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Abstract—Application-Specific Instruction (ASI ) set Processors 

(ASIP) have become an important design choice for embedded 
systems due to runtime flexibility, which cannot be provided by 
custom ASIC solutions. One major bottleneck in maximizing ASIP 
performance is the limitation on the data bandwidth between the 
General Purpose Register File (GPRF) and ASIs. This paper presents 
the Implicit Registers (IRs) to provide the desirable data bandwidth. 
An ASI Input/Output model is proposed to formulate the overheads of 
the additional data transfer between the GPRF and IRs, therefore, 
an IRs allocation algorithm is used to achieve the better performance 
by minimizing the number of extra data transfer instructions. The 
experiment results show an up to 3.33x speedup compared to the 
results without using IRs. 
 

Keywords—Application-Specific Instruction-set Processors, data 
bandwidth, configurable processor, implicit register. 

I. INTRODUCTION 
SIPs provide a compromise between custom designs and 
general purpose processors. A base processor with a basic 

instruction set is augmented with application-specific 
functional unit (AFU) that implements application-specific 
instruction-set (ASI) extensions for complex processing tasks 
as either single-cycle (combinatorial) or multi-cycle 
(sequential) operations. The control-flow within the application 
is directed by the base processor, whereas computation 
intensive regions are implemented as custom logic. A dedicated 
link between custom logic and the base processor provides an 
efficient communication interface. Reusing a pre-verified, 
pre-optimized base processor reduces the design complexity, 
and the time to market. 

Among the best known examples of extensible ASIPs are 
CoWare [1], Tensilica Xtensa [2] and Altera Nios/Nios II [3], 
and some levels of customizability have also been added on 
traditional well-established architectures such as MIPS 
CorExtend [4] or PowerPC APUs [5]. The research community 
has expended a considerable amount of effort in the ASIP area 
for almost a decade. The issues involved in the ASIP design 
were surveyed in [6]. The ASIP architecture and the compiler 
co-exploration problem are addressed in [7].  

Application specific instruction set processor problem is 
defined as a process to automatically generate ASIs from an 
application in order to meet certain design objectives. An 
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existing work in ASIP generally consists of three steps. 1) 
template generation, 2) ASIs selection and 3) application 
replacement. Template generation can be loosely described as a 
process of identifying a subgraph from the application 
data-flow graph (DFG) to form a single ASI in order to 
maximize some metrics (typically performance). This step 
generates a set of templates, which will be evaluated for ASIs 
implementation. ASIs selection evaluates the templates in 
terms of their performance, area, or power and selects a subset 
of them that meets the design constraints. 

In this work, we apply formal optimization techniques to 
generate ASIs from C code. We target architectures where the 
data bandwidth between the base processor and the custom 
logic is constrained by the available GPRF ports in Fig. 1.  

Our method is applicable to architectures where the data 
bandwidth is limited by dedicated data transfer channels.  
Given the available data bandwidth, our approach identifies the 
most profitable ASIs based on a heuristic algorithm. The data 
transfer overhead when generating and evaluating ASIs is 
explicitly considered. We demonstrate our automatically 
customized processor within the silicon area using FPGA 
synthesis results. 

The contribution of the current paper is that we provide an 
ASI input/output model which considers the I/O abstraction 
with the base processor GPRF bandwidth constraints and extra 
data transfer costs. Another contribution of this paper is that the 
model and a heuristic algorithm are successfully integrated into 
the ASIP design flow to automatically generate ASIs from C 
codes.  

 
Fig. 1 The Datapath of the application-specific instruction processor 

(data bandwidth is limited by the GPRF I/O ports) 

II. RELATED WORK 
Existing approaches attempt to discover the candidate 

application specific instructions by exploiting the observation 
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that recurring subgraphs frequently exist in the dataflow graphs 
(DFG) of applications, and then to select an appropriate subset 
of the candidate instructions to maximize performance under 
certain architectural constraints (e.g., the number of input and 
output operands, area constraints, etc.). By implementing these 
frequently occurring subgraphs in hardware as instructions, 
performance improves, code size decreases, and energy 
consumption is reduced. In template generation, most 
approaches use the number of I/O ports of the register file to 
constrain the set of subgraphs that can be enumerated [8]–[14]. 
In candidate selection, the problem of individual templates 
appeared in multiple candidates make selection more difficult. 
Selecting candidates with a given area constraint is similar to 
the 0/1 knapsack problem [15]. It is widely known that the 0/1 
knapsack problem is NP-complete. Strategies are needed to 
avoid intractability in this step for design automation. 

Most prior techniques for ASI generation use the number of 
I/O ports of the register file to constrain the set of subgraphs 
that can be enumerated; this yielded effective pruning criteria 
that reduced the size of the search space for ASI identification. 
Although the existing techniques are efficient in identifying the 
promising candidate instructions, [16] points out that most of 
the speedup (about 60%) comes from the cluster with more than 
two input operands. This exceeds the number of read ports 
available on the register file of a typical embedded RISC 
processor core. Strictly following the two-input single-output 
constraint, generally leads to small clusters with limited 
speedup.  

Generation of larger clusters with extra inputs is allowed in 
[17] by using the custom-defined state registers to store the 
additional operands. Unfortunately, at least one extra cycle is 
needed for each additional input to be loaded into a 
custom-defined state register. The communication overhead 
incurred because of these data transfers between the core 
processor, and the custom logic can significantly offset the gain 
from forming a large cluster. A multi-ported register file can 
increase the data bandwidth. However, additional read and 
write ports result in power consumption and cycle time. The 
Tensilica Xtensa uses state registers to explicitly move 
additional input and output operands between the base 
processor and custom units. Clever binding of base processor 
registers to state registers at compile time reduces the number 
of data transfers. In addition, state register approach solves the 
problem of encoding many operands within a fixed length 
instruction word. Cong et al. [18] have presented a 
hash-mapped low-cost architectural extension and associated 
internal register binding compilation techniques to efficiently 
reduce the communication overhead due to data transfers 
between the core processor and the AFU. However, extra hash 
table increases AFU area overhead. Pozzi et al. [19] reduce the 
data transfer overhead by overlapping execution cycles with 
data transfer cycles for pipelined multi-cycle ASIs. 

We integrate the data bandwidth information directly into 
the optimization process, and we explicitly account for the cost 
of the data transfers between base register file and custom 
implicit registers as part of the optimization. Since our 

formulation can take advantage of the increased data bandwidth, 
the approach of Pozzi et al. [19] can be combined with ours to 
further improve the performance of multi-cycle ASIs. 

III. THE OVERALL DESIGN FLOW 
The Altera NiosII is selected as a base processor to 

implement the target ASIP but not limited to this specific 
architecture.  The input of the proposed design flow is 
application specific programs in C code. The gcc tool chain is 
used to obtain the profiling information for each basic block in 
the application programs which is corresponded to the 
occurrence of each primitive base processor assembly 
instruction. Therefore, the control/data flow graphs (CDFGs) 
of the entire application program are generated for the analysis 
of the data dependencies among the primitive instructions. 

The subgraphs of the CDFGs are enumerated as ASI 
templates and then the structural equivalent templates within 
isomorphism classes will be grouped as ASI candidates.   For 
each ASI candidate, the corresponding behavioral hardware 
descriptions are implemented in Verilog as well as be 
synthesized via Altera Quartus II and SOPC builder to estimate 
the hardware area cost. 

The most profitable candidates will be selected according to 
the proposed heuristic algorithm to balance the time-area 
design constraints. The selected ASI candidates will be used to 
conduct the graph covering on the CDFGs based on a proposed 
heuristic algorithm. The matching code segments on the 
CDFGs will be replaced with new opcodes representing the 
ASIs. 

Once the most profitable candidates are selected, we replace 
the matching code segments with an opcode representing the 
new instruction. Finally, the ASIP and the corresponding 
application codes with ASIs are verified on the Altera DE2-70 
board to demonstrate the correctness and performance of the 
proposed approach.  Fig. 2 depicts our design flow. 

 
Fig. 2 The proposed design flow 

IV. PROPOSED APPROACH 

A. Problem Formulation 
A basic block is represented using a directed acyclic graph 

G(V, E) where nodes V represent operations, edges E represent 
register dependencies between operations. A template T is an 
induced subgraph of G. A template is convex if there exists no 
path in G from a node u ∈ T to another node v ∈ T which 
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involves a node w∉ T. The convexity constraint is imposed on 
the templates to ensure that no cyclic dependencies are 
introduced in G, and a feasible schedule can be generated. 

We estimate the software cost of a template, SW(T), as the 
sum of the software latencies of the instructions contained in T. 
We estimate the cost of moving T to a custom datapath as the 
sum of estimated hardware execution latency, HW(T). 

B. Template and Candidate Generation 
Our template generation algorithm iteratively exploits valid 

subgraphs in order to generate a set of templates. A valid 
subgraph which must satisfied two constraints. First, there are 
no load, store, jump or branch instructions include in a 
subgraph. Second, for a given application basic block, the. 
Template generation algorithm is applied on all basic blocks, 
and a set of application-specific instructions templates are 
generated. 

After template generation is done, we calculate the 
isomorphic classes; the set of generated templates is partitioned 
into Ck different isomorphic classes.  

C. Calculation of input and output data transfers 
We assume Nin read ports, and Nout write ports supported by 

the base register file. If the number of inputs for a template is 
larger than Nin, we assume additional data transfers from the 
base register file to custom implicit registers. If the number of 
outputs for a template is larger than Nout, we assume additional 
data transfers from custom implicit registers to the base register 
file.  

We introduce an integer variable I(T) to indicate the number 
of inputs for a template T. An input operand e ∈ E in the basic 
block is an input of the template T if it has at least one 
immediate successor in T. We calculate the number of 
additional data transfers from base register file to the custom 
logic as I_Penalty(T): 

1
inN

I(T)
= T)I_Penalty( −

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
    (1) 

We introduce an integer variable O(T) to indicate the number 
of outputs for a template T. A node v ∈ V generates an output 
operand of T if it is in T, and it has at least one immediate 
successor not in T, then the output operand is an output for T. 
We calculate the number of additional data transfers from the 
custom logic to the base register file as O_Penalty(T): 

1
outN

O(T)
 = T)O_Penalty( −⎥

⎥

⎤
⎢
⎢

⎡
    (2) 

The cycle saved CS(T) of the template T is defined as the 
value which estimates the reduction in the schedule length of 
the application by replacing the template with an ASI, 
multiplied by the occurrences Occ(T) of the template.  
Formally: 

 
CS(T) = Occ(T) * (SW(T) – HW(T) – I_Penalty(T) – (3) 

O_Penalty )  
 

Take Fig. 3 for example. Assume the software latency of 
each node is 1 cycle, and the critical path latency is 1 cycle.  
Under an I/O constraint of 2/1, additional data transfer moving 
operand c and d into implicit register before template T is 
executed costs one cycle. Additional data transfer moving 
operand f back to base register file after template T is finished 
costs one cycle. Thus, the cycle saved by template T is 0 
(3-1-1-1) cycle. 

 

 
Fig. 3 An example shows the I_Penalty and O_Penalty 

D. ASI Selection 
A priority value PValue for each candidate is calculated and 

we select the candidate which has the highest priority value as 
an ASI. After an ASI is selected, PValue of all candidates are 
recalculated.  Multiple ASIs are selected by repeating the above 
steps. The priority value for each candidate Ck is calculated as 
(4). 

∑
∈ kCT

k CS(T) = )PValue(C (4) 

E. Input and Output Operands Post Improvement 
The primitive and application-specific instructions inside 

one basic block are ordered according to the instruction 
scheduling as shown in Fig. 4 (a). Fig. 4(b) shows a DFG 
example annotated with a sequence number for each instruction. 
Fig. 4 (c) shows a possible way to implement the ASIs. 
Suppose the register file has only two read ports, and all ASIs 
have more than two input operands, then one move ext_Rin 
instruction in cycle 2 will be required for instruction I2 and one 
move ext_Rin in cycle 5 will be required for instruction I4 and 
one move ext_Rin instruction in cycle 9 will be required for 
instruction I6. Similarly, one more move ext_Rout instruction in 
cycle 7 will be required for instruction I4. 

 
      (a)                                (b)                                         (c) 

Fig. 4(a) Assembly code. (b) The DFG of (a). (c) The 
implementation of ASIs 
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As mentioned earlier, if the operand number of an ASI 
exceeds the available read port count, extra data transfer (or 
ext_Rin) instructions are needed to copy operands from the base 
register file to the implicit register in the custom logic. In our 
proposed approach, if an operand is already in the implicit 
register, one move instruction can be saved. 

The usage interval (ui) between primitive and ASI 
instructions is derived to record the implicit register usage. If 
variable r is assigned within the same basic block of the subject 
use, then the usage interval [p,c], where the sequence number 
of the assignment instruction is p and the sequence number of 
the use instruction is c as shown in Fig. 5.  

 

       
             (a)                                  (b) 

Fig. 5 (a) the DFG of assembly code (b) The usage interval 
 
We propose a heuristic implicit register allocation algorithm. 

All ASIs will be sorted according to the decreasing sequence 
number. For the example in Fig. 5(a), the largest sequence 
number of ASI is I6, if the I(I6) exceeds the number of base 
register file port, then we will check if any input operand I(I6) is 
the output operand from previous ASI. Thus, the ui[4,6] will 
occupy an implicit register (Ireg). The number of input 
operands of I6 becomes three, still larger than Nin. Next, the 
ui[3,6] will occupy an Ireg, however Ireg0 is occupied by other 
usage interval. The Ireg1 will be allocated for ui[3,6].   

Subsequently, the ui[1,4] of instruction I4 will be checked if 
it is overlapped with ui[4,6] of Ireg0. Since ui[1,4] and ui[4,6] 
are not overlapped, the Ireg0 will be allocated to ui[1,4].  Then, 
all input operands of instruction I2 are ready. The final result of 
the implicit register allocation is shown in Fig. 6. 

 

 
Fig. 6 Implicit register allocation result 

 
After implicit register allocation, the number of additional 

data transfer can be reduced by reusing the operands between 
ASIs. Fig. 7(c) shows the input and output operands post 
improvement after implicit register allocation.  

 
           (a)                         (b)                                    (c) 
Fig. 7 (a) The post improvement assembly code. (b) The DFG of (a).  

(c) Implementation of ASIs 

V. EXPERIMENTAL RESULTS 
We evaluate our technique using Altera Nios II DE2-70 to 

estimate cycle counts, and hardware synthesis for exact timing 
and area information. The base register file supports two read 
ports and a single write port. We generate implicit registers for 
each application-specific instructions and move instructions 
that provide single cycle latency transfers between base register 
file and custom logic.  

We apply our algorithms on five benchmarks: MM, Qsort, 
Dijkstra, SHA and AES form Mibench[20] and MP3[21]. 
Relaxation of input/output constraints results in coarser gain 
application-specific instructions (i.e., larger dataflow 
subgraphs). Such ASIs often offer higher speedup at the 
expense of higher area. In Fig. 8, we study the improvement in 
speedup using additional data transfers post improvement after 
implicit register allocation. Up to 3.33x speedup is reachable 
given 2 read and single write ports. 

0
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Fig. 8 Speedup improves with implicit registers comparison 

Table I summarizes the hardware area for each generated 
ASIP. Table I shows that up to 20 % area overhead of the 
customized designs can obtain 3.33x speedup. 

 
TABLE  I 

HARDWARE AREA 
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VI. CONCLUSION 
Our approach is based on a heuristic algorithm that integrates 

the data bandwidth information into the ASI identification 
process.  For an embedded processor with GPRF only two read 
ports and one write port, our methodology can minimize the 
potential additional data transfer instructions to achieve the 
performance up to 3.33x speedup with only 20% area 
overhead. The Altera Nios II is used as a base processor on the 
DE2-70 board to demonstrate the correctness and feasibility of 
the proposed approach.  We are now investigating a wide range 
of applications involving speed, area and power consumption 
trade-offs. 
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