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Abstract—An adaptive dynamic cerebellar model articulation 

controller (DCMAC) neural network used for solving the prediction 
and identification problem is proposed in this paper. The proposed 
DCMAC has superior capability to the conventional cerebellar model 
articulation controller (CMAC) neural network in efficient learning 
mechanism, guaranteed system stability and dynamic response. The 
recurrent network is embedded in the DCMAC by adding feedback 
connections in the association memory space so that the DCMAC 
captures the dynamic response, where the feedback units act as 
memory elements. The dynamic gradient descent method is adopted to 
adjust DCMAC parameters on-line. Moreover, the analytical method 
based on a Lyapunov function is proposed to determine the 
learning-rates of DCMAC so that the variable optimal learning-rates 
are derived to achieve most rapid convergence of identifying error. 
Finally, the adaptive DCMAC is applied in two computer simulations. 
Simulation results show that accurate identifying response and 
superior dynamic performance can be obtained because of the 
powerful on-line learning capability of the proposed DCMAC. 

 
Keywords—adaptive, cerebellar model articulation controller, 

CMAC, prediction, identification 

I. INTRODUCTION 
ECENTYL, many researches have been done on the 
applications of neural networks (NNs) for prediction, 

identification and control of dynamic systems [1]-[5]. The most 
useful property of NNs is their ability to approximate arbitrary 
linear or nonlinear mapping through learning. Based on their 
approximation ability, the NNs have been used for 
approximation of control system dynamics or controllers. 
According to the structure, the NNs can be mainly classified as 
feedforward neural networks (FNNs) [2], [3] and recurrent 
neural networks (RNNs) [4], [5]. RNN has capabilities superior 
to FNN, such as the dynamic response and information storing 
ability [4], [5]. Since a RNN has an internal feedback loop, it 
captures the dynamic response of system with external 
feedback through delays. Thus, the RNN is a dynamic mapping 
and demonstrates good control performance in presence of 
unmodelled dynamics. However, no matter FNNs or RNNs, the 
learning is slow since all the weights are updated during each 
learning cycle. Therefore, the effectiveness of NN is limited in 
problems requiring on-line learning. 

The cerebellar model articulation controller (CMAC) has 
been adopted widely for the closed-loop control of complex 
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dynamical systems owing to its fast learning property, good 
generalization capability, and simple computation compared 
with the multiplayer perceptron with backpropagation 
algorithm [6]-[8]. The CMAC is a non-fully connected 
perceptron-like associative memory network with overlapping 
receptive-fields. The application of CMAC is not only limited 
to control problem but also to model-free function 
approximation. This network has been already validated that it 
can approximate a nonlinear function over a domain of interest 
to any desired accuracy. The advantages of using CMAC over 
conventional NN in many practical applications have been 
presented in recent literatures [7]-[10]. However, the major 
drawback of existing CMACs is that their application domain is 
limited to static problem. 

To accomplish the mentioned motivation, a dynamic 
cerebellar model articulation controller (DCMAC) neural 
network is proposed in this study used for solving the 
prediction and identification problem. The DCMAC comprises 
the delayed self-recurrent units in the association memory 
space. Thus it captures the dynamic response. The DCMAC 
parameters are on-line tuned by the derived adaptive laws. 
Moreover, the analytical method based on a Lyapunov function 
is proposed to determine the learning-rates of DCMAC so that 
the variable optimal learning-rates are derived to achieve most 
rapid convergence of identifying error. Finally, simulation 
results show that accurate identifying response and superior 
dynamic performance can be obtained because of the powerful 
on-line learning capability of the proposed DCMAC. 

II. STRUCTURE OF THE DCMAC NEURAL NETWORK 

A. Description of DCMAC 
A dynamic cerebellar model articulation controller 

(DCMAC) is proposed and shown in Fig. 1, in which 1−z  
denotes a time delay. This DCMAC is composed of input space, 
association memory space, recurrent unit, receptive-field space, 
weight memory space, output space and recurrent weights. The 
signal propagation and the basic function in each space are 
introduced as follows. 
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Fig. 1 Architecture of DCMAC. 

1) Input space X: For a given nT
nxxx ℜ∈= ],,,[ 21 Lx , each 

input state variable ix  must be quantized into discrete regions 
(called elements) according to given control space. The number 
of elements, En , is termed as a resolution. 

2) Association memory space A: Several elements can be 
accumulated as a block, the number of blocks, Bn , in DCMAC 
is usually greater than two. The A denotes an association 
memory space with An  ( BA nnn ×= ) components. In this 
space, each block performs a receptive-field basis function, 
which can be defined as rectangular [6] or triangular or any 
continuously bounded function (e.g., Gaussian [11], [12] or 
B-spline [7], [13]). The Gaussian function is adopted here as 
the receptive-field basis function, which can be represented as 

⎥
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⎤
⎢
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2

2)(exp
ik

ikri
ik v

mx
φ ,   for Bnk L,2,1=  (1) 

where ikφ  represents the kth block of the ith input ix  with the 
mean ikm  and variance ikv . In addition, the input of this block 
for discrete time N can be represented as 

)1()()( −+= NrNxNx ikikiri φ  (2) 

where ikr  is the recurrent weight of the recurrent unit. It is 

clear that the input of this block contains the memory terms 
)1( −Nikφ , which store the past information of the network. 

This is the apparent difference between the proposed DCMAC 
and the conventional CMAC. Figure 2 depicts the schematic 
diagram of two-dimensional DCMAC operations with 9=En  
and 4=ρ  ( ρ  is the number of elements in a complete block), 
where 1x  is divided into blocks A, B and C, and 2x  is divided 
into blocks a, b and c. By shifting each variable an element, 
different blocks can be obtained. For instance, blocks D, E and 
G for 1x , and blocks d, e and g for 2x  are possible shifted 

elements. Each block in this space has three adjustable 
parameters ikm , ikv  and ikr . 

1 Variable x

2 Variable x

 
Fig. 2.  Two-dimensional DCMAC with 4=ρ  and 9=En . 

3) Receptive-field space T: Areas formed by blocks, named 
as Aa, Bb and Cc are called receptive-fields. The number of 
receptive-field, Rn , is equal to Bn  in this study. Each location 
of T corresponds to a wavelet receptive-field. The 
multidimensional wavelet receptive-field function is defined as 
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where kb  is associated with the kth wavelet receptive-field, 
nT

rnrrr xxx ℜ∈= ],,,[ 21 Lx , nT
nkkkk mmm ℜ∈= ],,,[ 21 Lm  and 

nT
nkkkk vvv ℜ∈= ],,,[ 21 Lv . The multidimensional wavelet 

receptive-field function can be expressed in a vector form as 
T

nkr R
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where R

R

nnTT
n

T
k

TT ℜ∈= ],,,,,[ 21 mmmmm LL  and 
R

R

nnTT
n

T
k

TT ℜ∈= ],,,,,[ 21 vvvvv LL . In the DCMAC scheme, no 
receptive-field is formed by the combination of different layers 
such as “A, B, C ” and “d, e, f ”. Therefore, Dd, Ff and Gg are 
new receptive-fields resulting from different blocks (see Fig. 2). 
With this kind of quantization and receptive-field composition, 
each state is covered by ρ  different receptive-fields. 

4) Weight memory space W: Each location of T to a 
particular adjustable value in the weight memory space can be 
expressed as 
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where R

R

nT
onkoooo wwww ℜ∈= ],,,,,[ 21 LLw , and kow  denotes 

the connecting weight value of the oth output associated with 
the kth wavelet receptive-field. The weight kow  is initialized 
from zero and is automatically adjusted during on-line 
operation. 

5) Output space Y: The output of DCMAC is the algebraic 
sum of the activated weights in the weight memory space, and 
is expressed as 

∑
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T
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The outputs of the DCMAC can be expressed in a vector 
notation as 

ΓTT
po yyyy wy == ],,,,,[ 21 LL  (6) 

In a two-dimensional case shown in Fig. 2, the output of the 
DCMAC is the sum of the value in receptive-fields Bb, Ee, Hh 
and Jj, where the input state is (4,4). The architecture of 
DCMAC used in this paper is designed to possess the 
advantage of simple structure with dynamic characteristics. 

B. Online Training Methodology 
Selections of the recurrent weights and translations and 

dilations of the mother wavelet functions will significantly 
affect the performance of DCMAC. Inappropriate recurrent 
weights and wavelet functions will degrade the DCMAC 
learning performance. For achieving effective learning, an 
on-line learning algorithm, which is derived using the 
supervised gradient descent method, is introduced for DCMAC 
so that it can real-time adjust the recurrent weights and 
translations and dilations of the wavelet functions. Define the 
cost function E  as 
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2
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where dy  denotes the desired output value. In the output space, 
the learning algorithm based on gradient descent method for 

kw , can be derived as 
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where the positive factor wη  is the learning-rate for the output 
weights kw . The connective weights can be updated according 
to the following equation: 

)()()1( NwNwNw kkk Δ+=+  (9) 

Moreover, the translations, dilations and recurrent weights of 
the wavelet functions can be also adjusted in the following 
equation: 
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where the positive factors mη , vη  and rη  are the learning-rates 
for the translations, dilations and recurrent weights, 
respectively. Then the updated laws of translations, dilations 
and recurrent weights are given as follows: 

)()()1( NmNmNm ikikik Δ+=+  (13) 

)()()1( NvNvNv ikikik Δ+=+  (14) 

)()()1( NrNrNr ikikik Δ+=+  (15) 

To avoid the local minimum result and increase the 
convergence rate, the corresponding time-varying learning 
rates should be designed. 

C. Convergence Analyses 
The learning laws of (8), (10), (11) and (12) call for a proper 

choice of the learning-rates wη , mη , vη  and rη . For a small 
value of learning-rates, the convergence is easy to be 
guaranteed; however, the learning speed is slow. On the other 
hand if learning-rates are too large, the learning mechanism 
may become unstable. In order to train the DCMAC effectively, 
the variable learning-rates, which guarantee convergence of the 
output error, are derived in the following. The convergence 
analyses in this study are to derive specific learning-rates for 
specific types of network parameters to assure convergence of 
the output error [5]. 

Theorem 1: Let sη  be the learning-rates for the DCMAC and 
let )(Ny so Ps =∂∂  for ws = , m , v  and r . Then the 
convergence of identifying error is guaranteed if sη  is chosen 
as 

2||)(||
20
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s P
<<η  (16) 

where |||| ⋅  is the Euclidean norm. Moreover, the variable 
optimal-rates which achieve the most rapid convergence can be 
obtained as 

2
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Define Lyapunov function as 
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then change of the Lyapunov function is obtained as 
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The error difference can be represented by 
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From (23) and (26), )(NVΔ can be represented as 
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Remark: If sη  is chosen as 
2||)(||

20
Ns

s P
<<η , )(NVΔ  in 

(27) is less than 0. Therefore, the Lyapunov stability of 0>V  
and 0<VΔ  is guaranteed. Thus, the tracking error )(Nem  will 
converge to zero as ∞→t . Moreover, the optimal 

learning-rates which achieve the most rapid convergence are 

corresponding to 02||)(||2 2* =−Nss Pη , i.e., 
2

*
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1
Ns
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which comes from the derivative of (27) with respect to sη  and 
equals to zero. This shows an interesting result for the variable 
optimal learning-rates which can be on-line adjusted at each 
instant. 

III. ILLUSTRATIVE EXAMPLES 
To demonstrate the performance of the proposed DCMAC 

for temporal problems, this section presents two examples and 
performance contrasts with cerebellar model articulation 
controller (CMAC, non-recurrent unit, i.e., 0=ikr ). The first 
example involves predicting a time sequence and the second 
example involves identifying a nonlinear dynamic system. 

A. Example 1: Prediction of Time Sequence 
To clearly verify that the proposed adaptive DCMAC can 

learn the temporal relationship, a simple time sequence 
prediction problem from [14], [15] is used for testing in the 
following example. The test bed used for this example is shown 
in Fig. 3. The test bed is an “8” shape made up of a series with 
12 points that are to be presented to the network in the order 
shown. 

1=N 2=N

3=N

4=N

5=N

12=N

6=N 7=N 8=N

9=N

10=N

11=N

1x

2x

 
Fig. 3 Test bed for the sample prediction experiment in Example 1. 

The adaptive DCMAC is asked to predict the succeeding 
point for every presented point. Obviously, this task cannot be 
accomplished by a static network because the point at 
coordinate has two successors: point 5 and point 11. The 
DCMAC must determine the successor of (0, 0) based on its 
predecessor; specifically, if the predecessor is 3, then the 
successor is 5, whereas if the predecessor is 9, the successor is 
11. 

In this example, the DCMAC contains only 2 input nodes, 
which were activated with the two dimensional coordinate of 
the current point, and two output nodes, representing the two 
dimensional coordinates of the predicted point. The training 
process was continued for 1000 epochs. The predicted values 
are shown in Fig. 4(c) (solid line: desired output; dotted line: 
DCMAC). We also applied the CMAC to this time prediction 
problem. The results of prediction using the CMAC with 2 
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inputs after training are shown in Fig. 4(a), verifying that a 
feedforward CMAC cannot accurate predict owing to its static 
mapping. To solve the problem using the feedforward CMAC 
above, 4 inputs must be fed into the network. Fig. 4(b) shows 
that the CMAC with 4 inputs can make effective predictions, 
but some time prediction points cannot be matched exactly. Fig. 
4(d) shows the mean square error (MSE) for the DCMAC, 
CMAC with two inputs and CMAC with four inputs. From the 
simulation results shown in Fig. 4(d), we can see that the 
CMAC is inappropriate for time sequence prediction because 
of its static mapping. 

 

 
Fig. 4.  Simulation results of time sequence prediction (solid line: desired 
output). (a) Results of prediction using the CMAC with 2 inputs. (b) Results of 
prediction using the CMAC with 4 inputs.. (c) Results of prediction using the 
DCMAC (d) MSE of the DCMAC, CMAC with 2 inputs and CMAC with 4 
inputs. 

B. Example 2: Identification of a nonlinear dynamic system 
In this example, the nonlinear plant with multiple time-delay 

is described as [15], [16]. 
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Here, the current output of the plant depends on three previous 
outputs and two previous inputs. In [15] and [16], the FNN, 
with five input nodes for feeding the appropriate past values of 

dy  and u  were used. In this paper, only two values, )(Nyd  
and )(Nu , are fed into the adaptive DCMAC to determine the 
output. In training the adaptive DCMAC, we used 100 epochs. 
The testing input signal )(Nu  as the following equation is used 
to determine the identification results, 
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Fig. 5.  Simulation results for dynamic system identification. (a) Results of 
identification using the CMAC with 2 inputs. (b) Results of identification using 
the CMAC with 5 inputs. (c) Results of identification using the DCMAC. (d) 
MSE of the DCMAC, CMAC with 2 inputs and CMAC with 5 inputs. 

Fig. 5(a) shows the identification results using the CMAC 
with 2 inputs. Fig. 5(b) shows the identification results using 
the CMAC with 5 inputs. The results of identification the 

(a) (b)

(c) (d)
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Time step

Time step

Time step

O
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pu
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CMAC with 2 inputsCMAC with 5 inputsDCMAC

Dotted line: desired output; Solid line: network output
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Dotted line: desired output; Solid line: network output
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DCMAC are shown in Fig. 5(c). Fig. 5(d) presents the MSE of 
the DCMAC, CMAC with 2 inputs and CMAC with 5 inputs. 
This simulation demonstrates that the DCMAC has the smaller 
network structure for identification. In addition, we observe 
that the identification error of the DCMAC is less than that of 
the CMAC. 

IV. CONCLUSIONS 
This study developed the dynamic cerebellar model 

articulation controller (DCMAC). The DCMAC expands on the 
powerful ability of CMAC (non-recurrent unit, i.e., 0=ikr ) to 
overcome temporal problems in prediction and identification. 
The recurrent network is embedded in the DCMAC by adding 
feedback connections in the mother wavelet association 
memory space so that the DCMAC captures the dynamic 
response, where the feedback units act as memory elements. 
The dynamic gradient descent method is adopted to adjust 
DCMAC parameters on-line. Moreover, the analytical method 
based on a Lyapunov function is proposed to determine the 
learning-rates of adaptive DCMAC so that the variable optimal 
learning-rates are derived to achieve most rapid convergence of 
identifying error. Simulation results show that accurate 
identifying response and superior dynamic performance can be 
obtained because of the powerful on-line learning capability of 
the proposed DCMAC. 
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