gives us the number of
distinct tags from chromosome i”. The best chromosome it is
the one with the biggest number of distinct tags. So, at the end
of this part we will have determined a binary tree for each web
site, containing a set of significant tags. We will use web
pages el, e2, e3 and e4 as examples. We will use inorder
traversal to show the binary trees.

The final sentence of a caption must end with a period.

TABLEI
HTML CODE FOR WEB PAGES el AND 2
el.html e2.html
<HTML> <HTML>
<HEAD> </HEAD> <HEAD> </HEAD>
<BODY> examplel <BODY>
<U>al </U> <[> a2 </I>

<I>a2 </I> <U>al </U>

</BODY> </BODY>
</HTML> </HTML>
TABLEII
HTML CODE FOR WEB PAGES 3 AND ¢4
e3.html e4 HTML
<HTML> <HTML>
<HEAD> </HEAD> <HEAD>
<BODY> example3 </HEAD>
<hl>al </h1>
 <BODY>
</BODY> example4
</HTML>
<[><U>a3</I></U>
</BODY>
</HTML>

e Binary tree for el.html: </BODY> </HEAD> </HTML>
</I> </U> <BODY> <HEAD> <HTML> <[> <U>

e Binary tree for e2.html: </BODY> </HEAD> </HTML>
</I> </U> <BODY>
 <HEAD> <HTML> <I> <U>

e Binary tree for e3.html: </BODY> </h1> </HEAD>
<BODY> <h1> <HEAD> <HTML>

1150

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:6, 2016

e Binary tree for e4.html: </BODY> </HEAD>
</HTML> </I> </U> <BODY> <HEAD>
<HTML> <[> <U>

Now we observe that we obtained four strings. The longest
common substring of two strings (let’s consider the one
obtained from el and the one obtained from e4) is: </BODY>
</HEAD> </HTML> </I> </U> <BODY> <HEAD>
<HTML> <I> <U>.

If we consider the longest common substring obtained from
e2 and e3 we have: </BODY> </HEAD> <BODY> <HEAD>
<HTML>

Now, for calculating the similarity we consider the next
definition.

We consider S1 the string obtained from the binary tree of
the first web site and S2 the string from the binary tree of the
second web site. We consider S the common substring. Let L1
be the length of S1, let L2 be the length of S2 and L the length
of S.

Definition 1. We consider the similarity value between the

two web sites S1 and S2: SV=L/(L1+L2).

For the example presented above (though we have web
pages in our example not web sites) SV=0.44 (so 44%).

For the second example presented above (another example
on web pages not web sites) we obtain SV=0.32 (so 32%).

III. APPLIED GENETIC ALGORITHM

Select next
Eeneration

Fig. 1 Scheme of genetic algorithm

We will show the classic scheme of a genetic algorithm,
Fig. 1.
e Before the pseudocode we will present the most important
variables and the data structures.
e NrMutation = the number of mutations at each step

e NrGene = the number of web pages used for a
chromosome (one gene it means one page)

e NrPop = the number of chromosomes for one generation

e NrGenerations = the number of generations

e pages = array with the pages used for each chromosome
(it helps when creating the binary tree)

e tree = an array with the binary trees of the chromosomes

We will start with the main sequence of the algorithm:

for i=1, NrGenerations do
mutation();

crossover();

sort();

endfor

We will apply this sequence for each web site. The
mutation and crossover sequences have been presented in [7].
They are classic genetic algorithms operations. In this paper
we will focus on the algorithms designed for creating a binary
tree and for determining the longest common substring:

BINARY_ TREE():

for i=1, NrPagesSite do

select a page;

select a tag and add it into the tree;
increase number of tags from the tree;
endfor

for i=1,NrBinaryTrees do

inorder traversal,

determine string;

endfor

LCS():

for i=1, sl.length do
for j=1, s2.length do
if s1[i]=s2[j] then
increase length of LCS;
add last character used
in another string;
else
retain character with the
biggest chance to obtain
a longer LCS;
continue comparisons;
endif
endfor
endfor

The LCS sequence is dynamic programming method (a
classic one). The execution time has a polynomial order. The
algorithm can return more sets of significant tags (more
chromosomes). Using those sets, we can calculate the
similarity rank as an average between all the results obtained
(we can choose the best two, three or more chromosomes).

The sort() is going to be used for sorting ascending the
chromosomes by their number of tags. We will use the
BubbleSort method as it follows:

for i=1,NrPop do

1151

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942
Vol:10, No:6, 2016

for j=i+1,NrPop do
if (nrtags(chromosome(i))>nrtags(chromosome(j))) then
swap chromosom(i) with chromosome(j)
endif
endfor
endfor

IV. THE IMPLEMENTATION

The algorithm was implemented in NotePad, using the Java
language. The computer which ran the tests has a 3.10 GHz
Processsor and 8.00 GB RAM. We tested the algorithm for
different values of NrGenes. We will present the results in one

tables and one chart. We are going to use cod source from

HTML files from websites [14]-[19], for our examples.

TABLE III
SIMILARITY VALUES DEPENDING ON THE NUMBER OF GENES
Web sites icor/jatit sofa2012/jatit
4 genes 0.2929746 0.2688
5 genes 0.3051095 0.2718894
7 genes 0.2906815 0.26300147
8 genes 0.28650904 0.25108853
10 genes 0.2837274 0.26415095
TABLE IV
SIMILARITY VALUES DEPENDING ON THE NUMBER OF GENES
Web sites sofa2007/icor 50fa2009/s0fa2010
4 genes 0.29943502 0.46153846
5 genes 0.2592565 0.46153846
7 genes 0.29553902 0.43822843
8 genes 0.29182157 0.3939394
10 genes 0.29739726 0.45454547
TABLE V
SIMILARITY VALUES DEPENDING ON THE NUMBER OF GENES
Web sites sofa2007/s0fa2005
4 genes 0.40041608
5 genes 0.3963039
7 genes 0.37577003
8 genes 0.37577003
10 genes 0.3778234
0,5
o
0,45 /

0.4

0,35

0,2

g
0,25

—4 genes

— 5 genes

0,15

7 genes

01
0,05

— 8 genes

=10 genes

Fig. 2 The results of the similarity value

In Fig. 2, we observe that we obtain similar results when
changing the number of genes. The bigger the number of
genes is the more accurate the result will be. Of course the

execution time will rise proportionally with both the number
of genes and the number of generations.

2,5
2 e
Ls ____—-—__—'/
=10 genes
1
0.5 —_—— 8 genes
E] ___________._.—-—-——'__
0 T T T T 1 7 genes
& o~ & Q
> > e & N 5 genes
FF &S
A8 D D & o ——4 genes
& @
& & N N
) w
S
o o

Fig. 3 The execution times of the algorithm when we have
different number of genes

In Fig. 3, we observe that the graphics have the same curve
no matter how many genes are implied. Certainly, as we have
more genes the bigger will be the execution time and this can
be seen in the graphic. When constructing a similar chart, but
where it depends on the number of generations we obtain a
similar figure as the one presented above.

V. CONCLUSION

In this paper, we presented a genetic algorithm which
determines a number of significant tags from a web site. We
can use those tags to determine the similarity between two
web sites. Using this algorithm, we obtain a good efficiency
and good execution times but we obtain approximated results.
Our next step is to improve the application on its practical
side. We will try to identify exactly the common elements
from two web pages with HTML tags using a genetic
algorithm. Another interesting objective that we aim is to
extend the using of HTML web pages to pages with different
language of Internet programming (such as CSS). Genetic
algorithms have a wide area of applications and they can
deliver interesting results.

REFERENCES

[1] Koza J.R., Genetic Programming, MIT Press, Cambridge, MA, 1992

[2] N. M. Ciobanu (Iacob), Proposed Algorithm for Solving Queries in a
Dynamic System of Distributed Databases, Global Journal on
Technology, Vol. 03 pp. 535-540, 2013

[3] C.L Defta, A. Serb, N.M. Iacob, C. Baron, Threats analysis for E-
learning platforms, Knowledge Horizons — Economics, Vol. 6 / Nr. 1,
pp. 132-135,2014

[4] D. A. Popescu, D. Radulescu, Monitoring of irrigation Systems Using
Genetic Algorithm, ICMSAO, IEEE Xplore, pp.1-4, 2015.

[5] D. A. Popescu, C. M. Danauta, Similarity Measurement of Web Sites
Using Sink Web Pages, 34th International Conference on
Telecommunications and Signal Processing, TSP, IEEE Xplore, pp.24-
26,2011.

[6] D. A. Popescu, D. Nicolae, Determining the similarity of two web
applications using the edit distance, SOFA, LNCS, 2014, pg.12-20

[71 D. A. Popescu, D. Radulescu, Approximately Similarity Measurement of
Web Sites, ICONIP, 2015

1152

[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]

[19]

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:6, 2016

Guadalupe J. Torres, Ram B. Basnet, Andrew H. Sung, Srinivas
Mukkamala, Bernardete M. Ribeiro, A Similarity Measure for
Clustering and Its Applications, ICASA, pp. 1712-1718, 2008.

G. Jeh, J. Windom, SimRank: A measure of Structural-Context
Similarity, KDD, ACM, pp. 538-543, 2002.

C. N. Pushpa, J. Thriveni, K. R. Venugopal, L. M. Patnaik, Web Search
Engine Based Semantic Similarity Measure Between Words Using
Pattern Retrieval Algorithm, CS & IT-CSCP, pp. 1-11, 2013.

P. Zhao, J. Han, Y. Sun, P-Rank: A Comprehensive Structural Similarity
Measure over Information Networks, CIKM, ACM, pp. 1-10, 2009.

D. Bollegata, Y. Matsuo, M. Ishizuka, Measuring Semantic Similarity
between Words Using Web Search Engines, IW3C2, pp. 757-766, 2007.
D. Lin, An Information-Theoretic Definition of Similarity, ICML, ACM
pg. 296-304, 1998.

Journal of Theoretical and Applied Information Technology,
http://www jatit.org (Accessed 10 March 2016)

International SOFA Workshop, http:/trivent.hu/2012/ieeesofa2012/
(Accesed 10 March 2016)

International SOFA Workshop, http:/trivent.hu/2010/ieeesofa2010/
(Accesed 10 March 2016)

International SOFA Workshop, http:/trivent.hu/2009/ieeesofa2010/
(Accesed 10 March 2016)

International SOFA Workshop, http://trivent.hu/2007/ieeesofa2007/
(Accesed 10 March 2016)

International SOFA Workshop, http:/trivent.hu/2005/ieeesofa2005/
(Accesed 10 March 2016)

1153

