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Abstract—As in today’s semiconductor industries test costs can
make up to 50 percent of the total production costs, an efficient
test error detection becomes more and more important. In this
paper, we present a new machine learning approach to test error
detection that should provide a faster recognition of test system
faults as well as an improved test error recall. The key idea is to
learn a classifier ensemble, detecting typical test error patterns
in wafer test results immediately after finishing these tests. Since
test error detection has not yet been discussed in the machine
learning community, we define central problem-relevant terms
and provide an analysis of important domain properties. Finally,
we present comparative studies reflecting the failure detection
performance of three individual classifiers and three ensemble
methods based upon them. As base classifiers we chose a decision
tree learner, a support vector machine and a Bayesian network,
while the compared ensemble methods were simple and weighted
majority vote as well as stacking. For the evaluation, we used
cross validation and a specially designed practical simulation. By
implementing our approach in a semiconductor test department
for the observation of two products, we proofed its practical
applicability.

Index Terms—Ensemble Methods, Fault Detection, Machine
Learning, Semiconductor Test

I. INTRODUCTION

High investments and short life-times related to semi-
conductor factories forces chip manufacturer to optimize al-
most every step in their production processes to gain maximum
yield and minimal costs. Beside design and fabrication, the test
of integrated circuits plays a more and more important role,
as the corresponding costs can make up to 50% of the total
costs [1]. Under this circumstances, it seems to be a valuable
approach to improve the test-process using modern machine
learning methods.

As todays microchips consist of hundreds of millions tran-
sistors, corresponding test procedures have to reflect this enor-
mous complexity. Therefore, test systems, which apply thou-
sands of individual electrical measurements per microchip, are
equally prone to faults as the preceding production systems.
In most cases, such test system faults cause test errors, such
as functional devices being rated as non-functional. To prevent
the resulting economic loss, several basic methods are already
in use, but all of them suffer either from a poor detection
accuracy or a high detection latency.

In our paper we present a new machine learning based
approach for test error detection that should overcome the
main drawbacks of the existing methods and therefore

• provide a faster detection of test system faults implying
less necessary re-tests and

• improve the test error recall causing a higher yield.
The key idea is to learn an ensemble of classifiers to

recognize typical test error patterns in wafer test results,
thereby enabling their rating immediately after the wafer tests
have been finished. As the high temporal variability of the
production and test process would not allow to learn and
apply a static model, we automatically derive examples for
a continuously learning.

Fig. 1. Schematic representation of the online test error detection system. The
classifier ensemble(4) rates the test results(3) immediately after the wafer(1)
has been tested on the test machine(2).

To prove the applicability of our approach, we implemented
TED1 for a semiconductor test department. Thereby, TED was
completely integrated into the test process, supervising wafer
tests of two products.

II. BACKGROUND

A. Semiconductor Test

Semiconductor test has two main objectives. Primarily, it is
concerned with determining the functionality of the produced
devices, guaranteeing the delivered chips to be faultless and to
meet the required performance targets. On the other hand, test
results are used to monitor and control the fabrication process.
To obtain these goals, tests are undertaken at different points
in the fabrication process [1]. Among those, the ”Wafer Sort
Test” plays a special role, as it is the first complete functional
test of the produced devices, which are still located on the
wafer.

During the ”Wafer Sort Test” automated test equipment is
used to apply a complex sequence of thousands of electrical
tests. Basic test types, referred to as test sets, are for example,
shorts tests, leakage tests or ring oscillator tests. For all of
them, special limits are defined and checked. The results are

1Test Error Detection System
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finally aggregated into a so called bin class, whereby pass and
fail bin classes are distinguished. While pass bin classes are
assigned to functional devices, each fail bin class represents
a special set of failed single tests, which caused the rating as
non-functional. For instance, there is a special bin class for
devices, which failed the shorts tests. Regarding a complete
wafer test, we refer to the absolute frequency of bin classes
as bin distribution.

B. Test system faults, measurement errors and test errors

Definition 2.1 (Test system fault): A test system fault is a
abnormal condition that causes a reduction of the test systems2

functionality.
There exists a causal connection between the three problem-

relevant terms, as test system faults cause measurement errors,
which, for their part, can lead to test errors. For instance,
the most frequent test system faults in practice are electrical
contact-issues3, increasing the electrical resistance. Thereby,
electrical current measurements deliver wrong values, causing
a test error, if these values fall beneath a defined limit.

While each of the involved measurements for a device
exhibits its individual uncertainties and errors related to test
system faults, not all measurement errors are economically
relevant. Therefore, we defined the test error of a device solely
based on the correctness of its assigned bin class, as this
is eventually used to sort them out. Since this bin class is
an aggregation of several single measurements, the defined
test error is likewise a complex superposition of their single
uncertainties and errors.

Definition 2.2 (Device test error): A device test is defined
as error, if the resulting bin class differs from the correct one4.

Formula 1 describes the general relation between measure-
ment and test errors. Thereby, a measurement error, distin-
guished into systematic and random parts es and er, becomes
a test error if and only if the correct measurement value xc

would lie between the accepted upper and lower limits Lu and
Ll , while the measured value does not.

xc ∈ {Lu, Lo} ∧
xc + es + er /∈ {Lu, Ll} (1)

This means that the occurrence of a test error for a concrete
device depends equally on the defined limits, its correct
measurement values and the measurement errors of the testing
procedure. For instance, the same measurement error may lead
to a test error for one device, while having no influence on
the bin class of another one, depending on the distance of
their correct measurement values to the corresponding limits.

2A test system generally includes the complete process to obtain the
test result, i.e. equipment, software, methods, environment, operations and
personnel. Nevertheless, we use the term primarily as reference to the test
equipment.

3They can be related to the wearing of probe-pins connecting the device
with the testing machine. A more detailed listing of test system faults can be
found in [2]

4The correct bin class could be defined as the one produced by an ideal
test process.

Thereby, even small random measurement errors may cause
test errors, if the corresponding correct value is already near
the limit.

As we want to classify wafer-tests, we have to provide
a wafer based test error definition fulfilling two important
properties. First, it has to reflect the trade off between the
re-test costs and its economical yield due to the retrieved de-
vices. And second, it has to ensure that random measurement
errors, implying random test error patterns, do not impurify
the learning population by introducing compromising noise.
Therefore, we introduce a limit X for single device test errors
of a wafer test, which reflects both properties.

Definition 2.3 (Wafer test error): A wafer test is defined as
error, if it contains at least a specified percentage X of device
test errors.

From a statistical point of view, the overall test signal of an
entire product population is a superposition of the production
signal and the measurement error signal. Thereby, the product
variance is usually significantly higher than the test variance
[3], which makes it in general difficult to identify reliably a
conspicuous signal deviation as measurement error, and where
appropriate, as test error.

C. Current methods

Today, different standard methods are established to prevent
and detect faults in the test process, whereby we distinguish
between off line and on line approaches.

Off line approaches, like regular calibration and mainte-
nance or reference wafer [3], suffer from a common disad-
vantage. All of them need the test process to be interrupted.
With respect to limited test resources, they can therefore only
be applied infrequently.

In contrast, on line approaches allow a parallel supervision
of the test process. A simple method is to set up static limits for
a defined subset of test results, for instance the occurrence of
certain bin classes. While this is a very fast detection method,
it covers only a small subset of obvious test errors and requires
continues personal effort to update the limits.

Another common approach are regularly applied re-tests.
Certain wafers are tested twice or more, whereby significant
differences between test runs of the same wafer indicate test
errors. Although this method is much more reliable, it can
not be applied to all wafers tests due to time and cost reasons.
Until a test system fault is detected by this method, it may have
affected several wafer tests, which all have to be re-tested.

TED should fill this gap between the fast but inaccurate
static limit method and the reliable but slow re-test approach.

D. Related work

A statistical approach for on line failure detection can be
found in [3]. It describes the application of statistical process
control methods to the test-process. Based on batches of
regular done re-tests, novel control charts are proposed, which
represent the average difference between test and retests of
selected parameters, i.e., the random measurement error or
repeatability. The authors assumed from experience, that a
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”‘significant change in the systematic error always correlates
with a change in the random error”’. Therefore, an out of
control situation of these control charts should give an early
hint at underlying systematic measurement errors.

In [4] a similar statistical approach is used to handle
parallel measurement systems. The authors developed a linear
statistical model for this kind of systems, including as well
the process-variability, the tester-variability and a random
error for each tester. Based on batches of re-tests, similar
to [3], they use common analysis of variance techniques to
get both the variance contribution of each single measurement
instruments to the overall variance and their variation over
time. Control charts based on these criteria are used to decide
if variations in the resulting signals are due to process or test
variations. Therefore, they are able to therefore identify faulty
measurement instruments.

As both proposed methods are of statistical nature, they
suffer from the same disadvantage, namely that a potential test
system fault is found at the earliest when the affected batch is
completed. Besides, both methods use only univariate control
charts, which are less appropriate to find complex test error
patterns than machine learning methods, naturally handling
multivariate feature spaces.

Extensive studies regarding the machine learning approach
to test error detection are presented in [5]. We examined both,
classifiers for single device test errors and such for wafer test
errors. Thereby, we studied seven test sets in combination with
representatives of established supervised learning methods,
namely support vector machines, decision trees, rule learners,
Bayesian networks, instance based learners and artificial neural
networks. Although, the device test error classifiers showed
reasonable results for cross validation, we could not confirm
them by practical application due to implementation issues.
In the wafer test error experiments, only the bin deviation
achieved sufficient results and is therefore used primarily for
our current studies. Besides the experiments, we developed
ProSuLE5 , a software framework for hierarchical classifica-
tion in productive environments. It provides the application
of classifier ensembles in combination with different feature
groups on hierarchical ordered levels, such as device, wafer
and lot level in the semiconductor domain.

III. MACHINE LEARNING APPROACH

The proposed test error detection systems can analytically
be described as a classifier, assigning one of the both classes
”‘correct test”’ and ”‘test error”’ to each wafer test based on
a subset of its test results.

A. Important domain properties

In this section, we want to sketch characteristic domain
properties, which are important for the application of machine
learning methods.

Regarding all wafer tests, there is a high variation due to dif-
ferent products, mask revisions, process flows, test platforms

5Production specific supervised learning environment.

and test programs. All of them have a significant impact on test
patterns, especially on test error patterns. Therefore, we have
to carefully define model contexts. Choosing them too large
introduces noise and inconsistencies in the sample populations.
On the other hand, too few examples can compromise the
generalization ability and lead to overfitting. For the current
version of TED, we decided to set up one model for each
product, whereas future versions will have a finer granularity.

ss

Fig. 2. Frequency of wrongly assigned fail bins (blue,red,green) with respect
to chronologically ordered test error examples.

Concept drift is a related problem that occurs if the model-
context is chosen too large. For example, new tests, changing
test limits, varying process flow or adaption of concurrent
failure detection methods result in significant changes of the
target concept, thereby decreasing the performance of static
models. These drifts can either be abrupt, if new limits
are set, or gradually, caused, for instance, by slow wearing
of probe-pins. Figure 1 shows a practical example for this
phenomenon. While in the first interval the blue fail bin is
the main test error source, it is later replaced by the green
and finally by the red one. More detailed information about
concept drift are presented in [6]. To confine this problem, we
currently limit the training sets in TED to a defined fraction
of the latest samples, trying to minimize concept drift related
inconsistencies.

The fact that there are much less faulty tests then correct
ones is known as unbalanced data in the machine learning
community [7]. This significant difference in class prior prob-
abilities can decrease the performance of standard learning
methods, as they assume balanced data sets. Especially, the
recognition quality of the minor class, in our case the test
errors, can be affected.

Most standard classifiers assume the training set to be
independent identically distributed. But like for other real
world problems such as computer aided diagnostic [8] this
assumption is not fulfilled in our case. Wafers in a lot or
generally those passing similar process steps are strongly
correlated, introducing unwanted signals in the training set,
which may be wrongly learned as test error patterns. For
instance, a test error pattern derived by a sample of wafers
originating from the same lot, may be strongly influenced
by a underlying lot-specific production fault. This problem
of correlated samples has to be focused in further studies.
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B. Classification features

As we mentioned earlier, the ”Wafer Sort Test” consists of
a sequence of different electrical measurements, which all are
potential features for the test error detection. Nevertheless, not
all of them are appropriate, as most of them either are only
infrequently available6 or exhibit a natural high variance.

Finally, we have chosen the bin distribution as feature set
for two reasons. It performed best in the mentioned previous
studies [5] and required considerably less implementation
effort than other test sets7. We can explain the comparatively
better performance to a great extend by the fact, that we
defined test errors solely based on bin classes, implying that
each so defined error is reflected in the bin distribution. In
contrast, the other test sets, such as shorts tests, are only
affected by the corresponding subset of the so defined test
errors.

C. Automated labeling procedure

In most classical learning settings there exists a human
labeled example set, used to learn a static concept. Known
examples are image recognition or fault detection for semi-
conductor tools [9]. Nevertheless, this approach is not suitable
in our case as the labeling would be very time-consuming and
have to be repeated in regular intervals due to the described
concept drift.

Therefore, we utilize the existing test redundancy, namely
regular done retests, together with our test error definition
to automatically derive examples. Basically, the automated
labeling is only possible for wafers, which have been tested at
least twice, as the correctness of single wafer tests cannot be
verified reliably. For those, the single test runs are compared,
whereas we define the chronologically last one as correct, as
we expect the responsible engineers to repeat re-tests until the
correctness of the last re-test is assured. The previous test runs
are then labeled according to the wafer test error definition,
whereby the percentage of device test errors is determined
by comparing their assigned bin classes to the corresponding
assignments of the last re-test.

Fig. 3. Automatically deriving wafer test labels by comparison to the last
re-test.

6For instance, only for 0.1 percent of all examples the shorts test were
available in the used data source. For space reasons, they were only added,
if at least one test failed.

7Bin frequencies are uniformly represented in the used data source, while
the representation, such as identifiers, of other test sets differs between
products or even test programs. This would cause an high configuration effort.

D. Models and learning algorithms

Based on our previous studies, we selected three algorithms,
a support vector machine, a decision tree learner and a
Bayesian network, for further experiments.

As kernel for the support vector machine, we used a radial
basis function. Detailed informations about Support Vector
Machines can be found in [10].

The decision tree has been learned with the C4.5 algorithm
[11]. We used a minimal leaf size of four and a minimal split
size of eight examples. Both parameters represent the trade-
off between overfitting to noise and the ability to learn rare
failure patterns.

To learn the network structure of the applied Bayesian
network we used the K2 algorithm, described in [12]. The
conditional probabilities of the random variables have been
estimated by counting value combinations in the training set8.

E. Ensemble methods

In many applications and scenarios classifier ensembles,
i.e., combinations of individual classifiers, performed better
than their corresponding single counterparts. Therefore, we
decided to apply an ensemble instead of just selecting the best
learning algorithm. Crucial for the success of such ensembles
is diversity among the individual classifiers, meaning that they
have to misclassify examples in different areas of the feature
space. This can be achieved, for example, by learning the
classifiers with different training sets. Instead, we used three
conceptually completely different learning algorithms to obtain
this property.

Nevertheless, it remains the question how to aggregate the
results of the individual models into a total classification.
Therefore, we compared three aggregation methods, simple
majority vote, weighted majority vote and stacking. In the
weighted majority vote each individual classifier has an as-
signed weight determining its influence on the total classifica-
tion. Given a set of classifiers T, a set of classes C, the single
classifications dt,c, which are one if model t returns class c
and zero otherwise, and the corresponding model weights wt,
the resulting class j is determined by

j = argmax
c∈C

∑
t∈T

wtdt,c (2)

Thereby, the model weights should reflect the future per-
formance of the individual models, which is usually estimated
by their performance on a training or additional validation set.
We studied the first variant, determining the weights based on
the training set accuracy at through

wt =
at

1 − at
(3)

Stacking [13] uses a meta classifier to combine the single
model results. This meta-classifier is learned in two steps.

8Each conditional probability got an additional prior to avoid zero probabil-
ities. Without the additional prior, this method equals the maximum likelihood
solution.
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First, the single classifiers are learned and applied on the
training set and second, the meta model is learned with the
same examples extended by the single model results. For our
studies we used a decision tree learner as meta model. Further
information about the examined ensemble methods can be
found in [14].

IV. EXPERIMENTS AND PRACTICAL RESULTS

A. Experimental and practical setting

For our experiments we used 5709 wafer tests from a highly
frequented product A, 4841 of them labeled as correct and 868
as test error. All have been tested at least twice and labeled
according to the automated procedure.

Based on our framework ProSuLE, we developed TED,
which has been applied in a semiconductor test department to
supervise the tests of two products for a period of six months.
Thereby, we used earlier wafer tests to learn initial models. As
intended, our system observed each wafer test and alarmed the
engineers in case of detected test errors.

B. Evaluation methods

To evaluate the performance of the single classifiers and the
ensemble methods, we used a five-fold cross validation and
a practical simulation. Thereby, we additionally implemented
the practical simulation, because we assumed the ability of
cross validation to yield a good estimation for the practical
model performance to be compromised by the special domain
properties. More precisely, the concept drift is not represented
by the standard cross validation, as the random split subsets
contain examples from all temporal segments. And further-
more, overfitting is rewarded by correlates samples and leads
to a overestimation of the classification accuracy. An example:
if the example set contains several test error examples of one
lot, it is probable that the learning algorithm extracts some lot
characteristics, such as the abnormal high count of a certain
bin-class due to a special production fault, as general test error
property. This is rewarded, as a fraction of the affected wafer
tests are as well in the test set, and therefore correctly classified
by the overfitted model.

Our second evaluation method simulates the real test se-
quence of the given example test runs. All sample wafer
tests are therefore grouped into two kinds of chronologically
ordered batches, each representing a date. While classification
batches contain all wafer tests that were executed on the
corresponding date, learning batches include those that have
become available for learning. Sequentially for each date, first
a model is learned based on all learning batches up to this
date and then applied to the current classification batch. As
this method is an exactly simulation of the real process, it is
a valuable practical performance estimator.

Due to the imbalance problem, usual measures like model
accuracy may be misleading. Given the hypothetical situation
of one percent test errors, even a classifier labeling each wafer
test as correct would achieve an accuracy of 99 percent. There-
fore, we took additionally the f-measure Fβ as performance
criterion, which is an aggregation of the test error recall r and

Fig. 4. Nth iteration of the practical simulation, whereby the first n learning
batches are used to train a model that is applied to the (n+1)th classification
batch.

precision p, whereby β reflects their weighting9. Based on our
purpose to minimize false-alarms, considering user acceptance,
we set β to 0.5, implying that precision is weighted twice as
much as recall.

Fβ = (1 + β2)
p r

β2p + r
(4)

C. Results

Fig. 5. Compares recall, precision, and f-measure of single classifiers for
cross-validation and practical simulation.

1) Single classifier: Among the single classifiers, the deci-
sion tree achieved due to its high recall the best f-measure in
the cross-validion experiments, followed by the support vector
machine with a slightly better precision and the Bayesian
network. Totally, the single classifiers achieved an accuracy
average of 89.8 percent and a f-measure average of 67.7
percent.

As expected, the simulation experiments showed worse
results. While the accuracy average stayed nearly equal with
88.3 percent, the f-measure average decreased by about 7.1
percent. As the decision tree reached nearly 10 percent less
recall and precision, the support vector machine became the
best single classifier. Besides, the considerable differences in
precision and recall, especially between the support vector
machine and the decision tree, indicate a basic diversity
between these models.

2) Ensemble methods: In cross validation, none of the
studied ensemble methods achieved a better f-measure than
the single decision tree model, although they performed only
slightly worse. Compared to each other, while showing nearly

9A β of one represents the harmonic mean between precision and recall.
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the same f-measure, they exhibited strong differences re-
garding their precision-recall distribution. While the simple
majority vote gained the highest test error precision, the other
methods showed a significantly higher test error recall.

Fig. 6. Compares recall, precision, and f-measure of ensemble methods for
cross-validation and practical simulation.

We found a similar situation for the simulation results with
the difference that the simple majority vote achieved the best
overall f-measure performance. Compared to the best single
algorithm, the support vector machine, it had 5.4 percent
less precision, but 7.7 percent more recall, resulting in a
slightly better f-measure. The other studied ensemble methods
achieved about 6 percent less precision and 6 to 9 percent more
recall than the simple majority vote. Crucial for this outcome
has been the implicit bias of simple majority vote for a high
precision, which is rewarded by our adjusted f-measure. Based
equally on these results, our goal to minimize the false rate
and the least implementation complexity, we decided to use
simple majority vote in the first version of TED.

Fig. 7. Compares recall, precision, and f-measure of the single classifiers
and the simple majority vote for the practical results of the products B and
C.

3) Practical system: In practice, the simple majority vote
achieved on average better results than the single decision tree
and the Bayesian network. Only the support vector machine
alone reached a slightly better average f-measure, although for
two of the three products the simple majority vote performed
best. Nevertheless, it is most valuable to combine the support

vector machine in an ensemble instead of using it alone, as it
is in contrast to the decision tree not human interpretable.

Additionally, we found that the performance of the individ-
ual models exhibits a strong variation between the products,
indicating significant differences in their test error patterns.
For instance, the precision of the Bayesian network ranges
from 45.4 to 90.9 percent. The majority vote compensated
this variation best as it showed the least f-measure standard
deviation, regarding all products.

Averaged over both supervised products, TED detected 35.6
percent of all known test errors, whereby 68.7 of its test error
alarms were valid. Moreover, 36 percent of all permanent test
system faults, affecting more than one wafer test in a row,
have been detected by TED at an early stage. A consequent
reaction on the test error messages could have saved thereby
38 percent of the related necessary re-tests.

4) Evaluation methods: Compared to the practical simula-
tion of product A, the corresponding cross validation results
overestimated the f-measure about seven percent. This residual
increases to ten percent, if the cross validation is compared to
the averaged practical results of the three products, assuming
that the simulation results for product A are a good estimation
of its potential practical results. The overestimation is thereby
equally distributed between precision and recall, whereas
recall has a slight predominance. These results confirm the
assumptions made in section IV-B and therefore the additional
use of the simulation method to estimate the practical perfor-
mance.

V. CONCLUSION

In this paper, we presented a completely new approach to
online test error detection based on machine learning methods.
As this problem has not yet been covered by the machine
learning community, we defined and motivated basic terms,
analysed their relationships and illustrated basic issues, such
as the unfavourable ratio of the test and product variance. Fur-
thermore, we pointed out important domain properties, which
have to be handled to gain an optimal detection performance
with machine learning methods.

To provide empirical evidence for our approach, we studied
three established classifiers and ensemble methods. Because
of our preferences for maximal precision, stable performance
regarding different products and human readability, we have
chosen the simple majority vote of a decision tree, a support
vector machine and a Bayesian network as best combination.
Nevertheless, alternative preferences can be satisfied by the
other studied models, such as a significantly higher recall by
stacking.

We implemented TED, a completely autonomous test error
detection system, to prove the practical applicability of our
approach. TED independently derives training examples based
on the automated labelling procedure, which requires no ad-
ditional test resources, but utilizes existing test redundancies.
Its application proved at least on of the two objectives, as 36
percent of all permanent test system faults have been detected
at an early stage.
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Future studies have to focus on the described domain
properties, for instance, determining an optimal model context
or studying and adjusting existing approaches for concept
drift. Furthermore, correlated samples are mostly ignored in
the machine learning community. Nevertheless, appropriate
algorithms as well as suitable evaluation methods have to
be developed to improve and rate the test error classification
ability. Besides, a reliable fault diagnosis is one of our next
main goals to provide a more targeted reaction on test system
faults.

While the studied application domain in this paper has
been semiconductor test, our approach to online test error
detection can in principle be transferred to each complex test
scenario in high volume productions, such as automotive test.
As primary precondition for its application, the target domain
has to have regularly done re-tests to provide automatically
derived training examples. Furthermore, we have to define an
appropriate test error criterion and find suitable classification
features. Finally, the presented case study in semiconductor
test has shown the potential of our approach to improve
the efficiency of increasingly complex test procedures with
reasonable effort.
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