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Abstract—Multi-dimensional principal component analysis 

(PCA) is the extension of the PCA, which is used widely as the 
dimensionality reduction technique in multivariate data analysis, to 
handle multi-dimensional data.  To calculate the PCA the singular 
value decomposition (SVD) is commonly employed by the reason of 
its numerical stability.  The multi-dimensional PCA can be calculated 
by using the higher-order SVD (HOSVD), which is proposed by 
Lathauwer et al., similarly with the case of ordinary PCA.  In this 
paper, we apply the multi-dimensional PCA to the multi-dimensional 
medical data including the functional independence measure (FIM) 
score, and describe the results of experimental analysis. 
 

Keywords— multi-dimensional principal component analysis, 
higher-order SVD (HOSVD), functional independence measure (FIM), 
medical data, tensor decomposition 

I.   INTRODUCTION 

RINCIPAL component analysis (PCA) is known as a 
technique for multivariate data analysis[1], [2].  By using 

PCA, observed variables are synthesized to several uncorrelated 
variables, which represent properties of the original multivariate 
data.  Fig. 1 is an example of PCA, by which students’ 
performance (shown in Table I) is analyzed from their 
scorecard.  Students’ score on these subjects are plotted in the 
two-dimensional plane, where the y1-axis values are language 
scores and the y2-axis values are mathematics scores.  We show 
that the synthetic variables can be calculated from the language 
and the mathematics scores in the figure.   
 

 
Naoki Yamamoto is with the Department of Human-Oriented Information 

Systems Engineering, Kumamoto National College of Technology, 2659-2 
Suya, Koshi, Kumamoto, 861-1102, Japan (corresponding author to provide 
phone: +81-96-242-6069, fax: +81-96-242-6106, e-mail: naoki@kumamoto- 
nct.ac.jp). 

Jun Murakami is with the Department of Human-Oriented Information 
Systems Engineering, Kumamoto National College of Technology, Japan 
(e-mail: jun@kumamoto-nct.ac.jp). 
 Chiharu Okuma is with the Department of Human-Oriented Information 
Systems Engineering, Kumamoto National College of Technology, Japan 
(e-mail: chiharu@kumamoto-nct.ac.jp). 

Yutaro Shigeto is with the Advanced Course of Electronics and Information 
Systems Engineering, Kumamoto National College of Technology, Japan 
(e-mail: ae10shigetou@knct.ac.jp). 

Satoko Saito is with the Department of Rehabilitation, Kumamoto 
Rehabilitation Hospital, 760 Magate, Kikuyo, Kumamoto, 861-1106, Japan 
(e-mail: s-saito@krh.marutakai.or.jp). 

Takashi Izumi is with Health Information Management Section, Kumamoto 
Rehabilitation Hospital, Japan (e-mail: t-izumi@marutakai.or.jp). 

Nozomi Hayashida is with Health Information Management Section, 
Kumamoto Rehabilitation Hospital, Japan (e-mail: n-hayashida@krh. 
marutakai.or.jp). 

 

 
The 1st principal component, which is named as z1-axis, is in 

the direction along which projections have the maximum 
variance.  The 2nd principal component, which is named as 
z2-axis, is orthogonal to the first one.  Because the z1-axis values 
become large as the values both of the y1-axis and the y2-axis 
become large, we see that the z1-axis expresses these 
comprehensive characteristics. The z2-axis also expresses 
certain comprehensive characteristics.  These synthesized axes 
are called principal axes.  The principal components scores are 
given by projecting students' score onto the principal axes.  We 
can analyze each student's feature by using these principal 
components scores. 
 

TABLE I 
  SAMPLE DATA FOR FIG. 1 

Student 

Score 

Language     
y1 

Mathematics   
y2 

A 80 55 

B 70 90 

C 90 80 

D 55 80 

E 40 50 

F 50 35 
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Fig. 1 Conception of the PCA 
 

Multi-dimensional PCA, which is an extension of the 
ordinary PCA, is proposed to analyze the multi-dimensional 
sample data. We have studied its application to the analysis of 
school records, and so on[3], [4].  In this paper, we present the 
application of multi-dimensional PCA to analyze three- 
dimensional medical data.  As the methods for analysis we 
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adopt two types of extended PCA, namely, the matrix PCA 
(MPCA) and the third-order tensor PCA (TPCA)[5].  Whereas 
these methods calculate principal components of multi- 
dimensional data approximately, the methods for solving 
optimally these problems by iterative algorithms have been 
proposed[6], [7].  From the viewpoint of the convenience of 
calculation, we prefer the MPCA and the TPCA rather than the 
optimal methods, in this paper. 

II.    CONSTRUCTION OF MULTI-DIMENSIONAL SAMPLE DATA 

We use medical record data which is furnished by a 
rehabilitation hospital to perform the feature analysis.  The 
medical record data contains Functional Independence Measure 
(FIM) values of 9 inpatients whose number of days spent in the 
hospital is about 3 months.  FIM values are scored according to 
the level of physical assistance required to perform the activities 
of daily living on a seven-point scale[8], [9].  Each record 
includes 18 items, of which 13 items are physical items and 5 
items are cognitive items.  These items are shown in Table II.  In 
the relevant hospital, FIM scores are measured several times 
during hospitalization to each patient. 
 

TABLE II 
ITEMS OF FUNCTIONAL INDEPENDENCE MEASURE 

FIM Domain 
Item (Subscale) 

 (6) 
Item (Detailed Item)  

(18) 

Motor FIM  
(13) 

Self-care 
A. Eating, B. Grooming, C. Bathing,  
D. Dressing upper body,  
E. Dressing lower body, F. Toileting 

Sphincter control 
G. Bladder management,  
H. Bowel management 

Transfer I. Bed/chair, J. Toilet, K. Tub/shower 

Locomotion L. Walk/wheelchair, M. Stairs 

Cognitive 
FIM (5) 

Communication N. Comprehension, O. Expression 

Social cognition 
P. Social interaction, 
Q. Problem solving, R. Memory 

 
Fig. 2   Structure of 3rd-order tensor medical data 

 
Multi-dimensional data is constructed by piling-up the FIM 

scores of the patients as shown in Fig. 2.  Each FIM score is 
expressed in a matrix form, where columns are the number of 
measurements and rows are the measurement items. FIM scores 
were recorded 8 times for all patients in their hospitalization 
period.  Since the FIM items can be classified into 6 subscales, 
we defined the FIM value as an average of each FIM value of 
detailed items that belong to same subscale, and refer simply to 

these subscales as items, for convenience.  Based on the 
condition above, the multi-dimensional data used here is 
consisted of 9 matrices which have 6 rows and 8 columns.  In 
this paper, we call each dimension of the multi-dimensional data 
as a mode, namely in this case, the first mode is the direction of 
increasing the number of rows, the second mode is the direction 
of increasing the number of columns, and the third mode is the 
rest direction.  We note that the word "mode" is used here 
according to precedent papers such as ref. [10]. 

III. EXPERIMENTAL ANALYSIS BY MATRIX PCA  

A.  Calculation Procedure 

As described in section I, the principal components that are 
related to observed variables are calculated by the ordinary 
PCA.  These components are, as we say, 1-mode principal 
components.  On the other hand, by applying the extended PCA, 
such as MPCA and TPCA, to the n-dimensional data we can 
obtain principal components of multi-modes, that is, 1-mode, 
2-mode, …, (n-1)-mode.  

Since we take up the case of three-dimensional data, or in 
another word in this section, 3rd-order tensor data, the principal 
components of two modes are to be obtained by MPCA.  In 
actual experiment, 3rd-order tensor, whose size is 6×8×9, as 
shown in Fig. 2 is taken up here. 

We perform an analysis by the following procedure: 
 [Step 1] 

Calculate the average matrix A  as 
      

9/)(
9

1
∑

=

=
k

kAA , (1) 

where kA  is a component matrix of the 3rd-order tensor 

A .  Then, using A , calculate the standard deviation for 

each element of kA  with changing k from 1 to 9 as 

      { }∑
=

−=
9

1

2

),(),(
9

1
),(

k
k jijijiS AA , (2) 

where ),( jiS  denotes the (i,j)th element of standard 

deviation matrix S , and similarly for the notation ),( jikA  

and ),( jiA . 

The 3rd-order tensor T  can be constituted by 
piling-up the matrix kT , which is obtained by standardiz-

ing each kA  as 

)},(),({
),(

1
),( jiji

jiS
ji kk AAT −= , 

for every i and j. 
The matrix kT  is referred to as the standardized 

matrix.  The 3rd-order tensor T  obviously has the same 
structure as the original 3rd-order tensor A . 
 

 [Step 2] 
Decompose the 3rd-order tensor T  by higher-order 

singular value decomposition (HOSVD) as the following 
equation[11]. 
 )3(

3

)2(

2

)1(

1 UUU ×××= CT , (4) 

Number of measurements 
(8) 

FIM items 
(6) 

Patients 
(9) 

: 3rd-order tensor A

kA
 

: Data matrix 
of k-th patient 

kA

9A

 

 
1A
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where C  is the tensor called core tensor, )1(U , )2(U , and 
)3(U  are the unitary matrices.  These tensor and matrices 

are combined by n-mode products. 
The HOSVD is known as an extension of singular value 

decomposition (SVD), which is the well-known 
orthogonal decomposition technique of a matrix[12], [13].  
Additionally, we subjoin complementary papers [14] and 
[15] for reference in relation to the convergence and 
accuracy properties in calculating the HOSVD. 

The SVD is very useful technique to calculate 
coefficients of principal components for the reason of its 
numerical stability[16], [17].  By applying the SVD to 
given data matrix, that coefficients are obtained as column 
vectors of the resultant unitary matrix. 

In equation (4), the tensor C  and matrices )1(U , )2(U , 

and )3(U  correspond to diagonal matrix and unitary 
matrices that obtained by SVD, respectively.  The n-mode 
product is defined as the product of a tensor and a matrix, 
whose elements are given by summing of products between 
the elements of a tensor and the elements of n-th column 
vector of a matrix. 

Similarly to the case of SVD, the coefficients of n-mode 
principal components are obtained as column vectors of 
the n-th decomposed matrix )(nU , that is, the column 

vectors of )1(U  and )2(U  denote the coefficients of 
principal components related to the FIM items and the 
number of measurements, respectively. 

 

[Step 3] 
The principal components score matrix of k-th patient 

can be calculated by multiplying 
T)1(U  from the left and 

)2(U  from the right to the standardized matrix kT  as 

 )2()1( UTUZ k

T

k = , (5) 

where 
T)1(U denotes the transpose of )1(U .  From the 

elements of kZ , we can analyze the feature of k-th patient 

concerning the two modes in combination. 

B. Calculation Result 

We show the coefficients of the principal components, which 
are the elements of )1(U  and )2(U , concerning the FIM items 
(1-mode) and the number of measurements (2-mode) up to the 
2nd principal components in Table III, where the abbreviated 
representation is used as PC for principal component, hereafter.  
From the table, we see that: 
 

TABLE III  
CALCULATED PC COEFFICIENTS OF MPCA 

 
(a)   FIM  ITEMS 

FIM Item  
(Subscale) 

Coefficient 

1st PC 2nd PC 

Self-care 0.42  -0.15  

Sphincter control 0.42  -0.19  

Transfer 0.42  -0.04  

Locomotion 0.36  0.91  

Communication 0.41  -0.32  

Social cognition 0.41  -0.09  

Contribution Rate (%) 92.0  5.6  

 
(b)   NUMBER OF MEASUREMENTS 

Number 
Coefficient 

1st PC 2nd PC 

1 0.34 -0.61 

2 0.35 -0.49 

3 0.36 -0.16 

4 0.36 0.09 

5 0.36 0.18 

6 0.36 0.23 

7 0.36 0.33 

8 0.35 0.4 

Contribution Rate (%) 96.1 2.6 
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Fig. 3 MPCA scores of (1,1) and (1,2) components.  

 
• The 1st principal components of the both mode express the 

comprehensive characteristics of each mode. 
• The 2nd principal component of the 1-mode expresses the 

mobility characteristics. 
• As for the 2nd principal component of the 2-mode, the 

rates of weight of the number of measurements are 
emphasized in the later period of hospitalization. 

 
In Fig. 3, we plot the principal components scores of each 

patient, which are obtained by the equation (5), in relation to 
(1,1) and (1,2) components, where the former is the 
combination of the first components of both modes, and the 
latter is that of the first component of 1-mode with the second 
component of 2-mode.  From the figure, we see that: 

 
• The (1,1) component expresses the comprehensive 

characteristics of FIM items over the whole period of 
hospitalization. 

• For this component, the 4th patient has the highest score, on 
the other hand, the 5th and 7th patients’  ones are the lowest 
scores. 
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• The (1,2) component expresses the comprehensive 
characteristics of FIM items in the later period of 
hospitalization. 

• The 1st patient has the highest score in terms of the (1,2) 
component, although his (1,1) component score is not so 
high.  This fact can be interpreted as saying that the 1st 
patient is who has a good effect of rehabilitation than other 
patients. 

• In contrast with above patient, although the 4th patient has 
the highest score in terms of the (1,1) component score, his 
(1,2) component score is the lowest.  The reason of this can 
be thought that since his FIM score is relatively large in the 
whole period of hospitalization, there is not much room for 
improvement for him. 

• While the 2nd and 6th patients’  (1,1) component scores are 
approximately equal, the 2nd patient has higher score than 
the 6th one in terms of the (1,2) component.  This means 
that the improvement of FIM score is significantly higher in 
the 2nd patient than that in another one. 

 
We show the principal component score of whole patients in 

Fig. 4, where the horizontal axis is the score of (1,1) component 
and the vertical axis is that of the (2,2) component.  Since the 
(2,2) component is thought as the property of the improvement 
on mobility, we see that rehabilitation is effective with respect 
to mobility for the patients whose score is located in the first 
quadrant in the figure. 
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Fig. 4 Correlation chart between (1,1) and (2,2) components of 

patients, where the number denotes each patient in Fig. 3 

 
Fig. 5 Structure of 4th-order tensor medical data 

IV. EXPERIMENTAL ANALYSIS BY THIRD-ORDER TENSOR PCA 

A.  Calculation Procedure 

In this section we also take up the 3rd-order tensor data which 
mentioned in the previous section with partially changed 
structure.  Here, the numbers of measurements are divided into 
three groups with regard to the temporal order as the early, 
middle, and late terms.  Then the 3rd-order tensor data of k-th 
patient is constructed as shown in the left of the Fig. 5, where the 
1-mode is the FIM items, 2-mode is the number of 
measurements in each period, and the 3-mode is the term that 
divided above.  As the right of Fig. 5 shows, the 4th-order tensor 
data can be constructed by piling-up this tensor for all of the 
patients.  In this way, the 4th-order tensor B  of the size 6×3×
3×9 is obtained to analyze by using TPCA. 
    In a similar way to the case of MPCA, we can calculate three 
modes of principal components related to the FIM items, the 
number of measurements, and the terms in the period.  For each 
patient, principal components scores are obtained as the 
combination of these three modes by the following procedure:  
 
 [Step 1] 

The average tensor B  can be calculated as 
 

9/)(
9

1
∑

=

=
k

kBB , (6) 

where kB  is a component 3rd-order tensor of the 4th-order 

tensor B . Next, by using B , calculate the standard 
deviation for each element of kB  with changing k from 1 to 

9 as 
      

∑
=

−=
9

1

2),,(),,(
9

1
),,(

k
k ljiljilji BBS

where ),,( ljiS  denotes the (i,j,l)th element of standard 

deviation tensor S , and similarly for the notation 
),,( ljikB  and ),,( ljiB . 

Then standardize each kB  as 

 
)},,(),,({

),,(

1
),,( ljilji

lji
lji kk BB

S
F −= , 

        for every i, j, and l. 

(8) 

By piling-up kF , which is referred to as the standardized 

tensor, the 4th-order tensor F  is constructed.  The 
structure of the F  is same as the original 4th-order tensor 
B . 
 

[Step 2] 
By applying HOSVD in the same way as the equation 

(4), the 4th-order tensor F  can be decomposed as follows: 
     )4(

4

)3(

3

)2(

2

)1(

1 VVVV ××××=DF , (9) 

where D  is the core tensor, )1(V , )2(V , )3(V , and )4(V  are 
the unitary matrices.  These tensor and matrices are 
combined by n-mode products.  The column vectors of 

)1(V , )2(V , and  )3(V  denote the coefficients of principal 
components related to the FIM items, the number of 
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measurements, and the terms in the hospitalization, 
respectively.  
 

[Step 3] 
By multiplying the unitary matrices as 

 TTT

kk

)3(

3

)2(

2

)1(

1

the principal components score tensor of k-th patient is 
calculated similarly with the equation (5), but the n-mode 
product notation is used here.  The feature of k-th patient 
can be analyzed by using the elements of kZ  with regard to 

the three modes in combination. 

B. Calculation Result 

Table IV shows the coefficients of the principal components 
related to three modes that represent the FIM items, the number 
of measurements, and the terms in the hospitalization period, 
respectively.  From the table, we can see that: 

 
• Every 1st principal component are thought as the compre- 

hended characteristics of the entries of the table for each 
mode. 

• The 2nd principal component of the 1-mode expresses the 
characteristics related to mobility of the FIM items. 

• As for the 2-mode and 3-mode, since the weights of 
coefficients of the 2nd principal component are emphasized 
on those of the posterior in each period, these components 
are thought as the recovery characteristics of the patients. 

 
 The principal components scores of the patients are plotted in 

the Fig. 6, where those scores are calculated as the combination 
of three modes.  The vertical axes show the scores of (1,1,1) and 
(1,1,2) components individually for the horizontal patient axis.  
For instance, the (1,1,1) component is a combined 
characteristics of the 1st principal components of three modes 
corresponding to sequential order.  The (1,1,1) component 
expresses the comprehensive characteristics of FIM score, and 
(1,1,2) component does recovery characteristics regarding the 
whole period in either case.  The figure shows an almost similar 
result with Fig. 3, which is the case of applying the MPCA. 

 
TABLE IV 

CALCULATED PRINCIPAL COMPONENTS OF TPCA 
 

 (a)   FIM  ITEMS 

FIM Item 
(Subscale) 

Coefficient 

1st PC 2nd PC 

Self-care 0.42 -0.15 

Sphincter control 0.42 -0.18 

Transfer 0.42 -0.04 

Locomotion 0.37 0.9 

Communication 0.41 -0.34 

Social cognition 0.41 -0.09 

Contribution Rate (%) 92.4 5.1 

 
 
 

(b)   NUMBER OF MEASUREMENTS  

Number 
Coefficient 

1st PC 2nd PC 

1 0.58 -0.76 

2 0.58 0.11 

3 0.58 0.64 

Contribution Rate (%) 98.8 1.0  

 
(c)   TERMS IN HOSPITALIZATION 

Term in Hospitalization 
Coefficient 

1st PC 2nd PC 

Early term 0.57 -0.81 

Middle term 0.58 0.26 

Late term 0.58 0.53 

Contribution Rate (%) 96.4 3.0  
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Fig. 6   TPCA scores of (1,1,1) and (1,1,2) components. 
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Fig. 7 TPCA scores of (1,1,2) and (1,2,1) components. 

 
In order to perform the further analysis, we plot the principal 

component scores of (1,1,2) and (1,2,1) for each patient in Fig. 
7.  Although both components express the recovery character- 
istics of patients, the former one is associated with the whole 
period of hospitalization, and the latter with the number of 
measurements in each term.  From the figure, we noticed that 
though the 9th patient's (1,1,2) score is relatively high, the 

Z =F × V × V × V ,  (10)
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(1,2,1) score is the lowest among all patients.  As in this way, we 
could do the detailed analysis regarding to a tendency of 
recovery for a patient by comparing the scores of the 2-mode 
and the 3-mode. 

V.    CONCLUSION 

In this paper, we confirmed the efficiency of the multi- 
dimensional PCA, such as the MPCA and the TPCA, to analyze 
the medical data, especially here the FIM score of the 
hospitalized patients.  We discussed the results of 3rd-order 
tensor and 4th-order tensor data, which were constructed by 
assuming that: 

 
• The FIM scores of each subscale could be represented by 

standardizing the measured FIM scores in both of the 
tensors. 

• The 4th-order tensor data could be composed from the set 
of 3rd-order tensors by dividing the number of 
measurement into some terms. 

 
Hence, the following problems are remained as future work: 

 
• In order to analyze more precisely the feature of FIM score 

of the patients, the detailed FIM items shall be used as the 
variables of 1-mode instead of the subscales. 

• Other types of 4th-order tensor data have to be constructed 
to perform multilateral analysis from views of more variety 
of combinations of each mode. 

 
Nonetheless, even for the tensor data used here, we could do 

different types of analysis by changing the ordering of the 
indices, such as the patients are replaced with the number of 
measurements, while the FIM items are remained as they were, 
in Fig. 2.  Lastly, we can say that the way of analysis described 
in this paper could be applicable, with the straightforward 
modification, to the tensor data of order greater than 4th.  We 
are already proceeding to analyze the 5th-order tensor medical 
data.  The results would be presented in nearly days. 
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