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    Abstract— Among  various HLM techniques, the Multivariate 

Hierarchical Linear Model (MHLM) is desirable to use, particularly 

when multivariate criterion variables are collected and the covariance 

structure has information valuable for data analysis. In order to reflect 

prior information or to obtain stable results when the sample size and 

the number of groups are not sufficiently large, the Bayes method has 

often been employed in hierarchical data analysis. In these cases, 

although the Markov Chain Monte Carlo (MCMC) method is a rather 

powerful tool for parameter estimation, Procedures regarding MCMC 

have not been formulated for MHLM. For this reason, this research 

presents concrete procedures for parameter estimation through the use 

of the Gibbs samplers. Lastly, several future topics for the use of 

MCMC approach for HLM is discussed. 

 

Keywords— Gibbs sampler. Hierarchical Linear Model. Markov 

Chain Monte Carlo. Multivariate Hierarchical Linear Model.  

I. INTRODUCTION 

he Hierarchical Linear Model (HLM) is a regression model 

for hierarchical data sets and has been attracting interest 

in various research fields including education, psychology, 

sociology and marketing (e.g., [11],[13],[17],[18],[19]). As an 

example, hierarchical data often appear in the research field of 

education since students are generally nested exclusively within 

classes and classes are also nested exclusively within schools 

[7],[17]. 

Among various HLM techniques, it is desirable to use the 

Multivariate Hierarchical Linear Model (MHLM), particularly 

when multivariate data of criterion variables are collected 

[3],[4],[18],[19]. MHLM can take advantage of information 

concerning the covariance structure of criterion variables, 

allowing researchers to obtain a better and more complete 

description of what is affected by changes in explanatory 

variables [19]. Other advantages of MHLM are that while 

carrying out a series of univariate statistical tests through HLM 

inflates the type I error, it is better controlled through MHLM, 

and MHLM often exhibits greater statistical power.  

The Markov Chain Monte Carlo (MCMC) method has been 

attracting an interest among researchers focusing on model 

construction (e.g., [2],[6],[13]). In both HLM and MHLM, 

Bayesian statistics has often been applied in analysis in order to 

reflect prior knowledge or to avoid obtaining incorrect 

estimates in cases of insufficient sample size and number of 

groups (e.g., [16]). In the Bayesian method, posterior 

distribution becomes complex, sometimes by non-conjugate 

prior distribution, and this can make the derivation of the 

marginal posterior distribution impossible. However, sampling 

methods using MCMC make the evaluation of point estimates 

and the associated standard errors of posterior distribution much 

easier [9]. 

Several approaches for using MCMC methods for HLM have 

been developed [12],[16]. However, some MCMC procedures 

have not been formulated for MHLM. Therefore, in this  

research, the concrete procedures for applying the Gibbs 

sampler technique to multivariate hierarchical data is presented, 

by using modeling techniques utilized mainly by Thum [19].  

II.  MODEL AND ESTIMATION 

    First, all symbols used in this paper are defined as follows. 

・Number of groups ： J ,・Sample size in group j  ： j�   

・Total sample size ： ∑= j�� ・Number of criterion variables ： K  

・Number of explanatory variables at level 1 and level 2 ： 1S  and  2S   

A. Model 

In group j , the model formulation for individual levels 

(level1) is as follows． 

jjjj rXY += β                             (1) 

Here, criterion variables jY and regression coefficients jβ is 

expressed as
tt
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t
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respectively. Assume that the responses matrix of member j�  

to 1S  explanatory variables is expressed as an j� × 1S  matrix, 

jX
~

. Then, matrix notation for independent variables jX  is 

expressed by using Kronecker multiplication. That is, 

jkj XIX
~

⊗= .  

jr is an ( j� × K )×1 residual vector whose element ijkr  is 

supposed  to be distributed as ijkr ～ ),0( j� ∑ , where j∑ is 

an (
j� × K )×(

j� × K ) residual variance-covariance matrix 

for group j ．Generally, as data from different groups are 

assumed to be independent， j∑  can be expressed as j∑ = 

�jI⊗∑
~

. ∑
~

 is a residual matrix between the criterion 

variables with the assumption of equivalence in all groups.  

Then, model formulation for the group level (level2) is as 
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follows． 

jjj uZ += γβ                                     (2) 

Here, jZ is independent variable for groups, and is expressed 

as jKSj zIZ ~
1 ⊗= × , and, )(~

2,2,1 jSjsjj zzzz LL= . 

Assume that the 
2S  regression coefficients of 

1s  explanatory 

variables for the criterion variable of k  are expressed as  

),( 1212,111 ksSkssksks γγγγ LL= ,γ is a ( KSS ×× 12 )×

1 regression coefficients vector , 
tt

K

tt ),( 2,1 γγγγ L= , where 

each element  is expressed as 
tt

kS

t

ks

t

kk ),( 11,1 γγγγ LL= . 

ju is a size ( KS ×1 )× 1 residual vector, and  ju ～

),0( T� . T  is an ( KS ×1 ) × ( KS ×1 ) residual 

variance-covariance matrix, and some constraints can be 

imposed as individual levels. 

B Parameter estimation 

Prior distribution 

In this paper, prior distributions for β ,γ , ∑
~

, T  are set as 

follows.  

1h∝β ,   2h∝γ ,  

p (∑
~

)～ ),( 11

1 ∑− vW , p (T )～ ),( 00

1 ∑− vW          (3) 
 

Where, 1h  and 2h  are constants, and ∝  indicates a 

proportional relation．Additionally, 1v , 0v , 1∑ , 0∑  are 

hyper-parameters, which are to be set before the analysis.  

1v , 
0v  are related to the sample size and the number of 

groups corresponding to the prior information，and  1∑ , 0∑   

represent information for the square sum of residuals within and 

between groups. In addition, 
1−W  represents the inverse 

Wishart distribution.  

 

Likelihood and conditional posterior distribution 

As data from different groups are assumed to be independent, 

the likelihood for the whole data becomes, 
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where, ),,( 21 Jββββ L= , ),,( 21 JYYYY L= , ),,( 21 JXXXX L= ,

),,( 21 JZZZZ L= ,  γjjj ZXU = , jj

t

jj TXXV ∑+= ． 

From the Bayes theorem, the joint posterior distribution 

becomes 
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In addition, the full conditional posterior distribution, for 

example β ,  becomes as follows. 
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~
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That is, the full conditional distribution is proportional to the 

product of likelihood and prior distribution of each parameter. 

C Gibbs sampler algorithm  

The Gibbs sampler method is feasible when sampling from 

conditional posterior distribution is possible, and when 

sampling from marginal posterior distribution is difficult. In the 

Gibbs sampler, iterative calculation is repeated by using full 

conditional distribution. 

Referring to [8],[12],[14],[15],[16], who studied sampling 

procedures in the framework of linear model, the detailed 

algorithm through the Gibbs sampler for MHLM is derived as 

follows. These results can be easily obtained through the 

evaluation of full conditional distribution for each parameter 

and basic matrix operation [5],[10]. For the brief notation, detail 

derivation is omitted here. 

 

))(,(
~ 1

11

1 ∑ −− +∑+=∑
j

t

jj EEv�W )              (7) 

))
~

(,)(( 111

1

−−−

× ∑+Λ+Λ−= j

t

jjjjjKSj XXTHGI�β  (8) 

 ))(,( 1

00

1 ∑ −− +∑+=
j

t

jj FFvJWT            (9)  

))(,)(( 11111 −−−−− ∑∑∑=
j

j

t

j

j

j

t

j

j

j

t

j ZTZTZZTZ� βγ  (10) 
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t

jKjjj EEEE ),,( 21 L= , and 
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That is, 
jE and 

jF  has information regarding the residual of 

individual levels and group levels, respectively. jΛ  is generally 

referred to as multivariate reliability matrix [13]. Therefore, 

jβ  is an empirical Bayes estimator that uses weights for the 

ratio concerning the residual variance-covariance matrices at 

the individual levels and the group levels. 

In the Gibbs sampler, as with the Metropolis-Hastings 

algorithm, appropriate initial values should be elected for stable 
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convergence of estimates. 

D Parameter estimation from sampling 

  In MCMC application, after T times sampling for each 

parameter, the obtained samples can be regarded from the point 

of view of marginal distributions．However，the first  )( TV ≤ 's 

samples are excluded from the calculation for parameter 

estimation in order to obtain more stable and plausible estimates. 

This V  period is commonly referred to as burn-in． 

With respect to the parameter estimates, for instance, 

regarding γ , the point estimates γ  and the estimates of the 

standard error  )(γV  can be calculated by using the average 

and the standard deviation of samples through VT −  times by 

removing samples corresponding to the burn-in period. That is, 
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tγ  is the value of  γ  at t -th sampling. 

In applying Gibbs Sampler, there are cases where it is not 

feasible, especially when derivation of conditional posterior 

distribution difficult. However, Gibbs Sampling is power tool 

even when some expansions are needed for future researches．  

III.  DISCUSSION 

Among the various HLM techniques, it is desirable to use 

MHLM, particularly when multivariate criterion variables are 

collected and the covariance structure contains valuable 

information for data analysis. 

 The Bayes method has often been used in hierarchical data 

analysis in order to reflect prior information or to obtain stable 

results when the sample size and the number of groups are not 

large enough. In these cases, although parameter estimation  

through MCMC is a powerful tool, the concrete procedures 

have not yet been derived for MHLM, especially in the 

framework of Thum [19]. Therefore, in this research, the 

concrete procedure for parameter estimation through Gibbs 

sampler was shown. 

These methods use iterative algorithms, and as the size of the 

explanatory variable matrix and error variance-covariance 

matrix generally become large in MHLM, MCMC may be a bit 

computationally inconvenient for MHLM. However, MCMC 

promotes a powerful framework for hierarchical data analysis, 

and the severity of this problem will gradually decrease as the 

processing speed of computers improves. 

An intriguing topic for future research, for example, is to 

construct a framework for performing factor analysis and 

multivariate hierarchical data analysis simultaneously. 

Due to the fact that when the number of criterion variables is 

large in hierarchical data, integrating the results to fewer factor 

scores is useful for summarizing the information. Regarding this 

topics, some combinations of Structural Equation Models 

(SEM), Hierarchical Linear Models and Bayesian analysis 

undoubtedly helps to offer powerful tools [1]. 

What is more, in this approach, to construct an algorithm 

which determines a correct number of factors effectively is 

another attractive direction of expansion, as well as the 

development of computationally convenient algorithms.  As for 

this problem, Reversible Jump Markov Chain Monte Carlo 

(RJMCMC) algorithm must be useful and should be considered 

in future researches. Extension for applying some missing 

values and ordinal variables are also intriguing topics for 

MHLM approach. 

Additionally, on a parallel with these theoretical researches, 

developing useful software for MHLM through the MCMC 

algorithm is also desired.   
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