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 
Abstract—A problem is formulated for the natural oscillations of 

a circular plate of linearly variable thickness on the basis of the 
symmetry method. The equations of natural frequencies and forms 
for a plate are obtained, providing that it is rigidly fixed along the 
inner contour. The first three eigenfrequencies are calculated, and the 
eigenmodes of the oscillations of the acoustic element are 
constructed. An algorithm for applying the symmetry method and the 
factorization method for solving problems in the theory of 
oscillations for plates of variable thickness is shown. The 
effectiveness of the approach is demonstrated on the basis of 
comparison of known results and those obtained in the article. It is 
shown that the results are more accurate and reliable. 
 

Keywords—Vibrations, plate, thickness, symmetry, factorization, 
approximation.  

I. INTRODUCTION 

LATES of variable thickness as components of the 
structural elements of devices for applied purposes 

(vibration isolators [1], plate vibration absorbers [2], rotor 
turbines [3], hydraulic machines [3], tank bottoms [4], 
bellows, pressure sensors [5]) have wide practical applications 
in various fields of industry [6]. For example, in the aircraft 
industry, some thin-walled structural elements are made in the 
form of plate-like parts of variable thickness. In this example, 
the plates operate under vibration conditions under resonance 
conditions, from which the need arises to evaluate the stress-
strain state of the elements. The analysis of the state consists 
of finding the solution of the problem of own flexural 
vibrations. 

The main problem in the cases of plate vibrations is 
inextricably linked with the search for the solution of fourth-
order differential equations. 

The purpose of the article is to formulate an algorithm for 
calculating circular plates of a special configuration. In 
addition, the problem of axisymmetric vibrations of plates 
must be solved with the help of comparatively simple 
analytical dependences, which allow one to find the 
frequencies, deflections, and stresses of a number of forms of 
natural oscillations. 

 

 
Kirill Trapezon is with the National Technical University of Ukraine “Igor 

Sikorsky Kyiv Polytechnic Institute”, Ukraine, Kyiv 03056 pr. Peremogy 37, 
building 12 (phone: +380442368080, e-mail: k.trapezon@kpi.ua). 

Alexandr Trapezon, was with the G.S. Pisarenko Institute for Problems of 
Strength National Academy of Sciences of Ukraine, Kyiv 01014, 2 
Timiryazevs’ka str (e-mail: trapezon@ukr.net). 

II. FORMULATION OF THE PROBLEM 

Differential equation of the forms of the proper 
axisymmetric oscillations of a circular plate of linearly 
variable thickness, varying according to the law   10Hh , 

where the constant coefficient 0H ; Rr / - the relative 

variable radius ( r variable radius, R constant radius), can 
be written in the form [3]: 
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where  WW   is displacement. 
 

 

Fig. 1 Graphic image experiment of plate 
 

It is obvious that (1) can be replaced by two equations of 
the second order according to the method of factorization 
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Then, the general solution of (1) can be defined as the sum 

of the general solutions 21 WWW   of two equations, where 

the solution 1W of (2) with the plus sign near 2 , and 2W with 

the minus sign. 
Finding exact solutions to these equations is difficult from a 

technical point of view, but the symmetry method obtained by 
the authors allows solving the problem with an accuracy 
sufficient for technical applications. 
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III. ALGORITHM FOR APPLYING THE METHOD 

Equation (2) can be rewritten in the form [4]: 
 

,02  WkW
F

F
W x

x
xx                           (3) 

where  

;
dx

dW
Wx   ;4 22 k                              (4) 

 
and 

    .11 53
0 xxDFD                      (5) 

 
Formally, (3) is analogous to the equation in the forms of 

longitudinal oscillations for a bar of variable cross-section 
with an area  xF  whose solution can be found through the 

symmetry method [5]. To construct a general solution, it is 
necessary to provide for the functions 21 WWW   the 

corresponding boundary conditions for 1x  and 2x . 

Obviously, (4) is not solvable in elementary or known 
tabulated functions, but one can find the solution in an 
approximate way. To do this, we must approximate  xD  by a 

function  xD1 in which the solution of these equations will be 

found in a closed form. As such a function, on the basis of the 
symmetry method [5], 
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where nCD ,,0
  are free constants.  

It is important to note that expression (6) on the accepted 
interval 5.01.0    2929.00513.0 x  satisfactorily 

corresponds to (5) at 0D 1, if we assume that 
0D -

0.164877; C 4.4375; n 2.849. It is obtained that the 
solution of the problem of natural vibrations of a plate rigidly 
fixed at 1 0.1 and free at 2 0.5, obtained on the basis of 

the approximating function (6), is more accurate than the 
solution obtained directly on the basis of the rows method. 

An approximating function  xD1  for which (3) has an 

exact solution is obtained on the basis of the symmetry 
method 
 

      .00100011 mxZxDmxYmxJxDD    (7) 

 

Fig. 2 shows the variations of  xD  and  xD1  at 0D 1; 

01D 1.0173; m 3.35;  0.2322. As can be seen, on the 

interval x 0.0513 ÷ 0.2929, the coincidence of D  and 1D  is 

quite satisfactory. 
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Fig. 2 Graphic image of building functions 
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Tables I and II show the values of functions ,D  1D , from 

which it can be concluded that the quantitative discrepancy D
and 1D  on the average does not exceed the absolute values of 

average 0.41%. 

Equation (3) with the choice of the function  xD1  has the 

following form 
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where  

      ;000 mxYmxJmxZ                            (9) 
 
and. 

m 3.35;  0.2322;  ;4 22
1 k  22

2 4k .   (10) 
 

On the basis of the symmetry method, an exact solution of 
(8) 
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where  

;4 222 m   .4 222 m                       (13). 
 

TABLE I 
NUMERICAL VALUES OF FUNCTIONS 

x  0.0513 0.1 0.15 0.2 0.2254 

D  0.29216 0.37217 0.41282 0.42933 0.43116 

1D  0.29193 0.6733 0.40985 0.42901 0.43134 

 







1

1D

D

×100% 

0.081 1.316 0.7249 0.07254 -0.04 

 
TABLE II 

NUMERICAL VALUES OF FUNCTIONS 

x  0.25 0.26 0.27 0.2929 

D  0.42962 0.42816 0.42627 0.42045 

1D  0.4293 0.42733 0.42472 0.41642 

  0.0727 0.19449 0.365 0.966 

 
The boundary conditions of the problem are 
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and on the free edge 
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When passing to the variable  x , the conditions (14)-(16) 

take the form, starting from the expressions  11x  and 

   22 1111 xx  . 

For convenience, it is assumed that 
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where  

;11 x                                 (19) 
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IV. ANALYSIS OF RESULTS 

It is found that the general solution of (1) has the form 
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where 11,,, BABA  are the constants whose values depend on 

the boundary conditions, and they can be found from the 
solution of a system of homogeneous equations: 
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For the first form of oscillation ( 1 4.317126), we 

obtained   
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0.095498; 
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A
-0.719443.       (25) 

 
To construct specific forms of oscillations, we use the 

deflection function (23) 
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where the parameter 1B  is a freely selectable parameter. We 

select the parameter value from the normalization condition of 
the function iW  in such a way that 
 

  15.0 iW                                (27) 
 

Fig. 3 shows the first three forms of natural vibrations of a 
plate. The values of the normalizing coefficient 1B  for the 

forms 321 ,, WWW are: 0.796202, -2.275333, and 5.365396, 

respectively. 
The value of the found frequency parameter of the plate on 

the first form of oscillations, as compared with 1 4,3859, 

calculated when solving the problem of the rows methods [7], 
is lower by 0.96%. 

The practical significance of such a discrepancy is 
unimportant [8]; however, in some cases, when a reliable 
estimate of the stress-strain state of the plate is required, it is 
necessary to use the vibration parameters obtained in the 
article on the basis of the function  xD1 .  
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Fig. 3 Graphic image of own forms 

V. CONCLUSIONS 

The scientific novelty and practical value of the results 
consists of obtaining a new version of the application of the 
symmetry method for solving the problem of oscillations of an 
axisymmetric plate of linearly variable thickness.  

The practical value of theoretical results includes the 
possibility of direct use of computational models, in particular, 
for the rational design of resonance sound and ultrasonic 
systems based on plates. Thus, based on the results obtained 
and the study conducted, the following main conclusions can 
be formulated: 

 A simple solution of the problem is found for the self-
axisymmetric oscillations of a circular plate on the basis 
of the symmetry method; 

 Equations of frequencies and forms of natural oscillations 
are obtained for an annular plate with rigid fixation along 
the inner contour; 

 The first three frequencies are calculated and the 
corresponding eigenmodes of oscillations are constructed; 

 The effectiveness of the solution of the problem using the 
symmetry method is confirmed; 

 A calculation model for the rational design of plates as 
acoustically active elements for sound and ultrasound 
systems is constructed. 
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