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Abstract—Frequent pattern discovery over data stream is a hard 

problem because a continuously generated nature of stream does not 
allow a revisit on each data element. Furthermore, pattern discovery 
process must be fast to produce timely results. Based on these 
requirements, we propose an approximate approach to tackle the 
problem of discovering frequent patterns over continuous stream. 
Our approximation algorithm is intended to be applied to process a 
stream prior to the pattern discovery process. The results of 
approximate frequent pattern discovery have been reported in the 
paper. 
 

Keywords—Frequent pattern discovery, Approximate algorithm, 
Data stream analysis.  

I. INTRODUCTION 
ATA stream is defined as massive amounts of data 
continuously generated at a rapid rate, possibly time-

varying and unpredictable [1], [4], [10]. Major characteristics 
of data streams are the continuously online arrival of data 
elements, uncontrolled order of such elements upon arrival, 
variable sizes, and a one-time processing of an element before 
it is discarded or archived due to the massive size of data that 
far exceeds the storage capacity. The requirements of timely 
analysis and efficient memory usage constrain most data 
stream mining algorithms to sacrifice accuracy of the analysis 
results for the fast and feasible processing.  

Development of approximation algorithms [6], [13] is a 
direct solution to the problem of data stream analysis. 
However, the large volumes of data continuously arriving in a 
stream could eventually make the algorithms inefficient. A 
more practical solution is to apply a data reduction technique 
along with the approximation algorithms. Data summarization 
techniques, such as wavelet analysis [11] and histogram [4], 
have been proposed as synopsis data structures to provide a 
summary presentation of data. The issue of dynamic space 
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allocation as the underlying data distribution changes over 
time is a fundamental problem of these approaches.  

Data stream analysis by choosing a subset of the incoming 
stream is another class of techniques for producing 
approximate results. Sampling is a statistical-based technique 
widely used to scale up the algorithms [8]. Nevertheless, in 
the context of data stream in which the data size is unknown, 
simply applying a sampling method cannot give reliable 
approximation.  

We, therefore, propose a novel approximation method to 
draw representatives from data stream. To produce a good 
approximation to the true value or quantity of underlying 
stream, we apply the expectation-maximization technique to 
get a good guess of data characteristics. Our algorithm has 
been designed to produce data elements from which the 
approximate analysis is close to the exact one. We then 
perform frequent pattern discovery over the sample data. 
Frequent pattern analyses on several data sets to verify the 
reliability of the method have been conducted.  

The paper is organized as follows. Section 2 presents the 
theoretical background of our method. Section 3 is the 
proposed algorithm. Section 4 presents some of the 
experimental results from frequent pattern analyses over the 
reduced data stream. We conclude in Section 5 with a 
discussion for future work.  

II. DATA STREAM DENSITY ESTIMATION 
When the number of data is overwhelming and the exact 

data distribution is unknown, the characteristics of stream 
have to be estimated before data sampling can be performed. 
We concentrate on the sampling problem because the 
efficiency of frequent pattern discovery depends largely on the 
ability to draw samples effectively.  

For a particular domain of stream data, we consider the 
rejection sampling method. Rejection sampling, or 
acceptance-rejection sampling, is a sampling method first 
introduce by Von Neumann [15]. This method is used in cases 
where a target distribution, f(x), is too complicate for us to 
sample from it directly.  

Suppose we have a simpler distribution, g(x), which we can 
evaluate and generate samples from, then the difficult 
sampling problem can be avoided by sampling from g(x) 
instead. By generating a uniform random variable u from the 
interval [0,1], we accept x if the condition   u ≤ f(x) / Cg(x) 
holds; otherwise reject the value of x and repeat the sampling 
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step. Posing the restriction Cg(x) ≥ f(x) for some C >1, we say 
that Cg envelopes f. The validation of this method is the 
envelope principle. When simulating the point (x, v) where v = 
u*Cg(x), we produce a uniform simulation over the subgraph 
of Cg(x). Accepting only points such that  u ≤ f(x) / Cg(x)  
then produces points (x, v) uniformly distributed over the 
subgraph of  f(x) and thus, marginally, a simulation from f(x). 

Rejection sampling will work best if g is a good approxi-
mation to f. However, in a high-dimensional problem the 
value of C needs to be chosen very large to ensure the 
requirement Cg(x) > f(x), for all x. The result is an enormous 
rejection rate. 

The difficulty of applying rejection sampling method 
directly to the problem of data stream analysis is that we do 
not know beforehand where the modes of f are located or how 
high they are. In other words, we do not know the exact 
characteristics of the target density. We thus propose to apply 
the Expectation-Maximization (EM) technique [7], [12], [14] 
to approximate the density f(x). 

We consider multi-dimensional stream data as mixtures of 
Gaussian, or normal, probability density functions (pdf). 
Gaussian mixtures [9], [12] are combinations of Gaussian 
distributions written as: 

1
( ) ( | )

K

i i
i

g x p f x θ
=

= ∑                              (1)  

A random variable x denotes independent observation in K 
mixture components. The pi’s are the mixing proportions,        
0 < pi <1 for all i = 1, ..., K, and p1 + ... + pK = 1. The f(x|θi) 
denotes the density of a d-dimensional Gaussian distribution 
with mean vector μ and covariance matrix Σ, that is θ = (μ,Σ), 
and the Gaussian pdf is given by [5], [14]: 
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By varying the number of Gaussians K, the mixing 

proportions pi, and the parameter θi of each Gaussian density 
function, Gaussian mixtures can be used to describe any 
complex pdfs. 
 In stream data a mixture density pi f(x|θi) has been observed 
with unknown parameters θi and pi. To find these parameters 
to optimally fit a mixture model for a given set of data, the 
EM algorithm [7], [12], [14] can be used. The EM algorithm 
is a broadly applicable approach to the iterative computation 
of maximum likelihood estimates. For a set of iid samples X = 
{ x1, ..., xN }drawn from a data generation model 

( , )
( )ixf μ Σ

, 

thus the resulting density for the samples is: 

( , )
1

( ) ( | )
N

i
i

x L xf μ
θ

Σ
=

=∏                           (3) 

The likelihood function ( | )L xθ is the likelihood of the 
parameters given the data. In the maximum likelihood 
problem, the goal is to find θ that maximizes L, that is 

arg max ( | ).L Xθ θ  In the Gaussian case, the computation of 
the exponential can be avoided by maximizing log ( ( | )L xθ ) 
instead of ( | )L xθ . 

The EM algorithm is an approach to find the maximum of 
likelihood functions in incomplete data problems. Let X be 
observed data, Z be unobserved data, and Y = X∪Z be full 
data set. The probability distribution of Z depends on X and 
the unknown parameter θ. Given an initial parameter θ(0), The 
EM algorithm produces a sequence {θ(0), θ(1), θ(2), ... } that 
converges to a stationary point of the likelihood function  

III. A NOVEL ALGORITHM ON STREAM SAMPLING 
For the problem of frequent pattern discovery over data 

stream, we assume that the observed data distribute normally. 
The central idea of our approach is the bounded estimation of 
stream data characteristics. Given a specific number of 
models, the EM method is applied to estimate the mean value 
of each model. Then these means are scaled up to get an upper 
bound (E’)for the underlying partially observed target density. 
The proposed idea can be graphically displayed as in Fig. 1. 

 

 
Fig. 1 Rejection sampling with an upper bound E’ 

 
 The target function is represented as a one-dimensional 3-

Gaussian mixtures (the three solid lines at the bottom of Fig. 
1) from which we want to draw samples. The density E(x) is 
estimated with the upper bound requirement that E(x) > f (x) 
for all x. ( )E x′  is the approximation (shown as a thick dash 
line in Fig. 1) of the unknown target density. A broad distance 
of E and E′  (e.g., at x = 1) represents a rejecting area, 
whereas a narrow distance (e.g., at x = 6.5) is an acceptance 
one. 

It should be noted that EM requires a pre-specified number 
of K components to be incorporated into the mixture models. 
According to our proposed method, a suitable number should 
be selected by a user. To cope with multi-dimensional 
problem, we propose to use a statistical method – principal 
component analysis (PCA) – to reduce the complicated 
problem to a simpler two-dimensional problem. That is, we 
take into account only the first and second major components 
of the data set. The two-dimensional data are used to train the 
EM algorithm to estimate parameters μ and Σ of the Gaussian 
mixture models. The estimated Gaussian pdf is a distribution 
E (as shown in Fig. 1). To sample from the estimated density 
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we scale up this distribution to obtain an approximate E’, 
which is a simpler distribution that we can evaluate and 
generate samples from. The outline of our approximate 
sampling algorithm is illustrated in Fig. 2.  

Input:    a d-dimensional data set D with N points 
         an integer K to specify the number of models 
         a sample size SS 

Output:  a sample set S drawn from the mixture models   
 // Data preprocessing steps  // 

1.  If d > 0 then   
                 Apply PCA to obtain 1st and 2nd components 
2.  Transform D to a two-dimensional data set X 

 // Density estimation with EM to get a rough  pdf ( )E X′ // 
3.  Set max_iteration = max{50, d *K}             
4. Initialize parameter θ = (μ, Σ) for each of K Gaussian 

models 
5. Initialize the prior probabilities ( )kP m of each model 

m to 1/K, k = 1,..., K 
6. Repeat 
7.     Compute the probability  
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8.      Update means μk , variances Σk , and priors P  
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9. Until the max_iteration has been reached or the joint 
likelihood of all data with respect to all the 
models is greater than the lower boundary 
criterion CL(θ) 

          
1 1

( ) ( ) ( | , ) log ( | )
K N

k n n
k n

L CL P m x p xθ θ θ θ
= =

≥ = ∑ ∑  

10. Get E(X) as ( , )i k kθ μ= Σ  for k = 1, ..., K ,  

11. Get ( )E X′  as a rough ( , )r r
i k kθ μ′ = Σ from r iterations, 

                                                                                   r < 10 
       // Sampling steps // 
12. Set count = 0           
13. While count < SS                
14.        Sample x from E(X) 
15.        Generate u from U(0,1) 
16.        If  ( ) /( ( ))u E x d E x′≤ ∗   
              then  Accept x, add it to S, and increment count 
17.  Return S 

Fig. 2 An algorithm to obtain approximate samples 

IV. EXPERIMENTATIONS 
To verify the utility of the proposed method on the real-

world data we test our algorithm on four data sets: Wisconsin 
diagnostic breast cancer, Chess, DNA, and Audiology. These 
data are taken from from UC Irvine Machine Learning 
Database Repository (http://www.ics.uci.edu/~mlearn/MLRe 
pository.html). The details of selected datasets are 
summarized in Table I. After the sampling step, the sample 
data are tested for accuracy and efficiency on the discovery of 
frequent patterns. We adopt the Apriori algorithm [2], [3] as a 
method to discover frequent patterns.  

TABLE I 
DATASET CHARACTERISTICS 

Dataset File size # Transactions # Items 

Breast cancer 21.1 KB 191 10 
Chess 237 KB 2130 37 
DNA 252 KB 2,000 61 
Audiology 41.1 KB 150 70 

 
We comparatively study the performance of frequent 

pattern discovery on the whole dataset (and call it an exact 
analysis) against the sample data prepared as explained in the 
algorithm (Fig. 2). We compare the speed of discovery 
process, including sampling time for an approximate analysis, 
as well as the accuracy of patterns found. All 
experimentations have been performed on a 796 MHz AMD 
Athlon notebook with 512 MB RAM and 40 GB HD.  

The comparison results of accuracy and run time are shown 
in Figs. 3 and 4, respectively. An accuracy comparison has 
been done on the basis of number of frequent patterns 
discovered on each value of minimum support. The accuracy 
obtained from sampled data is almost as good as the accuracy 
of pattern discovery from the original dataset. It is also worth 
noticing that the lower minimum support value, the greater the 
number of patterns found.  

For the experimental results on speed comparison, our 
proposed sampling method can actually help reducing 
processing time of frequent pattern discovery. This gain is 
quite obvious in the case of low support value (minimum 
support threshold is less than 10%).   

V. CONCLUSION AND DISCUSSION 
Frequent pattern discovery over data stream is a challenge 

problem due to the limitation on time and space. We propose 
to tackle the problem by means of sampling. Instead of 
applying simple random sampling, we argue that blindly 
taking sample from the stream in which we do not know the 
size of data in advance is incorrect. We, thus, propose a better 
solution by introducing the concept of guessing an upper 
bound E’ and lower bound E of stream distribution. The 
distance of E and E′  at each sampling point is a decision 
criteria for either sample acceptance or rejection. A narrow 
distance among the two estimated densities tends to the 
acceptance case if the distance ratio is greater than the 
generated uniform random variable from the interval [0, 1].  
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(a) Breast cancer data 
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(b) Chess data 
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(c) DNA data 
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(d) Audiology data 

Fig. 3 an accuracy comparison of exact and approximate frequent 
pattern discovery 
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(b) Chess data 
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(c) DNA data 
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(d) Audiology data 

Fig. 4 a run-time comparison of exact and approximate frequent 
pattern discovery 
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The proposed idea of rejection sampling from the bounded 
density functions is intended to be a data preparation step 
prior to the frequent pattern discovery process. The 
experimental results confirm the accuracy and efficiency of 
our proposed method. We plan to investigate the problem of 
frequent pattern discovery from stream data further on the 
issues of data estimation. That is, we are interest in skewed 
data in which distributions are not uniformly distributed.  
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