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Appling Eyring’s Accelerated Life Testing
Model to “Times to Breakdown” of Insulating
Fluid: A Combined Approach of an Accelerated
and a Sequential Life Testi

D. I. De Souza, D. R. Fonseca, D. Kipper

compares to the Arrhenius model. Except for théa€tor, this
Abstract—In this paper, the test purpose will be to assesgrm is the same as the Arrhenius. Therefore, tirbeAius

whether or not the accelerated model proposed bingwill be able  model is successful because it is a useful siroplibn of the
to translate results for the shape and scale p&esnef an theoretically derived Eyring model

underlying Weibull model, obtained under two acraieg using . .
conditions, to expected normal using condition Itestor these The accelerating factor Ak for the Eyring model (or the

parameters. The product being analyzed is a new ofpinsulate ratio of the specific rates of reaction/R,), at two different
fluid, and the accelerating factor is the voltagiesses applied to the stress temperatures,, Bnd T, and at two different stress
fluid at two different levels (30KV and 40KV). Thrmal operating voltages, \{ and \5, will be given by:

voltage is 25KV. In this case, it was possibledst the insulate fluid
at normal voltage using condition. Both results fthre two
parameters of the Weibull model, obtained undermabrusing
condition and translated from accelerated usinglitms to normal
conditions, will be compared to each other to as#les accuracy of
the Eyring model when the accelerating factor i/ dhe voltage

. T, [eE(1 1 E(1 1
stress ARy, = 2 exXp—|——— ||exXp|—| ——— (2)
T1 K\T, T, KV, V,
Keywords—Eyring Accelerated Model, Sequential Life Testing,
Two-Parameter Weibull Distribution, Voltage Stresse

AT; e—(E/K)T2 +C e—(E/K)V2+ D

ARy = , or yet:

ATla e—(EK)T1+C e—(E/K)V1+ D

Since the testing temperatures at the two accelgragsting

conditions are the same and the only different lacatng
IN situations when stresses other than temperatoee &tress is the voltage, (2) becomes:

involved, the Eyring Model offers a general solatit the
problem of additional stresses. It has a theoreteaivation E(1 1
based on chemical reaction rate theory and quantum AFy, = exp{—( - H (3)

|. INTRODUCTION

mechanics. The Eyring model is given by: KMV,
_ e e_(EK)TnJ,C ext DS Applying natural logarithm to both sides of (3) aaftier
Reae = 1 some algebraic manipulation, we will obtain:
Here, Rqe is the rate of reaction, E represents the enefgy o | (AF ) _E(1 1 4
activation of the reaction, K the gas constant §@.8alories n ) V_l E )

per mole), T, the temperature in degrees Kelvin (273.16 plus
the degrees Centigrade) at normal condition of Ges a
second stress, C and D are constants. From (1awenatice
how the first term, which models the effect of temrgiure,

From (4) we can estimate the term E/K by testingwait
different stress voltages and computing the acatdear factor
on the basis of the fitted distributions. Then;
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The acceleration factor Ak will be given by the
relationshipB./6,, with 6; representing a scale parameter or a .
percentile at a stress level corresponding taOnce the term L(8;0)= k'{rj f(t 1 [l Ft )] , or yet:
E/K is determined, the acceleration factor,Afo be applied
at the normal stress voltage is obtained from (4jdplacing

the stress voltage Vwith the stress voltage at normal r ey
condition of use V. Then: L(;0)=k! I_J ()| [RE )] ;0 9)
E(1 1
AF 5, = eXp{K [V VN H (6) 5 1 ,
2 witn 1(0) = - 0) et andR(,) = e | we
Il. THE ACCELERATING CONDITION will have:

Reference [1] has shown that under a linear acuéber
assumption, if a three-parameter Weibull modelesents the ; r -Z (5/0) n-r
life distribution at one stress level, a three-pagter Weibull L (8;6) = k! p M—Jti} e id [e‘(‘f/f’)q (10)
model also represents the life distribution at athyer stress i=
level. The same reasoning applies to the two-paeame
Weibull model. We will be assuming a linear accatien The log likelihood function will be given by:
condition. In general, the scale parameter canshimated by
using two different stress levels (temperature oltages or :In[L(/;’ ;9)]: In(k) +r In(ﬁ)—r/;’ In(@) +
cycles or miles, etc.), and their ratios will prdeithe desired
value for the acceleration factor AR50, we will have: (11)

- . +(5-1) i;ln(ti)—;(%jﬂ—(n—r)(%Jﬁ

a

Again, according to [1] for the two-parameter Wdibu 10 find the values o and B that maximizes the log
model the cumulative distribution function at notntesting likelihood function, we take thé andf derivatives and make

condition F(t,) for a certain testing time t =, twill be given them equal to zero. Then, we will have:
by:

Fn()—F(

AF 0, AF

a ﬁxr(ti)ﬂ
]_l_exr{_(t_n]ﬂ] ® & % SO Lo

Equation (8) tells us that, under a linear accélama dL _r
assumption, if a two-parameter Weibull model repngs the d B
life distribution at one stress level, a two-partenéNeibull (13)
model also represents the life distribution at ather stress ; )
level. The shape parameter remains the same whie t ( j XIn[ ]—(n—r) (t_r) |n[t_r) =0
accelerated scale parameter is multiplied by theelecation oy 0
factor. The equal shape parameter is a necessdimngmatical
consequence of the other two assumptions, thas&ming a  From (12) we obtain:
linear acceleration model and assuming a two-paeme
Weibull sampling distribution. If different stre$svels yield ) yp
data with very different shape parameters, thereeithe two- _ 8 8
parameter Weibull sampling distribution is the wgomodel 0= [l:z(tl) +(n—r)(t,) }/r] (14)
for the data or we do not have a linear acceleratandition.

Il. MAXIMUM LIKELIHOOD ESTIMATION FOR THEWEIBULL Notice that, whenp=1, (14) reduces to the maximum

MODEL FORCENSOREDTYPE || DATA (FAILURE CENSORED) likelihood estimator for the exponential distrilmrti Using

The likelihood function for the shape and scaleapaaters (14) for@ in (13) and applying some algebra, (13) reduces to

of a Weibull sampling distribution for censored Eyp data
(failure censored) will be given by:
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i=1 nln| —2-x—2— —In[(l_y)} (WAS
(15) o Po @
) a7)
x> ) () +(n-r) () int,) b
& ol 8,00 el
r 1
) +h-r) ) T '
=
B B
n [ t't t7o n
Equation (15) must be solved iteratively. W= 21: GITl _;TO + (ﬂo _ﬁl)zln(ti) (18)
=\ 0 =

IV. THE SEQUENTIAL LIFE TESTING
The two-parameter Weibull distribution has a shap¥-EXPECTED SAMPLESIZE OF ASEQUENTIAL LIFE TESTING FOR

parametef3 which specifies the shape of the distribution, and TRUNCATION PURPOSE

a scale parametdr which represents the characteristic life of According to [5], an approximate expression for the

the distribution. Both parameters are positive. Weibull expected sample size E(n) of a sequential lifeingstor

density function is given by: truncation purpose will be given by:
_B (Y (Y E(n):ﬁv‘ﬂ (19)
f(t) =9 |3 ex 2 ;20 (16) E(W)
The h R : _ . flte,.8)
ypothesis testing situations were given byaf#j [3]: w=In (20)
fit;&o,ﬁo )

1. For the scale parameterHy: 6> 0y, H;: 0 <6,
The probability of accepting Hwill be set at (1a) if 8 = 6.

Now, if 8 = 8, whereb; < 8, then the probability of accepting E(\Nn) O P(e,[f)ln A+ [1— P(ﬁ,ﬁ)] InB (21)
Ho will be set at a low level.
2. For the shape parameferHo: B> Bo; Hii B <o For two-parameter Weibull sampling distribution, wél

The probability of accepting Hwill be set again at (&3 if have:
B = Bo. Now, if B = B;, whereB;<Bo, then the probability of

accepting B will also be set at a low levgl Fo

The development of a sequential test uses theiHixed E(w) = In ixi + (ﬁ -8 )E[In(t)]—
ratio (LR) given by the following relationship proged by [2]: o B 1o
LR = Ly./Loxn. !
The sequential probability ratio (SPR) will be givéy (22)
SPR = L./Lo, According to [4], for the two-parameter _ 1 E t/’l s L E tﬁo
Weibull model the (SPR) will be: oM g"o
1 0
B By " n BBy 1 g
SPR 11 x 0 (t. j x Elint)] =In(0) + = x= x
0,6’1 B U p 3
1 0 I (23)
B B
n |t 1 t’ 0 n+l L. t B
x exp _Z e X{Z[In(ui)e i X(J,20r4)} ; U_(EJ
i=1 011 900 i=1

. . . To find the E[In(t)] some numerical integration pedure
The continue region will becqme A<SPR<B, where)p\. (Simpson’s 1/3 rule in this work) will have to beed. The
/(1-0) and also B = (34/a. We will accept the null hypothesis ¢ tion of each component of (22) can be foun@djn
Ho if SPR> B and we will reject B if SPR < A. Now, if
A<SPR<B, we will take one more observation. Theftera
some mathematical manipulation, we will have:
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VI. EXAMPLE

whether or not the accelerated model proposed bingvill
be able to translate estimated results for the estzaqul scale
parameters of an underlying Weibull model to expect

The data is from [6]. Table 1 shows data on time tBormal using condition results for the insulatingid being

breakdown of an insulating fluid recorded at thch#ferent

voltages (40KV, 30KV and 25 KV) on 12 transformef$ie

operating normal voltage is 25KV. The test purpedehave

two objectives: The first purpose will be to assebgther or
not the accelerated model proposed by Eyring vellable to
translate results for the shape and scale parasnefelan
underlying Weibull model, obtained under two acraieg

using conditions, to expected normal using conditiesults
for these two parameters The second purpose wiib verify

if times to breakdown of insulating fluid betweeleatrodes
recorded at three different voltages have an exp@ie
distribution as predicted by theory. The test wasdated at
30KV and 25KV. The sample size of each voltage ¥WAs

TABLE |
TIMES TOBREAKDOWN OF INSULATING FLUID WITH CENSORING
TIME TO BREAKDOWN = SECONDS KV = KILOVOLTS

Voltages 40KV 30KV 25KV
Time/sec 1.5 50. 2,500.
Time/sec 1.5 134. 4,056.
Time/sec 2. 187. 12,553.
Time/sec 3. 882. 40,290.
Time/sec 12. 1,448. *
Time/sec 25. 1,468. *
Time/sec 46. 2,290. *
Time/sec 56. 2,932. *
Time/sec 68. 4,138. *
Time/sec 109. 15,750. *
Time/sec 323. * *
Time/sec 417. * *

Using the maximum likelihood estimator approach ttoe

analyzed. Therefore, using (1) to (7), we will hatre
acceleration factor for the scale paramete9AF Utilizing
(7), we will obtain:

AFf,, = 6,/0, = 4723266/559568 = 84.409

Using now (5), we can estimate the term E/K. Then:

E _ In(AF,,) _ {84409 _
K- -] " [wz0)-(raq] ~
v, V,

Applying (6), the acceleration factor for the scpggFameter
to be applied at the normal stress voltag®ARwvill be:

E(1 1 1 1
AF =exp —| —-——|| = exp 53228)] —-—
2/ p{K[Vn VZH p{ J(25 40)}

AF 5, =2,934.273

Therefore, the scale parameter of the componenorabal
operating stress voltage is estimated to be:

9n = AF 2/n X 6,
0, =2,934.273 x 55.9568 = 164,192.53 seconds

The percentage difference between the estimatest \b

scale and shape parameters of the underlying Weibi{ss 192 53 seconds) and the calculated value aftained

sampling distribution for censored Type Il data il(fe

with the inspection of only four failure times (1884.4

censored), we obtain the following values for thesgeconds) will be:

parameters:
Voltage Shape Parametg@r Scale Parametér
40KV (12 Items) 0.573 55.9568
30KV (10 ltems) 0.540 4,723.266
25KV (4 items) 0.653 160,234.4

% Difference § estimated/ calcuIated)%‘2;%2%542 =2.47%

Then, we can see that the accelerated model progmse
Eyring will be able to translate with a certain oy of

Since the values of the shape parameters for thee thprecision, results for the shape and scale parasnefean

voltages are relatively close (0.573 for 40KV wiitle analysis
of twelve failure times; 0.540 for 30KV with the sdrvation
of ten failure times and 0.653 for 25KV with thesjrection of
only four failure times), we can assume a linearetaration
condition. Now, using the results of the two shape scale
parameters of the underlying Weibull model obtained0KV
and 30KV stresses, we will estimate the valueshefé two
parameters under normal voltage using conditionK¥25
Then, we will compare these estimate results wigh dnes
obtained at normal testing conditions. We want #3eas

underlying Weibull model, obtained under two accaieg
using conditions, to expected normal using conditiesults
for these two parameters.

To evaluate the accuracy (significance) of the two-
parameter values estimated under normal conditfonghe
underlying Weibull model we will employ, to the eqied
normal failure times, a sequential life testinghgsa truncation
mechanism developed by [4]. These expected norailaird
times will be acquired by multiplying the twelveiltae times
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obtained under accelerated testing conditions a(M@iven
by Table 1, by the accelerating factor AF of 2,233.
Table 2 shows these expected normal failure times.

TABLE Il
TIMES TOBREAKDOWN OF INSULATING FLUID WITH CENSORING
TIME TO BREAKDOWN = SECONDS KV =KILOVOLTS

Voltages 40KV Expected Normal
Time/sec 1.5 4,401.4
Time/sec 1.5 4,401.4
Time/sec 2. 5,868.5
Time/sec 3. 8,802.8
Time/sec 12. 35,211.3
Time/sec 25. 73,356.8
Time/sec 46. 134,976.6
Time/sec 56. 164,319.3
Time/sec 68. 199,530.6
Time/sec 109. 319,835.8
Time/sec 323. 947,770.2
Time/sec 417. 1,223,591.8

It was decided that the value @fwas 0.05 ang was 0.10.
In this example, the following values for the afisive and
null parameters were chosen: alternative scalenpetea8, =
180,000. seconds and alternative shape pararfieter 0.8;

null scale paramete®, = 164,000 seconds and null shape
parameteil, = 0.60. Now electing B(3) to be 0.01, we can

calculate the expected sample size E(n) for trumecaturpose
of this sequential life testing under analysis. Kpm (19) to
(23), we will have:

$o
E(w) =In 9’%2— +(8, - 5, ) Elint)]-

5 s
e G = (e
0’1 e
1 0

E(W) =-2.1883 + 0.2 x 13.2025 —1.1037 + 0.9096 = (1258

Now, with A =y /(1-a); B = (1y)/a; a = 0.05;y = 0.10 and
also Pg,B) = 0.01, we will have:

EW; ) O P(6, 8)in A+[1-P(6, )] InB

EW; ) 0 -001x 2.2513+ 099% 2.8904 = 2.8390

En) = P(6,8)iInA+[1-P(0,8)InB
E(w)
E(n) = 28390 _ 10.9997111 items
0.2581

So, we could make a decision about accepting ectiag
the null hypothesis §after the analysis of observation number
11. Using now (17) and (18) and the twelve failtiraes
obtained under accelerated conditions at 40 KV rgiby
Table 2, multiplied by the accelerating factor AR2®34.273,
we calculate the sequential life testing limits.

0.8
nin 08
180000~

06 005

= nx-21883-2.8904

08
nin
18000098

06 _
164000%° ) (1-005)] _
06 010

=nx-21883+2.2513
t i030 t i0.6

n n
w=2, (180000080 ) 1640000'6} ) Ozx;m(t‘ )

i=1

Then, we get:

nx-21883—2.8904 <W <nx-21883+2.2513  (24)

The procedure is defined by the following rules:

1. If W= nx-21883+ 2.2513, we will accept §

2. If W< nx-21883—2.8904, we will reject ki

3. If nx-2.1883—2.8904< W <nx-2.1883+ 2.2513, we
will take one more observation.

Table 3 shows the results of this test for the Wikimodel
case.

TABLE Il
RESULTS FOT THE32KV CASE- TWO PARAMETER SAMPLING WEIBULL
MODEL
Unit Number Lower Limit Upper Limit Value of W

1 -5.078686 0.62977 -1.740662
2 -7.267001 -2.125337 -3.481324
3 -9.455316 -4.313652 -5.287725
4 -11.643630 -6.501967 -7.187789
5 -13.831945 -8.690281 -9.407800
6 -16.020259 -10.878596 -11.777842
7 -18.208574 -13.066910 -14.235817
8 -20.396889 -15.255225 -16.709219
9 -22.585203 -17.443540 -19.188927
10 -24.773518 -19.631854 -21.633120
11 -26.961832 -21.820169 -23.473456
12 —29.150147 —24.008483 —24.983063

In this case, even after the observation of 124itoefailure,
it was not possible to make the decision to acoepgject the
null hypothesis K Since we could make a decision about
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accepting or rejecting the null hypothesis after the analysis
of observation number 11, we will introduce a pchae for
early truncation.

VII. A PROCEDURE FOREARLY TRUNCATION

According to [2], when the truncation point is reed, a
line partitioning the sequential graph can be dragnishown in
Fig. 1.

NUMBER OF ITEMS TRUNCATION
] POINT
0 1 1 1 1 1 1 1 1 1  » T
— AN 2 3 4 5 6 7 8 9 10 n 12
a3
vl st
A 9
2 Kl
U -12
El s}
s
o
= -21
2k X
W -27 | \\\
‘el -30 &

Fig. 1 Sequential test graph for the two-paraméteibull model

This line is drawn through the origin of the gragrallel to
the acceptance and rejection lines. The decisioactept or

life testing using a truncation mechanism developgd4].
The shape parameter remained the same while tiedeasied
scale parameter and the accelerated minimum lifanpeter
were multiplied by the acceleration factor. The agshape
parameter is a necessary mathematical consequédntiee o
other two assumptions; that is, assuming a lineaelaration
model and a two-parameter Weibull sampling distidwu If
different stress levels yield data with very diffet shape
parameters, then either the two-parameter Weilarpding
distribution is the wrong model for the data or eeenot have
a linear acceleration condition.

Since the obtained values of the shape parameierthéd
three voltages are relatively close (0.573 for 40kkh the
analysis of twelve failure times; 0.540 for 30KV thithe
observation of ten failure times and 0.653 for 25tith the
inspection of only four failure times), we can assua linear
acceleration condition. Then, we compared the estich
normal using condition results for the two shape anale
parameters with the ones obtained by testing atntivenal
operating stress voltage (25KV).

The percentage difference between the estimatect \b
(164,192.53 seconds) and the calculated valué albtained
with the inspection of only four failure times (1,8684.4
seconds) is only 2.47%. Therefore, we can assuie thie
accelerated model proposed by Eyring, (when thelaating
factor is only the voltage stress), is able to slate with a
certain degree of precision, results for the shape scale
parameters of an underlying Weibull model, obtaineder

reject H simply depends on which side of the line the finafWO accelerating using conditions, to expected morusing

outcome lies. Obviously this procedure changesebels ofa
andy of the original test; however, the change is sliglthe
truncation point is not too small (less than fotiy. 1 above
shows the sequential test graph developed foettasple. As
we can see in Fig. 1, the null hypothesjssHould be accepted
since the final observation (observation numberliek)on the
side of the line related to the acceptance of H

VIII. CONCLUSION

In this paper, the test purpose was to assess ahetmot
the accelerated model proposed by Eyring will bée &b
translate results for the shape and scale parasnetelan
underlying Weibull model, obtained under two accaieg
using conditions, to expected normal using conditiesults
for these two parameters. The product being andliza new
type of insulate fluid, and the accelerating fadétothe voltage
stresses applied to the fluid at two different Is@0KV and
40KV). The normal operating voltage is 25KV. Ingluase, it
was possible to test the insulate fluid at thisnmalrvoltage

condition results for these two parameters.
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using condition.To estimate the parameters of the Weibull

model we used a maximum likelihood approach forsoesd
failure data, with the life-testing terminatingtheé moment the
truncation point was reached. To evaluate the aogur
(significance) of the two-parameter values estichateder
normal conditions for the underlying Weibull modale
employed, to the expected normal failure timeseauential
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