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Abstract—The objective of this paper is to anadyse the
application of the Half-Sweep Gauss-Seidel (HSGS) method by using
the Half-sweep approximation equation based on central difference
(CD) and repeated trapezoidd (RT) formulas to solve linear fredholm
integro-differential equations of first order. The formulation and
implementation of the Full-Sweep Gauss-Seidel (FSGS) and Half-
Sweep Gauss-Seidel (HSGS) methods are aso presented. The HSGS
method has been shown to rapid compared to the FSGS methods.
Some numerical tests were illustrated to show that the HSGS method
is superior to the FSGS method.

Keywor ds—Integro-differential  equations, Linear fredholm
equations, Finite difference, Quadrature formulas, Half-Sweep
iteration.

|. INTRODUCTION

NTEGRO-DIFFERENTIAL equations (IDEs) arise from

many branches of science, for example in control theory and
financial mathematics [1]. Especialy in physics, it arises
naturally such as scattering theory, colloidal dispersions, heat
transfer in the presence memory effects, quark dynamic [2],
etc. IDE is an equation that the unknown function appears
under the sign of integration and it also contains the
derivatives of the unknown function. Commonly, it can be
classified into Fredholm equations or Volterra equations. The
upper bound of the region for integral part of Volterra typeis
variable, while it is a fixed number for that of Fredholm type.
However, in this paper we focus on Fredholm integro-
differential. Generally, first-order linear Fredholm integro-
differential equations can be defined as follows

y'(¥) = p()y(x) + f(x)+I:K(x,t)y(t) dt, asxs<b (1)

y(@=y,

where the functions , and the kernel are known and is the
solution to be determined. In the engineering field, numerical
methods for solution of linear Fredholm integro-differential
equations (LFIDEs) have been studied by many authors such
as Lagrange interpolation method [3], Tau method [4],
quadrature-difference method [5], variational method [6],
collocation method [7], homotopy perturbation method [8],
Euler-Chebyshev method [9] and GMRES method [10].
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LFIDEs are usually difficult to solve anayticaly so
numerical approaches are practiced to obtain an approximation
solution for the problem (1). To solve a LFIDE equation
numerically, discretization of differential and integral parts to
the solution of system of linear algebraic equationsisthe basic
concept used by researchers to solve LFIDE problems. By
considering numerical techniques, there are many schemes that
can be used to discretize problem (1) independently for linear
differential and integral terms. Many researchers have
implemented discretization schemes for linear differential term
such as finite difference scheme [11]-[12]), Taylor polynomial
scheme [13], Chebyshev polynomial method [14], Runge-
Kutta scheme [15] and Euler implicit schemes [16] whilst to
discretize linear integral term numerically, many discretization
schemes can be used for approximation such as quadrature
[17]-[20], projection method [21]-[22]) and least squares [23].
The concept of Half-sweep iterative method was introduced
by[24] by the employ of Explicit Decoupled Group (EDG) to
solve two-dimensional Poisson equations. Then this concept
has been discussed in [25]-[30]. This concept is essential to
reduce the computational complexities during the iterative
process, whereas the implementation of the half-sweep
iterations will only consider nearly half of all node pointsin a
solution domain. In this paper, we carried out the application
of the half-sweep iteration technique with Gauss-Seidel (GS)
iterative methods by using approximation equation based on
finite difference and quadrature schemes for solving problem
(1). The standard GS iterative method also called as the Full-
Sweep Gauss-Seidel iterative method was implemented with
half-sweep iterations process whereas it can be indicated as
Half-Sweep Gauss-Seidel (HSGS). The organization of the
paper is as follows. In section 2, the formulation of the finite
difference and quadrature approximation equations for full-
and half-sweep cases will be elaborated. In section 3,
formulation of the FSGS and HSGS methods will be
demonstrated. In section 4, some numerica results will be
illustrated to emphasize effectiveness of the methods.
Conclusionisin section 5.

I1. FORMULATION OF HALF-SWEEP APPROXIMATION EQUATION

Based on Fig. 1, the full- and half-sweep iterative methods
will compute approximate values onto only solid node points
until the convergence criterion is reached. It seems that the
implementation of the half-sweep iterative method just
involves by nearly one-half of whole inner points as shown in
Figure 1(b) compared with the full-sweep iterative method.
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Then the other approximation solutions for the riaing
points are calculated by using direct methods3§1,
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Fig. 1 (a) and (b) show distribution of uniform mogoints for the
full and half-sweep cases respectively.

A.Formulation of Half-Sweep Finite Difference Schemes

As mentioned in section 1, CD scheme based onefinit
difference method was used to form an approximation

equation for differential term. In this paper Cbheme was
used to discretize the first order LFIDE. In gehefiest order
derivative of second order error central differefarenula can
be derived from the Taylor series expansion asvid|

for i=12n-1,
y'(x)= %) - — Y% )+O(h ) @)
for i=n,
y'(%)= 3y(% )_4Y(;<ih—1)+ Y(Xi2) . O(hz) 3)

b-a . . .
where h =—— s size interval between nodes.
n

while  O(h?)
considered in this paper. The size of the trunoagaor is
mostly under our control because we can choosmésh size.
In order to obtain the finite grid work network for
formulation of the full- and half-sweep finite diffence
approximation equations over the problem as stistdet) (1),
further discussion will be restricted onto CD sckewhich is

is truncations error which, is will not be

as follows y( ) y( )
X|+p Xi— p
y' (%) 2oh (3)
and
y'(xi): 3y(xi )_4Y(Xi—p)+ Y(Xi—2p) @)

2ph

where the value ofp, which corresponds to 1 and 2 ,
represents the full- and half -sweep respectively.

B.Formulation of Half-Sweep Quadrature Method
For the integral term, RT discretization schemeebasn
quadrature method was used to construct an appatioim
equation. In general quadrature formula can benddfias
follows
N y(t)dt—ZA, V) +en() @
=0

where tj (j=01,...,n) are the abscissas of the partition

points of the
(interpolation)

integration interval ajp] or
nodes, Aj(j=0}1...,n)are

guadrature
numerical

coefficients that do not depend on the functigt) and
€n(y) is the truncation error of Eq. (2). Based on Rleru
numerical coefficientsA; are satisfied following relation

1 .
= ph =0,

A ={2Ph 1N (5)
ph,  otherwise

where the constant step sibds defined

h_b a
n

(6)

n is the number of subintervals in the interva, [b].
Meanwhile, the value gf, which corresponds to 1 and 2,
represents the full- and half-sweep respectively.

Based on Egs. (3), (4) and (5), by substitute Edo (1), a
system of linear algebraic equations obtained
approximation valuesy(x) at the nodes,X,...,x,. The
following linear system generated either by thd-fat half-
sweep approximation equation can be easily shown as

for

My = f (7)

where

“2MA2pK p2p “2hAnK p.n
"o S 20K, - 2Py - 20A K pp 0 -~ 1A K2 pn

- 2MApKnop -3-20Py - 2MAnK i (0 n)

oK 5 +1yo + 201,

Yp
Y2p 2hAgK 50 Yo +20f5),
y=| and = :
) Yn- (ZhA)Kn—p,O Yo * 2hfn—p
Yn (ZhAOKn,O Yo + thn

The value op, which corresponds to 1 and 2, represents the

full- and half-sweep cases respectively.
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Ill.  FORMULATION OF THE FULL- AND HALF-SWEEPGAUSS
SEIDEL METHODS
In this paper, FSGS and HSGS iterative methods vl
applied to solve linear system generated from
discretization of the problem (1) as shown in Ef). (Let
matrix M be articulated into

M=D-L-U

where D, L and U are diagonal, strictly lower triangular

and strictly upper triangular matrices respectivalfius, the
general scheme for FSGS and HSGS iterative metbaxide
written as

y“¥=(D- L)‘l[u yH fj. ©

The iterative methods attempt to find a solutionthe
system of linear equations by repeatedly solving lihear
system using approximations to the vegtor lterations for

FSGS and HSGS methods continue until the solutiomithin
a predetermined acceptable bound on the error.géneral
algorithms for FSGS and HSGS iterative methods dives
problem (1) would be generally described in Algamit1.

Algorithm: FSGS and HSGS methods

i) Initializing all the parameters. Set k = 0.
i)y i=p,2p,---,n=2p,n=p,n
Calculate

YN PR VIS
y&d :Mii[fi -h ZMi,j yj(k])_h ZMLJ‘ yi(k)J

=p2p, j=i+pi+2p

iif) Convergence test

iv) If the error of tolerance‘yi(kﬂ) —yi(k)‘<£:10‘1° is

satisfied, the value option at that time }'ékﬂ) and the

algorithm end.
v) Else, sek = k+1 and go to step (ii).

V.

In this section, 3 numerical examples are illusdlab show
the accuracy and effectiveness of the proposedaudstand all
of them were performed by using C language. Thréeria
will be considered in comparison for FSGS and HSG&h as
number of iterations, execution time and maximursoélie
error.

ILLUSTRATIVE EXAMPLES

Example 131]

1 1
y‘(x):l——x+j xty(t)dt O0<x<1
3 o

with the condition

y©)=0

thend exact solution of the problem is

y(X) = X.

@) Example 731]

1
y'(x) = xe* +e* —x+J. y()dt O0<xs<1
0

with the condition
y(©)=0

and exact solution of the problem is
y(X) = xe*.

Example 332]

1
y(@:smhx+1a—eﬁx-1jxwayn 0<xs1
8 8Jo

with the condition

y0) =1
and exact solution of the problem is

y(X) =coshx.

Throughout the experiments, the convergence test

considered the tolerance error 8f=107*°. The experiments
were carried out in different mesh sizes such aslg0, 240,
480 and 960. Results of numerical simulations whigre
obtained from implementations of the FSGS and HSGS
iterative methods for Examples 1, 2 and 3 have beeorded

in Tables 1, 2 and 3 respectively.

V.CONCLUSION

In this paper, the HSGS iterative method was engulayp
solve LFIDE for first-order. Based on numerical uls
observed in Tables 1, 2 and 3, it manifestly shtves the
application of the half-sweep iterative conceptngigantly
reduces computational time (refer table 4) with tblerable
precision. In the other hand, the number of iterati also
reduced extensively corresponding to the mesh .siresll
purpose, HSGS iterative method is faster for thepdational
works compared to FSGS iterative method. This is tduthe
computational complexity of the HSGS is reduced
approximately 50% compared to FSGS method. In dutur
works this concept can also can be used for higlerolDEs
problems.
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TABLE |
COMPARISON OF A NUMBER OF ITERATIONSEXECUTION TIME (SECONDY AND
MAXIMUM ABSOLUTE ERROR FOR THE ITERATIVE METHODS F& EXAMPLE 1
Number of iteration
Mesh size
60 120 240 480 960
FSGS+CD+RT 3317¢ 10798¢ 37598: 1394344 548781«
HSGS+CD+RT 1095: 3317¢ 10798¢ 37598 1394341
Execution time (seconds
Mesh size
Methods 60 120 240 480 960
FSGS+CD+RT 512.36 17122.4460347.03 143653.12 5434556.95
HSGS+CD+RT 47.8i 563.5¢ 19656.3. 61202.9¢ 153655.8
Maximum Absolute Error
Mesh size
Methods 60 120 240 480 960
FSGS+CD+RT 2.623E-5 5.853E-6 3.506E-6 1.359E-7 9.858E-7
HSGS+CD+RT 1.057E-4 2.623E-5 5.853E-6 3.506E-6 1.359E-7

Methods

TABLE Il
COMPARISON OF A NUMBER OF ITERATIONSEXECUTION TIME (SECONDY AND
MAXIMUM ABSOLUTE ERROR FOR THE ITERATIVE METHODS F& EXAMPLE 2
Number of iteration
Mesh siz¢
Methods 60 12¢ 24C 48¢ 96C
FSGS+CD+RT 43268 137637 459828 1653228 6136092
HSGS+CD+RT 14595 43268 137637 459828 1653228
Execution time (seconds)
Mesh sizt
Methods 60 12¢ 24¢ 48¢ 96C
FSGS+CD+RT 421.65 5324.21 55324.20 155159.78 1073214.21
HSGS+CD+RT 20.66 795.54 16845.02 64324.17 579548.36
Maximum Absolute Error
Mesh size
Methods 60 12¢ 24C 48C 96¢
FSGS+CD+RT 2.9883t-4 6.2354t-4 2.3785F-5 4.3312F5 1.2032EF-6
HSGS+CD+RT 1.2228F-3 2.9883F-4 6.2354F-4 2.3785F-5 4.3312F-5

TABLE Il
COMPARISON OF A NUMBER OF ITERATIONSEXECUTION TIME (SECONDS AND
MAXIMUM ABSOLUTE ERROR FOR THE ITERATIVE METHODS F& EXAMPLE 2
Number of iteration

Mesh size
Methods 60 120 240 480 960
FSGS+CD+RT 2776¢ 9273  33189¢ 1229541 508864
HSGS+CD+RT 8737  2776€  9273¢  33189¢ 122954
Execution time (seconds
Mesh size
Methods 60 120 240 480 960

FSGS+CD+RT 256.65 4651.23 48898.78 145694.01 1002365.64
HSGS+CD+RT 11.8¢ 257.8¢ 4856.3! 49584.1: 149653.4
Maximum Absolute Error
Mesh size
Methods 60 120 240 480 960
FSGS+CD+RT 2.572E-5 3.265E-6 4.397E-6 6.320E-7 1.254E-8
HSGS+CD+RT 1.335E-4 2.572E-5 3.265E-6 4.397E-6 6.320E-7

TABLE IV
PERCENTAGES OF REDUCTION FOR EXECUTION TIME FORSGSITERATIVE
METHODS COMPARED WITHFSGSMETHOD

HSGS+CD+RT
Methods

Execution time
Example 1 57.39%-97.17%
Example 2 45.99%-95.10%
Example 3 65.96%-95.37%
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