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Abstract—In this paper, first we introduce the stable distribution, 
stable process and theirs characteristics. The -stable distribution 
family has received great interest in the last decade due to its success 
in modeling data, which are too impulsive to be accommodated by 
the Gaussian distribution. In the second part, we propose major 
applications of alpha stable distribution in telecommunication, 
computer science such as network delays and signal processing and 
financial markets. At the end, we focus on using stable distribution to 
estimate measure of risk in stock markets and show simulated data 
with  statistical softwares. 

Keywords—stable distribution, SS , infinite variance, heavy 
tail networks ,VaR ,

I. INTRODUCTION

HE -stable distribution family has received interest in 
the last decade due to its success in modeling data, which 

are too impulsive to be accommodated by the Gaussian 
distribution. Despite this relatively new interest in the signal 
processing community, the history of research on this 
particular distribution family is old starting with the work of 
Levy (1925). The applications of Alpha-stable distributions 
have been limited though until much later when Mandelbrot 
(1963) suggested them as models for financial time series 
data. Later, Stuck et al.(1974) used them for modeling 
impulsive noise on telephone lines. It has also been employed 
as successful model for the atmospheric noise (Nikias, 1995) 
and found various applications in signal processing (see Nolan 
and Swami, 1999 for a wide range of recent work). 
Many physical phenomena are non-Gaussian and if the 
observed data have frequently occurring extreme values, then 
the phenomena may be modeled as a random process with an 
alpha-stable distribution. When positive and negative 
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outcomes are equally likely, then the process would be 
symmetric alpha-stable; however, when only positive 
outcomes are possible, then the process would be positive 
alpha-stable. Phenomena related to networks, finance and 
signal processing are examples. 
A review of the state of the art on stable processes from a 
statistical point of view is provided by a collection of papers 
edited by Cambanis, Samorodnitsky and Taqqu .Several 
statisticians including Cambanis, Zolotarev, Weron et al  have 
published extensively on the theory and applications of stable 
processes.  They studied the properties of stable processes, 
their spectral representation as well as prediction and linear 
filtering problems. Textbooks in the area were written by 
Samorodnitsky and Taqqu  and by Janicki and Weron .  

II. STABLE DISTRIBUTIONS

In probability theory, a Lévy skew alpha-stable distribution 
or just stable distribution, developed by Paul Lévy, is 
actually a family of probability distributions which are 

characterized by four parameters: ,,, ,as well as 
the distributed value, X . The  and are shift and scale 
parameters which do not determine the shape of the  
distribution.  The stable distribution has the important 
property of stability: If a number of independent identically 
distributed (iid) random variables have a stable distribution, 
then a linear combination of these variables will have the 
same distribution, except for possibly different shift and scale 
parameters. 
To be more precise: 
If X1 and X2 are distributed according to a stable distribution 
S(x; , , , ), and if Y = AX1 + BX2 + C is a linear 
combination of the two, then there exist values of D and E
such that DY + E is distributed according to a stable 
distribution  S(DY + E; , , , ) or, equivalently, Y is
distributed according to a stable distribution 
S (Y; , , ( E) / D, / D). If E = 0 for all A, B, and C

then Y is said to have a strictly stable distribution. Since the 
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normal distribution, the Cauchy distribution, and the Lévy 
distribution all have the above property, it follows that they 
are special cases of the stable distribution. (Nolan 2005) 
Stable distributions owe their importance in both theory and 
practice to the generalization of the Central Limit Theorem 
(GCLT) to random variables without second (and possibly 
first) order moments and the concomitant self-similarity of the 
stable family. It was the demand for self-similarity and the 
seeming departure from normality of data. 
All stable distributions are infinitely divisible and with the 
exception of the normal distribution for which =2, stable 
distributions are Heavy-tailed distributions. 

III. CHARACTERISTICS OF STABLE DISTRIBUTIONS 

An -stable distribution may be thought of as a 
generalization of the normal distribution where the 
generalization allows greater concentration close to the mean, 
more extreme values and possible skewness. The distribution 
depends on four parameters ,,, . These parameters 
can be interpreted as follows : 
• , )20( ), is the basic stability parameter. It 
determines the weight in the tails. The smaller the value of 
the greater the frequency and size of extreme events. 
• is a skewness parameter and 11 . A zero beta 
implies that the distribution is symmetric. Negative or positive 

imply that the distribution is skewed to the left or right 
respectively
• The parameter is positive and measures dispersion. It is 
similar to the variance of a normal distribution 
• The parameter  is a real number and may be thought of as 
a location measure. It is similar to the mean of a normal 
distribution. 
The stability property: which states that the random 
variables nXX ,...1 are independent and symmetrically stable 
with the same characteristic exponent  if and only if for any 
constants naa ,...1  the linear combination                      is also 
stable distribution. 
The generalized central limit theorem (GCLT):
which states that the family of stable distributions contains all 
limiting distributions of sums of iid random variables. The 
central limit theorem states that the sum of a number of 
random variables with finite variances will tend to a normal 
distribution as the number of variables grows. A 
generalization due to Gnedenko and Kolmogorov states that 
the sum of a number of random variables with power-law tail 

distributions decreasing as 
1/1 X  (and therefore having 

infinite variance) will tend to a stable Levy distribution 
f(x; ,0,c,0) as the number of variables grows. (Voit 2003 § 
5.4.3)
we demonstrate here plots for various parameter values in 
Figures 1 and 2 for understanding of the behavior of these 
distributions. 

b
Figure 1: Various -stable pdfs with varying characteristic 
exponent (alpha) values.  a) Whole pdfs b) Detail from the 
tails. Distribution gets more impulsive (heavy-tailed) as 

decreases.

C

Figure 2: Various -stable pdfs with varying 
 c) symmetry parameter (beta) and  d)dispersion (gamma). 
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IV. APPLICATIONS

A. Application in network traffic 
 Actual network traffic is self-similar or fractal in nature, and 
therefore could not be modeled by Poisson and  Markov 
processes or variants of Poisson and Markov processes . There 
are some properties that appear to be important in traffic 
modeling, such as the traffic burstiness, the heavy tailed 
distribution and the self-similarity. The alpha-stable process 
has those properties . 
All stable distributions are infinitely divisible and with 
the exception of the normal distribution for which 

=2, stable distributions are Heavy-tailed 
distributions. This "heavy tail" behavior causes the 
variance of Lévy distributions to be infinite for all  < 
2. Alpha-stable model is also able to characterize time-
variant delays in Network systems. The modeling of 
network traffic is important for the design and 
application of networks, but little is known as to the 
characteristics of distribution of packets in network 
traffic.

B. Application in signal and (image processing) 

Up to now, the applications of alpha stable distributions in 
image processing have been very limited. We can see a few 
works such as: synthesis of textures 2D image models with 
long-range dependence. (Popescu-Pesquet and Pesquet,1999). 
Their model is impulsive but  cannot accommodate skewed 
characteristics. (Tsakalides et al., 2001) considered again 
symmetric a-stable distributions for modeling the wavelet 
transform coefficients of subband images. (Achim et al., 
2001) employed this model for the removal of speckle noise in 
SAR images. Work in both signal and image processing have 
been limited to only symmetric a-stable (SaS) distributions, 
ignoring skewed distributions in all other than a couple of 
works on parameter estimation (Dance and Kuruoglu,1999), 
(Kuruoglu, 2001) while some real phenomena such as some 
geophysical 
signals, teletraffic data and SAR images clearly exhibit 
skewed characteristics. the a-stable processes provide a very 
flexible framework for modeling textures in images. 

C. Application in finance (stock markets) 
The use of the -stable distribution was first advocated in 
the 60’s by Mandelbrot (Mandelbrot (1962, 1964, 1967, 
1997),
Mandelbrot and Hudson (2004)) and Fama (1964, 1965, 
1976). Mandelbrot examined the variation of prices of cotton 
(1816-1940), wheat (1883-1936), railroad stock (1857-1936) 
and interest and exchange rates (similar periods) and found a 
larger number of extreme values than could be justified by the 
assumption of a normal distribution. Mandelbrot proposed the 
stable distribution as a suitable model for price differences, 
= Si+1 Si, or logarithmic returns, log = log(Si+1) log(Si)
[4]. In the financial literature, the debate on the stable model 

focused on the infinite variance of the distribution, leading to 
the introduction of subordinated models [5–7];
Fama examined the distribution of daily returns for the 30 
stock in the Dow Jones Industrial Average in a period from 
about the end of 1957 to September 26 1962. There was 
considerable interest in the _-stable distribution throughout 
the 60’s and the early 70’s but interest then declined.  
In the physical literature, Mantegna used the model for the 
empirical analysis of historical stock-exchange indices [8]. 
Later, Mantegna and Stanley proposed a “truncated” L´evy 
distribution [9–11], an instance of the so-called KoBoL 
(Koponen, Boyarchenko and Levendorskii) distributions 
Value at Risk (VaR) is the most common measures of risk 
used in many financial institutions. VaR at a p% level is 
estimated as the loss that might be exceeded p% of the time. 
Like many other models in finance it is often based on an 
assumption that losses follow a normal distribution. It is now 
well known that extreme losses are greater than, and occur 
much more often than, a normal distribution would predict. 
Value at Risk of the stock or(VaR) : measure of risk can be 
improved by the use of an -stable distribution in place of 
more conventional measures. We show that -stable based 
measures are feasible and are better than conventional 
measures. They are a useful tool for the risk manager and the 
financial regulator. According to (Frain 2008) We explain 
why it is a good candidate for the distribution of losses.  
The purpose of this part is to show that calculated VaR at 
various levels assuming that losses follow with -stable
innovations could be estimated with this distribution as a good 
model. The resulting estimates are compared with estimates 
obtained from static normal and t-distributions. The 
portfolios examined are six total returns 1 equity indices 
(ISEQ, CAC40, DAX30, FTSE100, S&P500, Dow Jones 
Composite (DJAC)). VaR is estimated at 10%, 
5%  levels. 

Measure of risk estimates with stable distribution

The quintiles are calculated on the basis of returns following 
• an -stable distribution with parameters estimated by 
maximum likelihood(MLE) 
• a normal distribution with parameters estimated by 
maximum likelihood (MLE) 
• a t-distribution  with nonzero mean, nonzero scale and 
degrees of freedom to be estimated by maximum likelihood 
Tables 1 and 2 show the estimates of the VaR at 10%, 5% 
levels for an investment in each of the six total returns equity 
indices. 
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The estimates for the -stable distribution are very good at 
the 10%, 5% levels 

V. CONCLUSION

In this paper, we introduced the -stable distribution and 
explains why it is a good candidate for the distribution of  
heavy tail of networks , signals and losses. Although the 
Stable  density behaves approximately like a Gaussian density 
near the origin. its tails decay at a lower rate than the Gaussian 
density tails While the Gaussian density has exponential tails. 
This implies that random variables following stable 
distributions with small characteristic exponents are highly 
impulsive .It is this heavy tail characteristic that makes this 
densities appropriate for modeling network delays , signals 
and noise, financial risk or interference which are impulsive in 
nature . 
 We also have shown that the estimates of VaR derived from 
an -stable distribution are feasible and are a useful addition to 
the toolbox of a risk manager or a financial regulator. 
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