
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:8, No:1, 2014

158

Abstract—This paper combines the branch-and-bound method
and the petri net to solve the two-sided assembly line balancing

problem, thus facilitating effective branching and pruning of tasks. By

integrating features of the petri net, such as reachability graph and

incidence matrix, the propose method can support the

branch-and-bound to effectively reduce poor branches with systematic

graphs. Test results suggest that using petri net in the branching

process can effectively guide the system trigger process, and thus, lead

to consistent results.

Keywords—Branch-and-Bound Method, Petri Net, Two-Sided
Assembly Line Balancing Problem.

I. INTRODUCTION

HE two-sided assembly line has two parallel production

lines, on the left and right sides. In the production line for a

single product, tasks can be simultaneously assigned to parallel

stations, and some specific tasks can be defined for assignment

to a specific side. For example, if a task is defined as a left side

(L) or right side (R) task, it can be assigned to the station of the

left side or right side of the production line accordingly. Tasks

defined as either side (E) can be assigned to either the left side

or right side of the production line. Moreover, tasks can be

appropriately assigned to stations on both sides for

synchronized assembly, thus reducing idle time without

conflicting with the requirement. The stations of the left and

right sides of the production line are known as mated-stations

(positions), and are of the same in the cycle time, meaning one

side has a companion relationship with the station on the other

side. In Fig. 1, the number in brackets represent task time, the

English alphabets represent the task assignment direction (L:

left side; R: right side; E: either side), the numbers in circles

represent task number, the arc is the process assembly

precedence, and the total task time is 82 units [1]-[2].

N. C. Wei, I. M. Chao, and C. J. Liu are with the Department of Industrial

Management, I-Shou University, Kaohsiung City 84001, Taiwan, R.O.C.

(phone: +886-657-7711; fax: +886-657-8536; e-mail: ncwei@ isu.edu.tw).

H. L. Chen is with the Department of Business and Management, National
University of Tainan, Tainan 700, Taiwan, R.O.C.

Fig. 1 A precedence diagram

Assuming cycle time is 15 units, the optimal task assignment

solution is of 6 stations for the single-sided production line,

while the two-sided assembly line requires only 4 positions, as

shown in Fig. 2 [3]. In comparison with the single-sided

production line, the advantages of the two-sided assembly line

include shorten the production line length, reduce material

handling costs, and reduce the movement times of workers;

thereby increasing productivity. Moreover, as the

mated-stations of both sides share tools and equipment, which

could reduce purchase costs, it is often applied to large-scale

product manufacturing processes such as vehicles [4]-[7].

Fig. 2 Configuration difference between a single-sided and a two-sided

assembly line

Regarding the algorithms proposed by [3], the

branch-and-bound method provides task assignments during

the computational process in a graphical manner. The only

disadvantage of this method is that it cannot effectively cut the

branches of the node, resulting in cumbersome computational

processes. The solution efficiency of the branch-and-bound

method is determined by branching efficiency and pruning

ability [8]. A well-designed branching strategy can effectively

reduce nodes branches, and improve solution efficiency.

According to [9], the search is far more complex than the

Nai-Chieh Wei, I-Ming Chao, Chin-Jung Liuand, Hong Long Chen

Applying Branch-and-Bound and Petri Net Methods

in Solving the Two-Sided Assembly Line Balancing

Problem

T

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:8, No:1, 2014

159

single-sided production line in branching E-type tasks using the

branch-and-bound method for the two-sided assembly line.

To quickly reduce excessive branching, when applying the

branch-and-bound method to solve the problem of the

two-sided assembly line, the task selection and triggering steps

should be able to list the feasible routes of task assignments,

and provide the constraints and feedback tracing. Thus, it is

more applicable to small-scale problems. However, as it may

increase the assignment complexity when applied to large-scale

problems, there is a need to combine with other methods to

speed up the process. In this regard, the incidence matrix and

reachability graph of petri net can meet the need. The

reachability graph can clearly demonstrate the entire event

status, the relationship between tasks, and proceeding direction;

while the incidence matrix can represent the relationship degree

of tasks and events, and induce the entire process by numbers.

Hence, when properly used, they can effectively help the

branch-and-bound method to improve the efficiency of the

branching process.

II. REVIEW OF PETRI NET

Petri net includes token, place, transition, and arc. The flow

of tokens in the system represents the dynamic behavioral

pattern of the system. Triggering the temporary state can result

in the flow of tokens and change the markings of petri net. The

basic petri net is a tool combining mathematics and graphs, and

is used in system design. It is a diagram of circle, rectangle, and

arc. In the assembly line, transitory triggering represents an

action. The combination of place and transition represents the

precedence of certain situations and relationships. The token of

place represents the action of the moment. Hence, the

production process information or action can be tracked by

tokens of the system. The two standard features of petri net are:

reachability graph and incidence matrix.

Fig. 3 An example of the reachability graph

Fig. 4 An example of the incidence matrix

 The relationships of various tasks with place are as shown in

Fig. 3. By converting the relationships into a mathematical

matrix, the starting point is M0=[1 1 0 0 0 0 0 0 0 0 0 0] and

ending point is ML=[0 0 0 0 0 0 0 0 0 0 1 1]. According to the

direction of the process, the task of t1 is in the direction of an

arc in relation to P1 and P3. The incoming place has a positive

relationship in terms of task, while the outgoing place is the

opposite (1: positive relationship; -1: negative relationship).

The matrices can be listed according to the above rules. Then,

by token triggering and matrix computation, for example, if t1

is triggered, the matrix results of M0-t1=[0 1 1 0 0 0 0 0 0 0 0 0],

which represent that tokens have fallen at P2 and P3. Each step

of the assembly line can be computed according to the obtained

results. In other words, the movement and assignment of tokens

can be marked by small points in various places to display the

current situation of the system, as shown in Fig. 4 [10].

III. THE PROPOSED METHOD

A. The Solution Procedure

Fig. 5 illustrates the basic process of combining the

branch-and-bound method and petri net for the mathematical

model proposed by [11]. The steps are summarized as follows:

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:8, No:1, 2014

160

Fig. 5 The solution flowchart

Step 1: Task assigning

1-1 the initial task is determined by the sequence-dependent

ending time;

1-2 the branch tasks triggered by the initial task are assigned

according to the degree of task relationships;

1-3 the subsequent assignment is based on the degree of task

relationships;

1-4 the tasks of the same level of relationship are assigned

according to the sequence-dependent ending time;

1-5 the tasks of the same ending time are assigned according

to the time length;

1-6 the tasks of the same time length are assigned according to

the operational direction of left or right side;

1-7 after assigning tasks to stations according to the above

steps, the left and right side stations can be determined by

its task type.

Step 2: Workstation building

2-1 the initial tasks of the subsequent stations are assigned

according to the ending time of tasks if the left side

station task assignment is completed, it is changed to the

right side station;

2-2 after satisfying the cycle time of the right side station, the

assignment of task for the right side station of the next

position can be started;

2-3 after assigning the right side station, the left side station is

assigned alternately, and task assignment can be

conducted in the same manner.

Step 3: Workstation revising

3-1 if the left side station has no appropriate branch task for

triggering, it may set the right side station for the branch

task;

3-2 assign the triggered branch tasks to the right side station

until the station has no appropriate task assignments;

3-3 due to the branch task triggered by the right side station,

the previously stalled left side station may be actuated to

assign the task in an alternate manner;

3-4 after completing the left and right side stations of the

current position, the task assignment of the stations of the

next position can be started.

Step 4: Backtracking

4-1 when the left and right side stations have no appropriate

tasks to assign, or the idle time is too long (greater than

the backtracking value), it must backtrack to the previous

task or the ending point of the previous station;

4-2 perform task assignment according to task assignment

rules in order to properly assign all tasks to stations, use

petri net for re-branching, and proceed until the station

assignment is completed.

B. Task Assignment Rules

Rule 1： Task assignment is based on the degree of
relationship, that is the immediate relationship as a

priority, followed by the sharing relationship, common

relationship, and no relationship.

1) If task a produces branch tasks b and c after triggering, then

b and c are the immediate relationships to the upper layer.

2) If tasks b and c can produce branch task d, then d is the

sharing relationship of tasks b and c of the upper layer.

3) If branch task a can produce branch task f after triggering, f

and a belong to neither relationship; however, they are

called a common relationship as they are triggered on the

same side.

4) If task g on the right side station is triggered, tokens will

fall on tasks c and h for assignment; in this case, task c is

called a no relationship to g.

Fig. 6 An example of a precedence diagram

Rule 2： If a branch task produces a number of tasks of the
same degree of relationship, the assignment should be

based on the ending time sequence, followed by tasks of

longer time length, and tasks of left or right directions.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:8, No:1, 2014

161

1) If task c produces branch tasks d, f, k, and l after triggering,

tasks f and k are of an immediate relationship, while tasks d

and l are of the sharing relationship.

2) Tasks f and k are assigned in priority with the ending time

sequence, where time length is the basis of assignment.

3) If the assignments of tasks f and k fail, tasks d and l of the

common relationship are assigned according to the ending

time sequence and time length.

Rule 3： Assigning tasks of no relationship according to the
latest starting time of tasks triggered in the station. If it is

greater than the latest starting time of the station, the gap

between the two time periods is idle time. Assignments

cannot be made when the idle time is greater than the

backtracking value.

1) If the task computation of the left side station amounts to a

total of 10 time units, the latest starting time of branch

tasks b, c, and e triggered by task a is 10.

2) If the computation of the subsequent right side stations to

task g amounts to a total of 7 time units, and task g must

assign task c as no relationship, then the right side station

can produce three units of idle time (10-7).

Rule 4： After assigning the station according to the task
precedence, it can possibly form the independent

operations of single-sided stations (with no

mated-station). In the task assignment of the following

position, tasks should be assigned to the left side and

right side station for alternate manner.

C. An Illustrative Example

Taking an example as shown in Fig. 1, the firing sequence is

obtained according to the ending time of the tasks, 2, 1, 3, 6, 5,

4, 7, 8, 10, 9, 11, 12, 13, 15, 14, 16 (see Fig. 7), and the two

features of petri net (as shown in Figs. 8 and 9). If the cycle time

is 15, the computation is as follows:

Fig. 7 A diagram of task time sequence

Fig. 8 Reachability graph of the illustrated example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 1 -1 -1

2 1

-1

3 1 -1

4 1 -1

5 1 -1

6 1 -1

7 1 1 -1 -1 -1

8 1 1 -1

9 1 -1 -1

10 1 -1

11 1 -1 -1

12 1 -1

13 1 1 -1

14 1 -1

15 1 1 -1

16 1 -1

M0 1 1

ML 1 1 1

P

T

Fig. 9 Incidence Matrix of the illustrated example

As shown in Fig. 9, the assembly line conducts a series of

task assignment from the left side to the right side. Therefore,

for the relative relationship of T1 and P, P1 enters from the left

side, while P3 and P4 come from the right side; hence, P1 is a

positive number, and P3 and P4 are negative. The relationship

matrix of task (T) and place (P) can be completed in the same

manner. In addition, starting point M0(P1, P2) and ending point

ML(P21, P22, P23) are both set as positive:

M0=[11000000000000000000000] and ML=

[00000000000000000000111].

This study develops a backtracking value to determine the

success or failure of the station assignment. If the idle time is

greater than the backtracking value, backtracking operations

should be triggered to reassign the appropriate tasks, and to

avoid impacts on the overall balancing efficiency. The

backtracking value of the example is 3, and the computation is

as follows:

A: the task average time

B: total task time/cycle time= the number of ideal stations

C: B*cycle time=total time of the completion

D: (C-total task time)/B=average station idle time

E: (A+D)/2=backtracking value (rounded for integer)

P1

P2

P3

P4

P5

T1

T2

T3

T4

T5

P6

P7

P8

T6

T7

P9

P10

P11

P12

T8

T9

T10

P13

P14

P15

P16

T11

T12

T13

P17

P18

P19

P20

T14

T15

T16

P21

P22

P23

(2,L) (4,L) (4,E) (6,E) (4,E)

3 6 8 11 14

(6,E) (9,E) (7,E) (5,R) (5,L) (3,E)

1 4 7 9 12 15

(5,E) (8,R) Idle Time (4,R) IT. (6,E) (4,E)

 2 5 10 13 16

t

0 1 2 3 40

Idle Time

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:8, No:1, 2014

162

1. Computational Steps - Task Failure, Execution of

Backtracking

In the branch-and-bound method, ROOT is the starting point

and symbol (1 T2 1R 5 10) representing the assignment no.,

task no., left or right station of the current position no., task

time, and remaining cycle time to track the task assignment.

Moreover, the underlined no. (n) represents the deletion of task

assignment according to the firing sequence (as shown in Fig.

10).

Root

T2(5,E)

Right side

T1(6,E)

Left side

T5(8,R)
T4(9,E)

T6(4,L)

T4(9,E)

T7(7,E)

I

II

M0=P1, P2

M0-T2=P1, P5-------------------M1

﹝﹝﹝﹝ 1 T2 1R 5 10﹞﹞﹞﹞

M1-T5=P1, P8------------------M2

﹝﹝﹝﹝ 2 T5 1R 8 2﹞﹞﹞﹞

M2-T1=P3, P4, P8---------------M3

﹝﹝﹝﹝ 3 T1 1L 6 9﹞﹞﹞﹞

M3-T3=P4, P6, P8-------M4

﹝﹝﹝﹝ 4 T3 1L 2 7﹞﹞﹞﹞

M4-T6=P4, P8, P9-------M5

﹝﹝﹝﹝ 5 T6 1L 4 3﹞﹞﹞﹞

M5-T4=P7, P8, P9-------M6

﹝﹝﹝﹝ 6 T4 2L 9 6﹞﹞﹞﹞

M6-T7=P9, P10, P11, P12----M7

﹝﹝﹝﹝ 7 T4 2L 7 -1﹞﹞﹞﹞ *

*The assignment of T4 exceeds

the cycle time, thus assignment

cannot be made. So backtracking

is triggered.

T1(6,E)

B
ack
track

in
g

1
2

3

T3(2,L)

T4(9,E)

4

Fig. 10 Computational steps- task assignment failure

After triggering assignment no. 1and T2, the M0 in the

matrix can be used to obtain M1 by subtracting

T2=[0100-1000000000000000000], and matrix representation

is M1=[10001000000000000000]. After triggering token falls

at P1 and P5 and branch tasks T1 and T5 become executable

(see Figs. 8-10), assignment no. 2 should be carried out. T5 is

the “immediate task” of T2, while T1 is a task of “no relation”;

therefore, T5 is assigned first. Regarding assignment no. 3, T1

task is assigned according to the task ending time sequence and

assignment no. 4. T3 and T4 are the “immediate tasks” of T1,

thus, T3 is assigned according to the sequence of ending time.

For assignment no. 7, according to the branching results of

triggering the T4 task, only the T7 task can be assigned, and the

time length of the T7 task is 7 units, which is beyond the

remaining cycle time of the station. Thus, the station cannot be

constructed. If T4 is assigned, as the idle time is greater than the

backtracking value (6>3), it may affect the balance efficiency.

The station thus cannot be constructed and it must be

backtracked to the previous stage for reassignment, as shown in

Fig. 10.

After the assignment failure of T7, it conducts backtracking

operation for reassignment. In the process of backtracking,

assignments no. 6 and 5 have no other branch tasks for

assignment, thus, backtracking is continued. Regarding another

branch task of assignment no. 4, if it is beyond the cycle time

after upward backtracking, the other branch task of assignment

no. 3 (T4) can satisfy the cycle time and complete the current

station assignment.

2. Computational Steps - Task Completion

The left and right side stations of the first position can be

found by backtracking (as shown in Fig. 11) before carrying out

the left side station task assignment of the second position. In

assignment no. 5, T3 and T7 are branch tasks, where T3 is

triggered according to the ending time sequence. For

assignment no. 6, T9 and T10 tasks are triggered by the T7 task,

and as it is a right side task (R), hence, it is not assigned.

According to Rule 3, when assigning the right side station, T8,

T9, and T10 are tasks triggered by left side tasks T7 and T6. If

the assigned idle time of the stations is the latest ending time of

T7 (7) and T6 (13), and both of which are beyond the

backtracking values, the station cannot be constructed, and

assignments must be carried out on the stations of the other side

(Rule 4). Regarding the left side stations of the third position,

T9 and T10 tasks are triggered by task T7. As T9 and T10 are

right side tasks, they are not assigned. After the assignment of

the left side stations, the third position on the left and right sides

are assigned alternatively.

When assigning the fourth position, it is carried out as a right

side assignment; however, after assigning the T13 task, only the

T12 task can be assigned on the left side. Thus, the fourth

position task assignment can be completed by assigning the

tasks of the left side stations.

Fig. 11 Computational steps- task assignment completed

T12(5,L)

T15(3,E)

T8(4,E)

T11(6,E)

T14(4,E)

T10(4,R)

T4(9,E)

T1(6,E)

Root

T2(5,E)

Right side Left side

T7(7,E)

I

II

M0=P1, P2

M0-T2=P1, P5----------------------M1

﹝﹝﹝﹝ 1 T2 1R 5 10﹞﹞﹞﹞

M1-T5=P1, P8------------------M2

﹝﹝﹝﹝ 2 T5 1R 8 2﹞﹞﹞﹞

M2-T1=P3, P4, P8------------------M3

﹝﹝﹝﹝ 3 T1 1L 6 9﹞﹞﹞﹞

M3-T4=P3, P7, P8------------------M4

﹝﹝﹝﹝ 4 T4 1L 2 7﹞﹞﹞﹞

M4-T3=P6, P7, P8-----------------M5

﹝﹝﹝﹝ 5 T3 2L 2 13﹞﹞﹞﹞

M5-T7=P6, P10, P11, P12---------M6

﹝﹝﹝﹝ 6 T7 2L 7 6﹞﹞﹞﹞

M6-T6=P9, P10, P11, P12---------M7

﹝﹝﹝﹝ 7 T6 2L 4 2﹞﹞﹞﹞

M7-T8=P11, P12, P13-------------M8

﹝﹝﹝﹝ 8 T8 3L 4 2﹞﹞﹞﹞

M8-T11= P11,P12,P17,P18-------M9

﹝﹝﹝﹝ 9 T11 3L 6 5﹞﹞﹞﹞

M9-T14= P11,P12,P18,P21------M10

﹝﹝﹝﹝ 10 T14 3L 4 1﹞﹞﹞﹞

M10-T10= P11,P16,P18,P21----M11

﹝﹝﹝﹝ 11 T10 3R 4 11﹞﹞﹞﹞

T3(2,L)

T6(4,L)

T9(5,R)

T9(5,R)

T12(5,L) T13(6,E)

III

T16(4,E)

IV

T5(8,R)
T1(6,E)

T16(4,E)

1

2

T3(2,L)

3

T7

4

5

T16(4,E)

6

7

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:8, No:1, 2014

163

IV. COMPARATIVE ANALYSIS

This paper applies the proposed algorithm to solve the

problems of the two-sided assembly line for comparison with

other two algorithms, including ACO [12], and a genetic

algorithm [1].

A. Comparison with ACO

The computational results are almost identical, as both

methods assign the task based on the degree of relationship

(immediate, common, and sharing relationships). The slight

differences of task assignment are mainly due to consideration

of the task ending time; hence, the execution orders of tasks in

the stations are different. If task assignment rules are not

included, backtracking operation is conducted twice; however,

it requires only one backtracking operation by applying the

proposed method.

B. Comparison with the Genetic Algorithm

As the computational results suggest, although the task

arrangement in the station is different, the relationship degree

of the task is considerably high (almost connected by

immediate and sharing relationship). Hence, Rule 1 that is

applied as the basis for task assignment according to the degree

of relationship can reduce backtracking and idle time. The

proposed method in this test does not produce any backtracking

operation.

TABLEI

SUMMARY OF COMPARISON RESULTS

Position 1 Position 2 Position 3

Right

side

Left

side

Right

side

Left

side

Right

side

Left

side

1

The
proposed

method

T1,

T3,
T5,

T4,

T8

T2,
T7,

T6

T9,
T12,

T14

T10,
T11,

T13

ACO

T2,

T4,

T5,
T8

T1,

T3,

T6,
T7

T12,
T9,

T14

T11,
T10,

T13

2

The

proposed
method

T3,

T2

T1,

T4

T5,

T8

T6,

T9,
T11

T12
T7,

T10

Genetic

algorithms

T2,

T5

T1,

T4,

T8,

T9

T3,

T6

T11,

T12

T7,

T10

V. CONCLUSION AND SUGGESTION

The proposed method can effectively solve the two-sided

assembly line balancing problem through efficient task

assignment and avoiding unnecessary backtracking operations.

This study used petri net combined with the branch-and-bound

method to assign tasks according to the degree of relationship

between branch tasks and upper layer tasks (e.g., immediate,

sharing, common, and no relationships). Moreover, it

established task assignment rules to select the appropriate tasks

for assignment, thus effectively reducing backtracking

operation. If the rules and triggering mechanism can be

modified for future branch task selection, for example, the

branch task assignments can be better defined (marked by

colors or tasks of lower relationship degrees are deleted in

advance) to strengthen the branching ability, better

computational efficiency can be achieved.

ACKNOWLEDGMENT

This research was supported in part by the National Science

Council, Taiwan, Republic of China, under Grant No.

NSC102-2221-E-214-050. The authors would also like to thank

two anonymous referees for their constructive and helpful

comments.

REFERENCES

[1] Kim Y.K., Song W.S., and Kim J.H. (2009), A mathematical model and a
genetic algorithm for two-sided assembly line balancing, Computers &

Operations Research, vol. 36, pp.853–865.

[2] Ugur O., and Bilal T. (2009),Multiple-criteria decision-making in
two-sided assembly line balancing a goal programming and a fuzzy goal

programming models, Computers & Operations Research, vol. 36, pp.

1955–1965.
[3] Hu X. F., Wu E. F., Bao J. S., and Jin Y. A. (2010), A branch-and-bound

algorithm to minimize the line length of a two-sided assembly line,

European Journal of Operational Research, vol. 206, pp. 703–707.
[4] Bartholdi J.J.(1993),Balancing two-sided assembly lines – A case study,

International Journal of Production Research, vol. 31,pp. 2447–2461.

[5] Lee T. K., Kim Y., and Kim Y. K.(2001), Two-sided assembly line
balancing to maximize work relatedness and slackness, Computers &

Industrial Engineering, vol. 40, pp. 273–292.

[6] Scholl A., and Becker C. (2006), State-of-the-art exact and heuristic
solution procedures for simple assembly line balancing, European

Journal of Operational Research, vol. 168, pp. 666–693.

[7] Baykasoglu A. and Dereli T. (2008), Two-sided assembly line balancing
using an ant colony-based heuristic, International Journal of Advanced

Manufacturing Technology, vol. 36, pp. 582–588.
[8] Klein R., and Scholl A.(1996), Maximizing the production rate in simple

assembly line balancing – A branch-and-bound procedure, European

Journal of Operational Research, vol. 91, pp. 367–385.
[9] Wu E.F., Jin Y., Bao J. S., and Hu X.F.(2008), A branch-and-bound

algorithm for two sided assembly line balancing, International Journal of

Advanced Manufacturing Technology, vol. 39, pp. 1009–1015.
[10] Ozcan K. (2011), Firing sequences backward algorithm for simple

assembly line balancing problem of type 1, Computers & Industrial

Engineering, vol. 60, pp.830–839.
[11] Ozcan U., and Toklu B.(2009), Multiple-criteria decision-making in

two-sided assembly line balancing: A goal programming and a fuzzy goal

programming models, Computers & Operations Research, vol. 36, pp.
1955–1965.

[12] Simaria A. S., and Vilarinho P. M. (2009), 2-ANTBAL – An ant colony

optimization algorithm for balancing two-sided assembly lines,
Computers & Industrial Engineering, vol. 56, pp. 489–506.

