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Abstract—This work approaches the automatic planning of paths
for Unmanned Aerial Vehicles (UAVs) through the application of the
Rapidly Exploring Random Tree Star-Smart (RRT*-Smart) algorithm.
RRT*-Smart is a sampling process of positions of a navigation
environment through a tree-type graph. The algorithm consists of
randomly expanding a tree from an initial position (root node) until
one of its branches reaches the final position of the path to be
planned. The algorithm ensures the planning of the shortest path,
considering the number of iterations tending to infinity. When a
new node is inserted into the tree, each neighbor node of the
new node is connected to it, if and only if the extension of the
path between the root node and that neighbor node, with this new
connection, is less than the current extension of the path between
those two nodes. RRT*-smart uses an intelligent sampling strategy
to plan less extensive routes by spending a smaller number of
iterations. This strategy is based on the creation of samples/nodes
near to the convex vertices of the navigation environment obstacles.
The planned paths are smoothed through the application of the
method called quintic pythagorean hodograph curves. The smoothing
process converts a route into a dynamically-viable one based on the
kinematic constraints of the vehicle. This smoothing method models
the hodograph components of a curve with polynomials that obey
the Pythagorean Theorem. Its advantage is that the obtained structure
allows computation of the curve length in an exact way, without the
need for quadratural techniques for the resolution of integrals.

Keywords—Path planning, path smoothing, Pythagorean
hodograph curve, RRT*-Smart.

I. INTRODUCTION

SOME Unmanned Aerial Vehicles (UAVs) have limited

maneuverability due to their kinematic constraints. Thus,

in the path planning problem, the constraint coming from the

dynamic capacity of the UAV must be taken into account in

the solution of this problem. A solution to the path planning

problem can be reached and made feasible for the UAV by two

steps: finding a path that, in a given navigation environment,

does not collide with obstacles; and smoothing the parts of

the path that the UAV would not be able to perform, due to

its limitations of maneuverability.
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The algorithms normally used for this type of problem are

based on sampling. In this class of algorithms the navigation

environment is not represented explicitly. Instead, samples

of the navigation environment are collected to compose

your solution. To verify if the collected sample generates a

collision situation, these algorithms use a collision module

responsible for this verification. These classes of algorithms

are popular in large part because of their computational

efficiency and simplicity. The Rapidly-exploring Random Tree

(RRT) algorithm [5] is one of the most studied algorithms.

They are probabilistically complete, that is, if a solution exists,

the chance of the algorithm finding such a solution approaches

1 as the number of samples collected increases. The RRT

algorithm has the ability to quickly explore the navigation

environment and return a solution. In this algorithm, samples

of the navigation environment are collected randomly. Each

collected sample is added to closest node of the tree, if the

straight line segment formed by those nodes is collision free. It

is expanded until a path between the start and end navigation

point for the UAV is found.

Although RRT is probabilistically complete, there is no

guarantee that the solutions found will approach the best

possible path (the one with the shortest length) for a given

navigation environment. The RRT* algorithm [6] incorporates

asymptotic optimality to RRT algorithm. In this algorithm,

for each new node added, the neighborhood of that node

is generated, considering a given distance. As in the other

algorithm, the new node is not added to the nearest node.

Instead, the new node is added to the neighbor node that

provides the smallest path to the root node (navigation

starting point). Next, it is verified if the other nodes of the

neighborhood can also be reconnected with this new node,

reducing the cost of the path between them and navigation root

node. Thus, when a complete path is planned, it is expected

to obtain the shortest path between the root node and the final

navigation point [6].

The RRT* presents a considerably longer planning time due

to the addition of the process of reconnection of the edges

during its expansion. In addition, the algorithm only ensures

that the shortest path is planned if the planning time is infinite.

By means of intelligent sampling and path optimization, the

RRT *-Smart algorithm [4] is able to return lower cost paths

faster than the RRT*, being the candidate suitable for UAV

path planning.

Paths planned by sampling-based algorithms are composed

by waypoints connected with straight line segments, forming
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sharp pointed corners. These sharp pointed corners are not

suitable for the trajectory of UAVs with curvature constraints.

To smooth the sharp corners of the paths planned by

an algorithm such as RRT, RRT* and RRT*-Smart, it is

necessary to use structures such as Bezier and Splines

curves. These structures require integral resolution methods

to obtain their length, which entails considerable additional

cost depending on the application. In [9], the Pythagorean

Hodograph curve (also called PH curve) is introduced, where

the hodograph components of a parametric curve r(ξ) are

defined by polynomials that combined result in a new

polynomial satisfying with them the Pythagorean Theorem.

Its advantage, among others [1], is that the obtained structure

allows computation of the curve length in an exact way,

without the need for quadrature techniques for the resolution

of integrals, a very useful feature in the path planning problem

based on costs. In addition they may be suitable for smoothing

the sharp edges presented by the sampling methods, as shown

in [3].

However, it should be taken into account that in cases where

a corner is very close to one of the convex vertices of the

obstacles, the generated curve can enter its limits, which would

lead to an eventual collision of the UAV during its navigation.

In this work, a scheme is proposed to define the distance to

the generation of safety enclosures around the obstacles so that

the smoothed corners near the convex vertices do not penetrate

the limits of these obstacles. From the structures defined for

the construction of PH curves, it is possible to obtain the ideal

distances for the creation of the wrappings, given the curvature

of the UAV. In order to guarantee continuity of the curve with

the segments that were the corners, in [3] a formulation of

PH curves with G2 continuity with the segments is proposed.

This work is organized as follows: in Section II the RRT,

RRT* and RRT* -Smart algorithms are described; in Section

III the components that define a PH curve are described; in

Section IV, the formulations of the PH curve for the sharpening

smoothing problem are described; in Section V, the distance

definition scheme for the generation of safety enclosures is

presented; in Section VI, the results obtained are described;

and in Section VII, the conclusions of this work and the future

works are described.

II. RRT* AND RRT*-SMART ALGORITHMS

The RRT algorithm for path planning is described in Alg. 1.

RRT plans a navigation path in a Q configuration space, which

are the set of points/positions of a navigation environment. Q
is divided into two subsets, Qfree, representing the navigable

regions of the navigation environment, i. e., the regions

without obstacles and no collision risks, and Qobs, the spatial

representation of the obstacles. The operations performed by

the algorithm are defined as follows:

• RAND CONFIG: generate a random position qrand in

the configuration space.

• NEAREST NODE: search the nearest node qnear from

qrand in G.

• NEW CONFIG: generate a new node qnew in the line

segment qnearqnew with a distance from qnear.

• EXTEND: expand the tree, assigning qnear as the

predecessor/parent node of qnew and qnew to G.

• PATH: collect all nodes that connect qgoal to the qinit
that form the path R.

The root node of the tree (qstart ∈ Qfree) is the starting

point of the path to be planned. The algorithm works by

expanding a G tree randomly from the root node until one of

its branches reaches the final point (qgoal ∈ Qfree) of the path

to be planned, or until a maximum number of iterations (n) is

reached. Since each node is a sample/point of the navigation

environment and has information about its predecessor node,

the path is planned from the qgoal point to the qstart origin

point, adding each node that connects them to a path R. A leaf

node qnew is a point of the straight line segment qnearqrand,

such that: qgoal ∈ Qfree is a point generated as a random

sampling of the navigation environment; qnear is the node

closest to qrand; the distance between qnear and qnew has the

constant value Δq; and the straight line segment qnearqnew is

collision-free, that is, it does not intercept any obstacle (Qobs)
of the navigation environment.

Algorithm 1 RRT algorithm

1: procedure RRT(Q, qstart, qgoal,Δq, ld, n)
2: G ← {}
3: R ← {}
4: s ← 0
5: i ← 0
6: while (s = 0) and (i ≤ n) do
7: i ← i+ 1
8: qrand ← RAND CONFIG(Q)
9: qnear ← NEAREST NODE(qrand, G)

10: qnew ← NEW CONFIG(qnear, qrand,Δq)
11: if qnearqnew do not intercept Qobs then
12: EXTEND(G, qnear, qnew)
13: if d(qnew, qgoal) ≤ ld and (qnewqgoal) do not

intercept Qobs) then
14: EXTEND(G, qnew, qgoal)
15: s ← 1
16: R ← ROUTE(qinit, qgoal)

RRT* will deviate from RRT in the way tree expansion

occurs. During the expansion operation, a path cost

function formed by the addition of a new node is

considered. The cost function represents a measure of

generic magnitude (depending on the state space associated

with the tree). The main difference in RRT* is the

replacement of RRT’s EXTEND by the RRT operation

RRT STAR EXTEND. Additional RRT* operations are

described below:

• RRT STAR EXTEND: extend the tree by selecting

the neighbor node qneighbor ∈ Qneighbors that allows

creating a path with the smaller cost from qnew to qinit.
Qneighbors is constituted by all nodes that are at a

distance β(log(n)/n) from qnew.

• REWIRE: qnew is connected as a predecessor node of

the nodes from Qneighbors if these nodes form with qnew
a lower cost path to the qinit.

The cost is assigned to each pair of edges formed between

two consecutive nodes (qi, qi+1). Each pair has an associated

cost c. The cost of the path delimited by any two nodes of the
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tree, with edges and intermediate nodes that connect them, is

calculated by the COST (q, qn) function, which is defined as:

COST (qn) =
n∑

i=1

c(qi, qi+1) (1)

where n is the number of nodes of the path into the interval

[q, qn], qi is the i-th node of the tree, qi+1 is the successor

node to qi and c(qi, qi+1) is the cost from each pair of nodes

(qi, qi+1).

Algorithm 2 Extend procedure of RRT* algorithm

1: procedure RRT STAR EXTEND(G, qnear, qnew)
2: Qneighbors ← NEIGHBORHOOD(G, qnew)
3: qmin ← {}
4: for qneigh ∈ Qneighbors do
5: if qneighqnew do not intercept Qobs then
6: c′ ← COST (qnew) + c(qnew, qneigh)
7: if c′ < COST (qnear) + c(qnew, qnear) then
8: qmin ← qneigh

9: G.ADD V ERTEX(qmin)
10: G.ADD EDGE(qmin, qnew)
11: REWIRE(Qneighbors, qmin, qnew)
12: return

Algorithm 3 Rewire procedure of RRT* algorithm

1: procedure REWIRE(Qneighbors, qmin, qnew)
2: for qneigh ∈ Qneighbors do
3: if qneighqnew do not intercept Qobs then
4: c′ ← COST (qnew) + c(qneigh, qnew)
5: if c′ < COST (qneigh) then
6: qparent ← PARENT (qneigh)
7: G.REMOV E PARENT (qneigh, qparent)
8: G.ADD PARENT (qneigh, qnew)

For each qnew, RRT* algorithm verifies if there are no

obstacles between it and the selected qnear. If it does not,

the neighbor nodes of qnew are selected within the range of

the radius defined by β(log(n)/n) from qnew and assigned to

Qneighbors. Each qneighbor ∈ Qneighbors is verified with qnew
to identify the one that allows the connection with lower cost,

i. e., the qneighbor that allows the local shortest path between

qstart and qnew, passing through qneighbor.

If COST (qinit, qneighbor) + c(qnew, qneighbor) <
CUSTO(qinit, qnear) + c(qnew, qnear), then qneighbor
generates a path shorter than the path with qnear and qnew.

The qneighbor with the lower cost with qnew will be selected.

This process is defined by RRT STAR EXTEND, as

described in the Alg. 2.

After defining the least cost path (local shortest path) of

qnew in Qneighbors, it is verified the possibility of reducing the

cost of the paths of the other neighbors by connecting them

to the new node (qnew) added by means of the REWIRE
function. For each neighbor node qneigh, if COST (qnew) +
c(qneighbor, qnew) < COST (qneighbor) then its predecessor

changed to qnew. This process is described in Alg. 3.

A. Better Convergence Solution with RRT*-Smart
Algorithm

Proposed in [4], the RRT*-Smart is an algorithm based on

the RRT*, where two new concepts were incorporated: the

path optimization; and intelligent sampling. It was presented

in [4] that this algorithm has a higher convergence speed for

the optimal solution to be obtained for a given navigation

environment than the RRT*. This algorithm is described in

Alg. 4. Additional procedures in RRT*-Smart are described

below:

• PATH OPTIMIZATION: the nodes that form the path

from qgoal to qinit visible to each other are connected

directly, removing intermediaries between them. The

visible ones among them are those that can form a new

collision-free edge without the need of other nodes for

such a part of both.

• COLLECT BEACONS: collect the nodes of the

optimized path. These nodes, called beacons, are used to

force sampling of navigational space points near them.

Algorithm 4 RRT*-Smart algorithm

1: procedure RRT(Q, qstart, qgoal,Δq, ld, n, t)
2: G ← {}
3: R ← {}
4: i ← 0
5: costold ← ∞
6: while (i ≤ n) do
7: i ← i+ 1
8: if i = t+ b, t+ 2b, t+ 3b... then
9: qrand ← RAND CONFIG(Qbeacons)

10: else
11: qrand ← RAND CONFIG(Q)

12: qnear ← NEAREST NODE(qrand, G)
13: qnew ← NEW CONFIG(qnear,Δq)
14: if qnearqnew do not intercept Qobs then
15: RRT STAR EXTEND(G, qnear, qnew)
16: if d(qnew, qgoal) ≤ ld and (qnewqgoal) do not

intercept Qobs) then
17: EXTEND(G, qnew, qgoal)
18: founded path ← true

19: if founded path then
20: t ← i
21: costnew ←

PATH OPTIMIZATION(qinit, qgoal)
22: if costnew < costold then
23: R ← ROUTE(qinit, qgoal)
24: Qbeacons ←

COLLECT BEACONS(qinit, qgoal)
25: costold ← costnew

26: founded path ← false

Given a tringle formed by the waypoints wa, wb and wc,

path optimization is a strategy based on the fact that the largest

side (wawb) is always smaller than the sum of the sizes of the

two smaller sides (wbwc + wawc) of the triangle. Then, if

two waypoints can connected directly without collision, the

waypoints and edges between those two waypoints may be

eliminated. Alg. 5 presents this strategy.

Smart sampling is an approach that uses the nodes of a path

previously planned to induce the collection of new samples

close to them. When a path is planned, your nodes are stored
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Algorithm 5 Path Optimization procedure from RRT*-Smart

algorithm

1: procedure OPTIMIZE PATH(qinit, qgoal)
2: qcurrent ← qgoal
3: while qcurrent �= qinit do
4: qcandidate−parent ←

PARENT TO PARENT (qcurrent)
5: if qcurrentqcandidate−parent do not intercept

Qobs then
6: qcurrent ← qparent−to−parent

in zbeacon. These nodes are updated each time a path shorter

than the last one is found. Then, as the path planning iterations

proceed, eventually new nodes are generated next to one of

the zbeacon nodes. This occurs given the frequency defined by

n+ cb (2)

where n is the iteration in which the first path was planned,

c is a value incremented at each intelligent sampling and b a

constant which defines the scale of the frequency that the new

nodes will be sampled near of one of the nodes on Zbeacon.

It is verified at each iteration of the planning if the unitarily

increased planning index i has value equal to (2). If it is true,

a new node is generated arround a node randomly selected in

Zbeacon until a distance defined by a given radius. Otherwise,

the node is randomly sampled, as in RRT and RRT*.

These two strategies were incorporated into the RRT*,

reducing considerably the acquisition of a path with reduced

cost.

III. PYTHAGOREAN HODOGRAPH CURVE

Proposed in [9], the Hodographic Curve of Pythagoras

(also denominated PH curve) and a type of curve where the

components of its hodograph have a relation with a polynomial

in such a way as to meet Pythagoras’s Theorem, or the sum

of the squares of the components of the hodograph is equal to

the square of this polynomial. A direct impact of this ratio

is that the integral of the calculation of the length of the

curve can be transformed into a closed form, allowing its

algebraic resolution, thus avoiding the need for of quadratures

for the resolution of integrals. This characteristic is used to

gain computational advantage in this work. The formulations

that define the Pythagorean Hodograph will be defined below.

Examples and other properties can be verified in [1].

Let a curve be defined by r(ξ) = (x(ξ), y(ξ)) e ξ ∈ [0, 1]
the parameter that defines each position in the curve. The

length of the curve is given by:

S =

∫ 1

0

||r′(ξ)|| (3)

where S is the total length of the curve and r′(ξ) is the velocity

vector of the curve (first derivative). The equation above can

be rewritten as:

S =

∫ 1

0

√
x′(ξ)2 + y′(ξ)2 (4)

where x′(ξ) = dx/dξ and y′(ξ) = dy/dξ. By relating the

internal root term to σ(ξ), the curve length formulation can

be defined by

S =

∫ 1

0

√
σ(ξ)2 =

∫ 1

0

|σ(ξ)| (5)

It can be seen that σ(ξ) represents the parametric speed

of the curve. It is necessary to define σ(ξ) in terms of

polynomials that satisfy (30). Given the polynomials u(ξ),
v(ξ), the following definitions of x′(ξ) and y′(ξ) satisfy the

Pythagorean Theorem in the definition of σ(ξ)

x′(ξ) = u(ξ)2 − v(ξ)2, y′(ξ) = 2u(ξ)v(ξ) (6)

Therefore, σ(ξ) can be defined in terms of u(ξ), v(ξ) as

σ(ξ) = u(ξ)2 + v(ξ)2, (7)

Incorporating these definitions into a quintic curve in the

Bézier form, defined by

r(ξ) =

5∑
k=0

pk

(
5

k

)
(1− ξ)5−kξk, (8)

the control points pk, given by Bernstein coefficients, are

defined in terms of the polynomials u(ξ) and v(ξ) as

p1 = p0 +
1
5 (u

2
0 − u2

0, 2u0u0)
p2 = p1 +

1
5 (u0u1 − v0v1, u0v1 + u1v0)

p3 = p2 +
2
15 (u

2
1 − u2

1, 2u1u1) +
1
15 (u0u2 − v0v2, u0u2 + u2v0)

p4 = p3 +
1
5 (u1u2 − v1v2, u1u2 + u2v1)

p5 = p4 +
1
5 (u

2
2 − v22 , 2u2v2)

(9)

where p0 is arbitrarily specified. The polynomial that defines

the parametric speed σ(ξ) is given by

σ(ξ) =
4∑

k=0

σk

(
4

k

)
(1− ξ)4−kξk, (10)

The Bernstein coefficients are calculated by

σ0 = u2
0 + u2

0

σ1 = v0u1 + v0v1
σ2 = 2

3 (u
2
1 + v21) +

1
3 (u0u2 + v0v2)

σ3 = u1u2 + v1v2
σ4 = v22 + u2

2

(11)

The length of the curve, given as a function of the

coefficients defined in (11), is

S =
σ0 + σ1 + σ2 + σ3 + σ4

5
(12)

The curvature value of the curve is given by

κ =
2[u(ξ)v′(ξ)− u′(ξ)v(ξ)]

u(ξ)2 + v(ξ)2
(13)
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A. Complex Representation of Planar Quintic PH Curve

The PH curves, described in the previous section, were

defined in the Cartesian plane. However, the PHquintic library,

proposed in [8] and that was used in this work, use the

representation of the curve in the complex plane, where the

coordinates of the curve are defined by a real and imaginary

axis. The advantage the use of complex numbers is the

significant simplification in the expressions associated with

the PH curve. PH curves with complex representations were

introduced in [2]. For brevity, this section will only present

the formulations of the control points, the coefficients of

parametric velocity, the coefficients of the length of the curve

and other properties of the curve associated with complex

variables. The relationships necessary to obtain the PH curve

in the complex plane can be found in [1] and [2].

To define a parametric curve in the complex plane, the

polynomials associated with the hodograph in (6) must be

defined in complex form such that

w(ξ) = u(ξ) + i v(ξ) =

m∑
k=0

wk

(
m

k

)
(m− ξ)m−kξk; (14)

with m = 2 and Bernstein coefficients wk = uk + i vk by

integration of the equality

r′(ξ) = w(ξ)2 (15)

The control points are defined in terms of w(ξ) as

p1 = p0 +
1
5 (w

2
0)

p2 = p1 +
1
5 (w0w1)

p3 = p2 +
1
5 (

2w2
1+w0w2

3 )
p4 = p3 +

1
5 (w1w2)

p5 = p4 +
1
5 (w

2
2)

(16)

The Bernstein coefficients of the parametric velocity σ(ξ)
in (10) are defined as

σ0 = |w0|2
σ1 = Re(|w̄0w1)

σ2 = 2|w1|2+Re(w̄0w2)
3

σ3 = Re(w̄1w2)
σ4 = |w2|2

(17)

In terms of w(ξ), the parametric velocity and the curvature

can be formulated as

σ(ξ) = |w(ξ)|2, κ(ξ) = 2
Im(w̄(ξ)w′(ξ))

σ(ξ)2
(18)

The total curve length is still given by (12).

IV. ROUND CORNER PROBLEM WITH G2 PH QUINTIC

CURVES

In the problem of rounding (smoothing) of corners, the

junction between two segments must be transformed into a

curve such that there is continuity between the segments and

the end points of the curve, that is, r(0) and r(1) must belong

to each of the segments that form the corner, respectively. The

use of quintic PH curves for this problem was proposed in [3].

The PH curve is modeled so that it meets a continuity curve

G2 - where position, tangents and curvature must be equal for

both segments along the curve. The formulations for the PH

curve in smoothing corner problem [3] are described in this

section.”

There are three points represented by pi, pc and po, where

pipc and pcpo are distinct segments interconnected by pc.

Defining the canonical form of representation of these points

as

pi = (0, 0), pc = (L, 0), p0 = (1 + cos(θ)L, sin(θ)L) (19)

where L = |pc−pi| = |po−pc| and θ is the displacement angle

of the pcpo in relation to the pipc. The canonical form and

some examples of smoothed corners by PH curve are described

in Fig. 1.

Fig. 1 Canonical form for the smoothing problem and examples, considering
θ = π/4, θ = π/2 and θ = 3π/4. Font: [3]

The solution to the canonical form, as defined in [3], is

given in terms of L and θ by

w0 = λ
√
L, w1 = 0, w2 = λ

√
Lexp(i

1

2
θ) (20)

where

λ =

√
(30cos(

1

2
θ))/(6cos(

1

2
θ) + 1) (21)

The parameter velocity in (10) has the coefficients of

Bernstein defined as

σ0 = λ2L
σ1 = 0

σ2 =
λ2Lcos( 1

2 θ)

3
σ3 = 0
σ4 = λ2L

(22)

The curvature at any point ξ of the curve is given by

κ(ξ) = 4λ2Lsin(
1

2
θ)(

(1− ξ)ξ

σ(ξ)2
) (23)

The highest curvature of the curve κe, given in ξ = 1/2, is

calculated by

κe =
32(6cos( 12θ) + 1)tan( 12θ)

15L(cos( 12θ) + 1)2
(24)

The total arc length is given by

S =
2L(6 + cos( 12θ)cos(

1
2θ)

6cos( 12θ) + 1
(25)
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The curve generated by these formulations generates a

deviation at the midpoint of the curve r(1/2) at the point

pc equal to

δ =
(3cos( 12θ) + 8)|sin( 12θ)|L

8(6cos( 12θ) + 1)
(26)

The formulations for the PH curve as a function of L and

θ are used in the solution presented in the next section.

V. SMOOTHING PATHS PLANNED BY RRT*-SMART WITH

G2 PH QUINTIC CURVES

In the path planning problem applied to real scenarios,

it should be considered to use a safety hulls around the

obstacles, in case paths are planned that are very close to

the obstacle limits, thus avoiding the risk of collision of the

UAV. Nevertheless, the path planned by the RRT*-Smart is

increasingly close to the edges of the obstacles as the number

of iterations to get it grows. Thus, it is important to define

the safety hull at a safe distance from the obstacles, which

ensures that the curve that smoothes the path at the junctions

between the segments does not invade on the boundaries these

obstacles. In this section we present a strategy of defining this

distance from a maximum curvature that UAV theoretically is

capable of performing. This is important in order to avoid that

in a geometry presented by the path it is possible to create

a free collision curve but in another it is not possible. The

presented strategy defines a single safety envelope distance

for the constraints of a navigational environment so that any

smoothed curve close to the convex vertices is free of collision.

For a safety hull generated at a distance d from an obstacle

and selecting one of the convex vertices of this obstacle,

exists a convex vertex at a postion at a distance d sec( 12 ) in

the direction of the hull generation from the vertex of the

obstacle, where θ is the opening angle of one segment relative

to the other in counterclockwise direction (as illustrated in the

canonical case, ilustrated in Fig. 1) [3]. Thus, the following

relationship can be defined to prevent a curve from crossing

any obstacle [3]:

d sec(
1

2
θ) > δ (27)

Be the curvature value of a UAV given by κUAV , the LUAV

distance from pc that generates a curve r(ξ) with the curvature

value equal to that of the ξ = 1/2 (maximum curvature of the

curve), can be obtained from (24), reformulating it as

LUAV =
32(6cos( 12θ) + 1)tan( 12θ)

15κUAV (cos(
1
2θ) + 1)2

(28)

By associating LUAV with (27), the distance of the obstacles

to the UAV with curvature κUAV can be obtained by

d >
(3cos( 12θ) + 8)|sin( 12θ)|LUAV

8(6 + sec( 12θ))
(29)

Let di be the distance resulting from (29) for the i-th vertex

of an obstacle of the navigation environment with the curvature

κUAV , the value dObs, which defines the distance that the

security hull must be generated for this obstacle, is given by

dObs = max(di) (30)

Since the distance dObs must be greater than the value of d
in the formulation (29) to guarantee non-collision of the UAV

during the navigation by the curve, the width dUAV of the

UAV can added to it. In this way it is guaranteed that the UAV

of curvature κUAV will be able to carry out its navigation by

curves constructed close to any convex vertex of the navigation

environment. A direct advantage of this method is that as the

distance is defined algebraically from the constraint (27), it is

not necessary to perform a collision check for the obtained

curve.

VI. RESULTS E ANALYSIS

Simulations were performed for two UAV curvature values,

equal to 0.009 and 0.015. A navigation environment with 5

obstacles of different geometries was used in the experiment.

This navigation environment has coordinate ranges equal to

[0, 5000] on the x-axis and [0, 5000] on the y-axis. The

algorithms were implemented in the C ++ Language. To

support the development of the OpenGL graphic library

solution, the CGAL computational geometry library [7] and

the library with the basic structures of the PH curve PHquintic
[8] were used

Two simulations were performed, each for one of the UAV

curvature values specified at the beginning of this section.

Initially, the distance d is assigned to the value of curvature

considered by means of the strategy described in Section

V. Security hulls are remotely generated with dObs + dUAV

from each obstacle in the navigation environment. The value

adopted for dUAV in this experiment is equal to 2 on the

navigation space scale. For simplicity, the distance from

the safety hulls to the obstacles will be referenced only as

dObs. The path planning is performed with the RRT*-Smart

algorithm, considering the collision check with the safety hulls

generated, and not the contour of the obstacles. The algorithm

is configured for a planning with 4000 iterations, so that it

is possible to reasonably minimize the cost of the resulting

path. With the generated path, the corners formed by the

junction of the segments that connect qinit and qgoal of the

tree are smoothed using the PH curve. The costs between

smoothed and non-smoothed paths were compared. The cost

for each segment is obtained by means of the Euclidean

distance between the points that define it. The cost for the

curve is obtained by (12).

Figs. 2 and 3 show the planned paths for each UAV

curvature considered in this work. In Figs. 2(a) and 2(b)

the paths for kUAV = 0.009, with and without smoothing,

are presented, respectively. Figs. 3(a) and 3(b) present,

respectively, the paths for κUAV = 0.015, with and without

smoothing. As indicated in Table I, the lengths of the paths

generated for each value of κUAV are smaller in relation

to the non-smoothed paths. For κUAV = 0.009 there was

a reduction of 3.21% in path cost and for κUAV = 0.015
the reduction was 1.88%. Therefore, the lower the curvature

value, the greater the reduction of the path cost generated by

the smoothing in relation to its un-smoothed version. Because
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(a)

(b)

Fig. 2 Path planned by the RRT*-Smart algorithm without smoothing (a) and with smoothing (b) with PH curves for κUAV = 0.009. The black path in (a)
is not optimized by the process and the red path is optimized. In (b), the curves generated for the sharp edges are represented by the segments in the beige

color. The security hulls are represented by the blue color. Black circunferences represents minimal distance to connect qnew to qgoal
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(a)

(b)

Fig. 3 Path planned by the RRT*-Smart algorithm without smoothing (a) and with smoothing (b) with PH curves for κUAV = 0.015. The black path in (a)
is not optimized by the process and the red path is optimized. In (b), the curves generated for the sharp edges are represented by the segments in the beige

color. The security hulls are represented by the blue color. Black circunferences represents minimal distance to connect qnew to qgoal
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TABLE I
COSTS OF PATHS SMOOTHED BY PH CURVES, AND COSTS OF PATHS PLANNED WITHOUT SMOOTHING, CONSIDERING DIFFERENT VALUES OF κUAV

κUAV Smoothed route cost Not smoothed route cost RRT*-Smart time planning

0.009 5099.210 5268.710 4.629

0.015 4891.920 4985.790 5.024

TABLE II
VALUES OF L AND dObs DEFINED FOR EACH OBSTACLE OF THE

NAVIGATION ENVIRONMENT, CONSIDERING DIFFERENT VALUES OF

κUAV

κUAV = 0.009 κUAV = 0.015

Obstacles L dObs L dObs

1 299.068 93.793 179.441 56.276

2 417.910 102.277 250.746 61.366

3 251.821 90.699 151.093 54.420

4 570.376 113.609 342.225 68.165

5 429.676 103.147 257.805 61.888

a smaller curvature leads to higher values of dObs, which

increases the cost of the path planned by the RRT*-Smart,

since the area taken by the security hulls is larger. In Table

II, the values of dObs and L for the safety hull generation are

summarized to determine the smoothing points in the segments

of the path for each value of curvature of the UAV.

VII. CONCLUSION

In this work, a scheme was presented for the generation of

smoothed paths for safe navigation of UAVs in a navigation

environment with static obstacles. Initially a path is planned

using the RRT*-Smart algorithm. Subsequently, the sharp

corners formed by the junction of the straight line segments

of the solution generated by RRT*-Smart are smoothed using

G2 quintic PH curves.

A scheme of how to define the distance for the generation

of the PH curve based on the safety hulls of obstacles has

also been presented. The estimation of the suitable distance

for the construction of the safety hulls is important to ensure

that the path does not intercept any obstacle, avoidind eventual

collisions of the UAV during its navigation. This distance

is defined from formulations of the PH curve for a given

curvature of the air vehicle.

In future works, the geometry of the PH curves will be

associated with a dynamic model of an UAV, aiming to control

its speed and acceleration for navigation through paths planned

by the strategy presented in this work.

REFERENCES

[1] Farouki, Rida T. Pythagorean—hodograph Curves. Springer Berlin
Heidelberg, 2008.

[2] Farouki, Rida T. The conformal map z → z2 of the hodograph plane.
Computer Aided Geometric Design, v. 11, n. 4, p. 363-390, 1994.

[3] Farouki, Rida T. et al. Path planning with Pythagorean-hodograph curves
for unmanned or autonomous vehicles. Proceedings of the Institution of
Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017.

[4] Islam, Fahad et al. RRT*-Smart: Rapid convergence implementation
of RRT* towards optimal solution. In: Mechatronics and Automation
(ICMA), 2012 International Conference on. IEEE, 2012. p. 1651-1656.

[5] Lavalle, Steven M. Rapidly-exploring random trees: A new tool for path
planning. 1998.

[6] Karaman, Sertac; Frazzoli, Emilio. Sampling-based algorithms for
optimal motion planning. The international journal of robotics research,
v. 30, n. 7, p. 846-894, 2011.

[7] Fabri, Andreas; Pion, Sylvain. CGAL: The computational geometry
algorithms library. In: Proceedings of the 17th ACM SIGSPATIAL
international conference on advances in geographic information systems.
ACM, 2009. p. 538-539.

[8] Dong, Bohan; Farouki, Rida T. Algorithm 952: PHquintic: A library
of basic functions for the construction and analysis of planar quintic
Pythagorean-hodograph curves. ACM Transactions on Mathematical
Software (TOMS), v. 41, n. 4, p. 28, 2015.

[9] Farouki, Rida T.; Sakkalis, Takis. Pythagorean hodographs. IBM Journal
of Research and Development, v. 34, n. 5, p. 736-752, 1990.


