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Abstract—The aim of this paper is to introduce a parametric 

distribution model in fatigue life reliability analysis dealing with 
variation in material properties. Service loads in terms of response-
time history signal of Belgian pave were replicated on a multi-axial 
spindle coupled road simulator and stress-life method was used to 
estimate the fatigue life of automotive stub axle. A PSN curve was 
obtained by monotonic tension test and two-parameter Weibull 
distribution function was used to acquire the mean life of the 
component. A Pearson system was developed to evaluate the fatigue 
life reliability by considering stress range intercept and slope of the 
PSN curve as random variables. Considering normal distribution of 
fatigue strength, it is found that the fatigue life of the stub axle to 
have the highest reliability between 10000 – 15000 cycles. Taking 
into account the variation of material properties associated with the 
size effect, machining and manufacturing conditions, the method 
described in this study can be effectively applied in determination of 
probability of failure of mass-produced parts. 
 

Keywords—Stub axle, Fatigue life reliability, Stress-life, PSN 
curve, Weibull distribution, Pearson system 

I. INTRODUCTION 

TUB axle is a part of the constant-velocity (CV) system 
assembly. The CV system transfer engine power from the 

transaxle to the wheels and the function of the stub axle is to 
support this power transmission so that the automotive can 
move forward or backward by rotating the wheel. Repeated 
impact on the stub axle will applies cyclic load to the 
component when driving through a bumpy road. This cyclic 
load will affect the fatigue life of the stub axle. In this case, 
the fatigue life reliability assessment of these components with 
respect to fatigue failure is of great importance for the safety, 
efficiency and availability of the system.  

In terms of fatigue life analysis of a mechanical structure, 
response of structure or components towards load patterns is 
usually expressed as a strain or stress time history. In case 
where the scatter in fatigue life was neglected it is sufficient to 
know the relationship between load and life using typical SN 
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relationship. In this approach, fatigue life is predicted by 
associating the information from the cycle counting (typically 
represented by the rainflow matrices) of the variable 
amplitude service loads and the material properties of the 
component represented by SN curve [1].   

However, in terms of mass production, fatigue properties of 
material used in the fabrication of components cannot be 
exactly consistent in quality even if ordering of the material is 
made with the same material specification. Material properties 
of components used in the fabrication cannot be exactly 
consistent due to uncertainties associated with the size effect, 
machining and manufacturing conditions. These uncertainties 
factors should be considered as random variables that results 
in variation of the fatigue life curves. 

Statistical trends about the fatigue life can be acquired from 
fatigue experiment. The stair-case method is the most well 
known procedure to obtain an estimate of the mean value and 
the standard deviation [2]. This approach is inappropriate due 
to the increasing pressures of shortened development cycles 
and the desire to save costs since it require long lasting test in 
order to obtain a reasonable confidence level. 

In dealing with variation of the fatigue life due to 
uncertainties in mechanical properties, several researchers and 
organizations over the last 50 years have accumulated 
statistical distribution of material property data. However, 
property data is still not available for many materials or is not 
made generally available by the manufacturer of the product 
[3]. In general, the variation in material properties which 
characterized the fatigue life curve of the material is assumed 
to be normally distributed for it is a reasonable model for 
many processes or physical properties [4], [5]. Although this 
may be considered to be reasonable, it should be recognized 
that the actual distribution function is not really known [6]. 

In this study, variation in the slope and intercept of the 
fatigue life curve of a stub axle which characterized the 
deviation in fatigue life is selected as random variables. 
Pearson parametric statistical model is used to provide 
approximate of random variables based on the distribution 
properties of the fatigue life. Fatigue life of the component 
under random loading conditions is estimated using rainflow 
cycle counting, PSN curve, and cumulative damage 
accumulation method. Distribution family of fatigue life 
estimates by variation in fatigue life curves can be identified 
using Pearson’s criterion. Probability density function of the 
fatigue life estimates is calculated using statistical moments of 
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the identified distribution and the fatigue life reliability is then 
calculated from the obtained probability density function.  

II. METHODOLOGY 

A. Finite Element Analysis and Materials 
In this study, critical stress location of the stub axle was 

identified by developing Finite Element (FE) model based on 
MSC/PATRANTM and MSC/NASTRANTM. The inputs to the 
process are an FE model of the component, a set of cyclic 
material properties and a set of sinusoidal excitation bending 
loads ranging from 1000N to 7000N. Imported solid model of 
the stub axle from CATIATM was meshed using second order 
tetrahedral element (TET10) topology and linear static 
analysis of model was performed using MSC/NASTRANTM. 
The results were then evaluated using MSC/PATRANTM. The 
critical stress location of the stub axle is shown in Figure 1. 

 
Fig. 1 Critical stress location 

 
The stub axle material is medium carbon steel JIS S48C. 

The chemical composition and mechanical properties for the 
JIS S48C steel are shown in Tables 1 and 2, respectively. 

 
TABLE I 

CHEMICAL PROPERTIES OF JIS S48C 
Element C Cr Si Mn Fe Cu 
Max % 0.47 0.18 0.25 0.85 98.07 0.08 

 
TABLE II 

MECHANICAL PROPERTIES OF JIS S48C 
Ultimate tensile strength 752.18 MPa 

Yield strength 578.32 MPa 
Modulus of elasticity 200000 MPa 

Density 7.850E-06 kg/mm3 

B. Monotonic Tension Test 
A sample of ten units of stub axle was subjected to a set of 

four different level of cyclic bending fatigue load. This is 
achieved by clamping the four mounting points at the base of 
the spindle with a 2-ton clamping mechanism. The cylindrical 
end of the stub axle was attached to a load arm, which will be 
connected to a motor with an eccentric mass to induce a 
moment. A mixture of zinc oxide powder with glycerin was 
painted on the critical stress location in order to ease the 

detection of crack initiation.  

C. Vehicle Instrumentation 
Mechanical and structural behaviors of components 

subjected to the desired load patterns were observed using 
micro measurement strain gauges. Strain gauges were 
strategically positioned at critical stress location of the stub 
axle to directly reflect the input loads experienced by the 
component. In addition to strain gauges, accelerometers and 
displacement transducers were used for data acquisition during 
the road load data acquisition. 

D. Road Load Data Acquisition 
 Loading sequences in terms of load-time histories of 

proving ground are acquired using the Road Load Data 
Acquisition (RLDA). The RLDA activity was established 
using a vehicle equipped with electronic data acquisition 
system (EDAQ). Figure 2 illustrated the EDAQ in the form of 
instrumented suspension system which consists of 
accelerometers and force transducers which are capable of 
sensing inclination, vibration and shock experiences by the 
vehicle’s components as it progress along the path of proving 
ground. In this study, the instrumented vehicle was driven 
over 1.44 kilometers of the British Millbrook accredited 
proving ground Belgian pave driving range in order to 
measure the response-time history. Due to the severe 
suspension input received, the vehicle was driven with a 
constant speed of 50 km/h. The Belgian road is commonly 
used for testing vehicle durability since it has 100 times the 
severity in comparison with general roads [7]. Several passes 
of proving ground road surface were collected to ensure a 
statistically valid and representative sample of data. The 
specimen responses are simultaneously recorded as a time 
history on the EDAQ.  

 

 
 

Fig. 2 Instrumented suspension system 

E. Durability Test Rig 
The acquired time history from the proving ground data 

acquisition is utilized in the system and component level 
fatigue durability test using spindle coupled full vehicle road 
simulator. In this study the MTS 320 multi-axial spindle 
coupled road simulator shown in Figure 3 was used for the 
laboratory testing. This system allows the excitation of each of 
the six degree of freedom which is translation in x, y, z and 
rotation around these axes with the simulation range of up to 
50 Hz. Remote Parameter Control RPC® iterative 
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deconvolution technique was used in order to accurately 
replicate the load time history obtained from the proving 
ground.  The replicated stub axle load-time history for a 
segment of 1.44km Belgian Pave is shown in Figure 4. 

 

 
 

Fig. 3 MTS 320 multi-axial spindle coupled road simulator 
 

 
Fig. 4 Replicated stub axle load-time history 

 

F. Fatigue Life Estimation 
In this study, fatigue analysis software the nCode 

GlyphworksTM is applied to predict the fatigue life of the 
components by combining the information from loads 
obtained from the road simulator and material properties of the 
component by fatigue damage accumulation theory. In this 
case, fatigue life estimates of the stub axle were determined by 
stress-life (SN) method employing Palmgren-Miner rule along 
with rainflow cycle counting procedure. This approach 
estimates number of amplitudes of blocks can be applied 
before failure occurs. Segmentation of the load- time data was 
done by implementing a rainflow cycle extraction algorithm in 
order to segment the load-time histories into maximum and 
minimum amplitude as well as number of occurrences for 
certain amplitude ranges. Figure 5 shows the load- time data 
segmentation in the form of rainflow cycle matrix for the stub 
axle. Fatigue life of the stub axle was then estimated by 
combining information from the rainflow cycle extraction of 
the service loads and the fatigue life curve of the component 
material.  

 
Fig. 5 Rainflow cycle matrix for the stub axle loads 

III. RESULTS AND DISCUSSION 

A. Probabilistic SN Curve (PSN) 
A sample of ten units of stub axle was subjected to 

monotonic tension test and the result is shown in Table 3. 
Distribution of fatigue life (crack initiation cycles) was 
identified using three criterions which is the average 
goodness-of-fit, plot normalization, and log likelihood 
function with respective decision weights of 50%, 20% and 
30%. It is found that two-parameter Weibull distribution 
function provides the best fit to crack initiation cycle at each 
stress levels.  

TABLE III 
RESULTS OF MONOTONIC TENSION TEST 

Sample # Load Amplitude 
(N) 

Stress Amplitude 
(MPa) 

Crack Initiation 
Cycle 

1 5886 141.15 24697 
2 4905 117.63 46286 
3 4905 117.63 48667 
4 4905 117.63 61399 
5 3924 94.10 104205 
6 3924 94.10 124484 
7 3924 94.10 138049 
8 2943 70.57 870777 
9 2943 70.57 653570 

10 2943 70.57 426669 
 
The probability distribution function (PDF) of two-

parameter Weibull distribution is represented by Equation 1 
where α and β is scale and shape parameters, respectively.  
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The result of monotonic tension test was divided in terms of 

number of crack initiation cycles corresponding to each stress 
level. The scale and shape parameter of Weibull distribution 
for each stress levels is then computed using Bernard’s median 
rank and regression analysis. The result is shown in Table 4. 

 
TABLE IV 

WEIBULL DISTRIBUTION PARAMETERS 
Stress Amplitude 

(MPa) 
Crack Initiation 

Cycles 
Scale Parameter, 

α 
Shape 

Parameter, β 
426669 
653570 

 
70.57 

870777 

 
739930 

 
2.68  

 
104205 
124484 

 
94.10 

138049 

 
129910 

 
6.79 

46286 
48667 

 
117.63 

61399 

 
55181 

 
7.07 

 
The probability of failure and the probability of survival for 

two-parameter Weibull distribution are given by Equation 2 
and Equation 3, respectively.  In this study, as shown in Figure 
6, probabilistic stress-life (PSN) plots were drawn for the 
values of P10, P50 and P90 (or R90, R50 and R10). The median life 
value (50% life) is given by the PSN plot of P50 (or R50). 
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Fig. 6 Probabilistic stress-life (PSN) plots 

 

B. Fatigue Life Reliability 
The mean value of material property of the stub axle 

(represented by PSN plot of 50% survival) has been obtained 
by a set of monotonic tension test. As a result, the 
experimental data have the standard deviation and it is 
difficult to ensure that the actual material used in the 
fabrication of the stub axle is closely matched to the known 
mean value. In this case, it is necessary to evaluate the degree 
of reliability of the estimated fatigue life of the component.  

In the case of large number of components, variation in the 
fatigue life curve which characterized the uncertainties 
appearing in mechanical properties is known to influence the 
fatigue performance [8]. The distribution properties of the 
fatigue life curve can be taken from the expert judgments 
reported in various literatures [9].  

The most well known and classical distribution function is 
the normal distribution function which characterized by the 
mean value and the standard deviation. The coefficient of 
variation which is a normalized measure of dispersion of a 
probability distribution is known often from experience and 
depends on the uniformity of the quality of the component 
[10]. Table 5 shows the coefficient of variation for various 
materials compiled from a number of sources [3]. 

 
TABLE V 

COEFFICIENT OF VARIATION FOR VARIOUS MATERIALS 
Material Type Coefficient of Variation 
Carbon Steel 0.01 – 0.03 

Nodular Cast Iron 0.04 
Titanium 0.09 

Aluminum 0.03 
 

The fatigue life reliability was evaluated by developing a 
Pearson statistical model of selected random variables. The 
Pearson system which is a parametric family of distributions 
can be used to model a broad scale of distributions with 
excellent accuracy [11]. Four statistical moments which is the 
mean, standard deviation, skewness and kurtosis were selected 
as the first to fourth statistical moments of the Pearson system.  
Three levels and weight, with respect to each variable, were 
used in the fatigue life prediction 

In the case of stress-life method, the primary factor which 
influences the fatigue life is the SN curve. In this case, elastic 
modulus and density is not seriously affects the fatigue life as 
compared to the SN curve [8]. In the developed Pearson 
model, three levels and weight with respect to each variable 
were used to predict the fatigue life. The selected variables are 
the slope, n and the stress range intercept, a of the mean life 
probabilistic SN curve as shown in Figure 7.  
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Fig. 7 Mean life probabilistic SN curve 

 
In the case of carbon steel, the variation in material property 

is typically assumed normally distributed for it is a reasonable 
model for many natural processes or physical properties [5].  
Consequently, the two selected variables are assumed to be the 
normal distribution with a coefficient of variation of 0.01.  

The levels (l1-3) and weights (w1-3) of each variable can be 
calculated based on the defined moments using Equations (4) 
and (5). The calculated levels and weights of the random 
variables are shown in Table 6. 
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TABLE VI 

LEVEL AND WEIGHT OF RANDOM VARIABLES 
Variable Level1-3 Weight1-3 

1068.76 0.1667 

1087.60 0.6667 

 
Stress range intercept, a 

1106.44 0.1667 

0.2025 0.1667 

0.2060 0.6667 

 
Slope, n 

0.2096 0.1667 

 
Since two variables were selected (stress range intercept, a 

and slope, n), a total of nine fatigue lives and their weight can 
be calculated as shown in Table 7. Each fatigue life of the stub 
axle was calculated by the linear damage rule stress-life 
method using the stress range intercept, a and slope n of Table 
6 and cycle of the loads obtained from the road simulator. The 
fatigue life weights are calculated by multiplying each weight 
(Table 6) with respect to a and n. 

 
TABLE VII 

 FATIGUE LIFE RESULTS AND WEIGHTS 

a n Fatigue Life (Cycles) Weight 

1068.76 0.2025         1.373E+04 0.02778 

1068.76 0.2060 1.101E+04 0.11111 

1068.76 0.2096 8.869E+03 0.02778 

1087.60 0.2025 1.499E+04 0.11111 

1087.60 0.2060 1.184E+04 0.44444 

1087.60 0.2096 9.501E+03 0.11111 

1106.44 0.2025 1.618E+04 0.02778 

1106.44 0.2060 1.276E+04 0.11111 

1106.44 0.2096 1.016E+04 0.02778 
 

The first to fourth statistical moments of the Pearson system 
were calculated using Equation (6). Table 8 shows the first 
through fourth moments of the probability density function 
calculated using nine fatigue life estimates of the stub axle. 
Equation (7) represents the Pearson’s criterion for fixing the 
distribution family based on the selected statistical moments. 
The type of the Pearson system and probability density 
function differs depending on the value of K as shown in 
Table 9. 
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TABLE VIII 

 MOMENTS OF THE FATIGUE LIFE DATA 
Mean (µg) 11983.97 

Standard deviation (σg) 1675.19 
Skewness (√β1g) 0.5227 

Kurtosis (β2g) 3.2035 
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TABLE IX 

TYPE OF PEARSON SYSTEM AND PROBABILITY FUNCTION 
Type I Type II Type III Type 

IV 
Type V Type 

VI 
Type VII 

K < 1 K = 0, 
β1 = 0, 
β2 < 3 

K = ∞, 
2β2 = 

3β1 – 6 
= 0 

0 < K < 
1 

K = 1 K > 1 K = 0, β1 
= 0, β2 > 

3 

Normal 
/ Beta  

Special 
case of 
Type I 

Chi-
square / 
Gamma  

Cauchy  Inverse-
gamma  

Beta-
prime 

/ F  

Student’s 
t  

 
Based on the moments calculated in Table 8, it is found that 

the value of K = - 0.3851 which represents Type I of the 
Pearson system. The probability density function of the Beta 
distribution was calculated using MATLAB® statistical 
toolbox and the probability density function of the stub axle 
fatigue life is shown in Figure 8. 
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Fig. 8 Probability density function of stub axle 

 
Fatigue life range calculated from the Beta distribution is 

distributed from 5000 to 20000 cycles. The fatigue life 
reliability of the stub axle is shown in Table 10. The fatigue 
life of the stub axle is found to have the lowest reliability 
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between 15000 and 20000 cycles. The highest fatigue life 
reliability is recorded for 10000 – 15000 cycles.  

 
TABLE X 

 FATIGUE LIFE RELIABILITY OF STUB AXLE 
Cycles 5000 – 10000 10000 - 15000 15000 - 20000 

Reliability 0.1182 0.8459 0.0358 

IV. CONCLUSION 
In this study, the fatigue life of the stub axle is predicted for 

a passenger car and the predicted fatigue life reliability is 
evaluated by considering the variations in material properties. 
The slope and intercept of the mean life SN curve, which 
mostly affects the fatigue life results, are selected as random 
variables in the Pearson fatigue life reliability evaluation. It is 
found that the fatigue life of the stub axle to have the lowest 
reliability between 15000 and 20000 cycles. The highest 
reliability is recorded for cycles between 10000 and 15000 
cycles which include the 11984 cycles calculated by the mean 
value of material property. 

The use of a statistical method to evaluate the expected life 
has the advantage that replacement time and failure 
probability of the parts can be predicted in advance. For 
example, assuming that a stub axle life has 20000 cycles 
which is the cycle range of lowest reliability, the vehicle will 
be safe to travel 288000 km at a speed of 50 km/hour. Since 
the Belgian Pave has 100 times the severity of the general 
road, the life of the stub axle is relatively long, compared with 
the life cycle of the general vehicle. 

The method described in this study can be effectively 
applied in the determination of probability of failure of mass-
produced parts where lack of uniformity in quality of the 
material procured is the main challenge. In this study, the use 
of a statistical method to evaluate the expected life of an 
automotive component has the advantage in estimating the 
replacement time and failure probability of the component. 
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