
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

493

Abstract—Steganography is the process of hiding one file inside

another such that others can neither identify the meaning of the
embedded object, nor even recognize its existence. Current trends
favor using digital image files as the cover file to hide another digital
file that contains the secret message or information. One of the most
common methods of implementation is Least Significant Bit
Insertion, in which the least significant bit of every byte is altered to
form the bit-string representing the embedded file. Altering the LSB
will only cause minor changes in color, and thus is usually not
noticeable to the human eye. While this technique works well for
24-bit color image files, steganography has not been as successful
when using an 8-bit color image file, due to limitations in color
variations and the use of a colormap. This paper presents the results
of research investigating the combination of image compression and
steganography. The technique developed starts with a 24-bit color
bitmap file, then compresses the file by organizing and optimizing an
8-bit colormap. After the process of compression, a text message is
hidden in the final, compressed image. Results indicate that the final
technique has potential of being useful in the steganographic world.

Keywords—Compression, Colormap, Encryption, Steganography
and LSB Insertion.

I. INTRODUCTION
TEGANOGRAPHY is an ancient technology that has
applications even in today’s modern society. A Greek

word meaning “covered writing,” steganography has taken
many forms since its origin in ancient Greece. During the war
between Sparta and Xerxes, Dermeratus wanted to warn
Sparta of Xerxes’ pending invasion. To do this, he scraped
the wax off one of the wooden tablets they used to send
messages and carved a message on the underlying wood.
Covering it with wax again, the tablet appeared to be unused
and thereby slipped past the sentries’ inspection. However,
this would not be the last time steganography would be used
in times of war.

In World War II, the Germans utilized this technology.
Unlike the Greeks, these messages were not physically
hidden; rather they used a method termed “null ciphering.”
Null ciphering is a process of encoding a message in plain

Mamta Juneja is working as Assistant Professor in Deptt. of Computer

Science & Engg. Rayat & Bahra Institute of Engineering & Bio-Technology,
Sahauran, Distt. Mohali (Punjab)-140104 India

Parvinder S. Sandhu is Professor with Computer Science &
Engineering Department, Rayat & Bahra Institute of Engineering & Bio-
Technology, Sahauran, Distt. Mohali (Punjab)-140104 India.

Ekta Walia is working with Department of Computer Science & Engg.,
Punjabi University, Patiala (Punjab), India.

sight. For example, the second letter of each word in an
innocent message could be extracted to reveal a hidden
message.

Although its roots lay in ancient Greece, steganography has
continually been used with great success throughout history.
Today steganography is being incorporated into digital
technology. The techniques have been used to create the
watermarks that are in our nation’s currency, as well as
encode music information in the ever-popular mp3 music file.
Copyrights can be included in files, and fingerprints can be
used to identify the people who break copyright agreements
[5], [6], [8].However, this technology is not always used for
good intentions; terrorists and criminals can also use it to
convey information. According to various officials and
experts, terrorist groups are “hiding maps and photographs of
terrorist targets and posting instructions for terrorist activities
on sports chat rooms, pornographic bulletin boards, and other
Web sites”[1].

This aspect of steganography is what sparked the research
into this vast field[3] and [4]. Education and understanding
are the first steps toward security. Thus, it is important to
study steganography in order to allow innocent messages to be
placed in digital media as well as intercept abuse of this
technology[7].

II. LEAST SIGNIFICANT BIT INSERTION
One of the most common techniques used in steganography

today is called least significant bit (LSB) insertion. This
method is exactly what it sounds like; the least significant bits
of the cover-image are altered so that they form the embedded
information. The following example shows how the letter A
can be hidden in the first eight bytes of three pixels in a 24-bit
image.

Pixels: (00100111 11101001 11001000)

(00100111 11001000 11101001)
(11001000 00100111 11101001)

A: 01000001

Result: (00100110 11101001 11001000)
(00100110 11001000 11101000)
(11001000 00100111 11101001)

The three underlined bits are the only three bits that were

actually altered. LSB insertion requires on average that only

Application of LSB Based Steganographic
Technique for 8-bit Color Images

Mamta Juneja, Parvinder S. Sandhu, and Ekta Walia

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

494

half the bits in an image be changed. Since the 8-bit letter A
only requires eight bytes to hide it in, the ninth byte of the
three pixels can be used to begin hiding the next character of
the hidden message.

A slight variation of this technique allows for embedding
the message in two or more of the least significant bits per
byte. This increases the hidden information capacity of the
cover-object, but the cover-object is degraded more, and
therefore it is more detectable. Other variations on this
technique include ensuring that statistical changes in the
image do not occur. Some intelligent software also checks for
areas that are made up of one solid color. Changes in these
pixels are then avoided because slight changes would cause
noticeable variations in the area[9] and [10.

While LSB insertion is easy to implement, it is also easily
attacked. Slight modifications in the color palette and simple
image manipulations will destroy the entire hidden message.
Some examples of these simple image manipulations include
image resizing and cropping[11] and [12].

III. PROPOSED TECHNIQUE
After reviewing the current products on the market for

steganography, it was determined that there was not a
practical implementation for 8-bit images. Although network
speed is increasing, and bandwidth problems are decreasing,
file size is still of utmost importance and smaller file sizes are
optimal in network communication. Thus, the current
steganographic use of 24-bit images leads to slower
communication and development of an 8-bit image format
would be beneficial.

The aim of this research is to create a practical
steganographic implementation for 8-bit images. A 24-bit
bitmap image would be converted to an 8-bit bitmap image
while simultaneously encoding the desired hidden
information. An algorithm would be created to select
representative colors out of the 24-bit image to create the
palette for the 8-bit image. This palette would then be
optimized to an 8-bit colormap that could be applied with
minimal changes to the quality of the original image.

This process of compressing the image from a 24-bit bitmap
to an 8-bit bitmap resulted in minor variations in the image,
which are barely noticeable to the human eye. However, these
slight variations aid in hiding the data. Since there would not
be an original 8-bit image to compare with the stego-image, it
would be impossible to discern that the slight variations
caused by hiding the data are different from the slight
variations caused by compression.

A practical steganographic implementation for 8-bit images
enabled smaller file sizes to be utilized in steganographic
communications. While also limiting the size of the hidden
file, this implementation addressed issues that have been
passed by in other applications, and provided a more compact
vehicle for those secret communications that do not require a
large cover-file.

IV. CREATING THE COLORMAP
The colormap in an 8-bit color image has a maximum of

256, 24-bit colors. However, in order to minimize the noise
added when the least significant bits are changed, a starting
colormap of only 240 colors is created. Sixteen additional
colors will be added to the colormap by the time the final
picture is written.

In order to select the 240 original colors, the image is
divided into a grid of fifteen quadrants by sixteen quadrants,
as seen in Fig. 1. One color is chosen from each of these
quadrants by randomly selecting a set of X and Y coordinates
within each quadrant. Calculations are then made to
determine the index of the pixel in the array of RGBQUADS
that represent the image data. (An RGBQUAD is a structure
containing four bytes, one each for the red, green, and blue
intensity and a reserved byte.)

Fig. 1 Image Overlaid with 15 X 16 grid

Each time a color is selected from a quadrant, it is

compared to every other color in the colormap, and the
minimum error between any two colors is calculated. If this
error is lower than a certain error level (currently set at 20),
then the new color is discarded and another color is selected
from the image. After five attempts to find a color from a
certain quadrant that differs enough from all the other colors
in the colormap, the selected color is added to the colormap
and the program moves to the next quadrant.

V. OPTIMIZING THE COLORMAP
The initial colormap contains 240 colors that were picked

out of the original image. These colors were chosen from the
entire image but that does not guarantee that these colors are
the most representative of the colors that exist in the image.
Therefore, the colormap must then be optimized to provide the
best 240 colors for the colors in this particular image.

The optimization algorithm uses a Linde-Buzo-Gray
methodology [2]. A pixel is chosen from the original 24-bit
image and its RGB values are compared to the RGB values of
every color in the colormap. For each comparison an error
level is calculated using the mean absolute error of the red,
green, and blue component of the color. The colormap color

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

495

that produces the smallest amount of error is the colormap
color that is closest to the pixel’s RGB values. The RGB
values of the pixel are then added to the RGB values of the
colormap color. A counter is implemented to keep track of
how many pixels are assigned to each colormap color and is
incremented each time a match is found. Approximately 25%
of the pixels in the original image are run through this process.
Once the algorithm has gone through the whole image, the
RGB values of each colormap container are averaged by
dividing the red, green, and blue values by the counter for that
particular container. This process produces a colormap with
slightly new, “better” colors in it. The process is repeated
until the new colormap is considered to be optimized. To
determine when the colormap is optimized, the error levels are
recorded during each run and when a certain error level is
attained the algorithm is finished.

VI. SORTING THE COLORMAP
Each pixel in an 8-bit color image is an 8-bit pointer to a

24-bit color in the colormap. Looking ahead to the LSB
insertion, a pixel pointing to a red color could suddenly point
to a yellow color by a simple flip of the least significant bit.
In order to reduce dramatic noise such as that, the colormap
was sorted so that similar colors are next to each other before
the pixels are assigned to colormap colors. The sorting
algorithm works as follows.

Beginning with the first color in the colormap array, the
pixel that is the closest in color to the starting pixel is found
using the mean absolute error measure. If the best match to a
color results in an error level greater than 100 (meaning that
there really was not a very good match to the color), a new
color is created in the first open slot (using the sixteen extra
spaces in the colormap) and this new color is used as the pair.
The best-matched color is then switched with the color
immediately following the starting color. The same procedure
is repeated with the next color that has not been matched.
Once the original 240 colors have been matched, additional
colors are created to fill any of the extra sixteen positions left
in the original colormap.

VII. ASSIGNING PIXELS
After sorting the colormap, the 8-bit image is almost ready

to be created. An 8-bit bitmap contains a colormap of 256
colors and contains an assignment of each pixel to a color in
the colormap. To assign the pixels to a colormap color, the
original 24-bit image pixels are used. A pixel is chosen from
the original 24-bit image and its RGB values are compared to
the RGB values of every color in the colormap. For each
comparison an error level is calculated using the mean
absolute error of the red, green, and blue color components.
The colormap color that produces the smallest amount of error
is the colormap color that gets assigned to this pixel.

VIII. ENCODING THE DATA
The image is now ready to have data embedded into it. The

encode function takes three parameters and two steps in order
to complete. The data string of text, picture data, and binary
data string are the three parameters for the first step in
encoding the text into the image. The first step in the
encoding function is to convert the ASCII text into its binary
equivalent. In order to do this, each character of the text
message is converted to its ordinal number (example: ‘a’ =
97). The ordinal number is then converted to binary using the
following method called the division-remainder routine. An
ordinal number is divided by two using the mod() function.
This function returns either a one or a zero, which is then
placed in a remainder array. This is continued until the
dividend is zero. The ones and zeros in the remainder array is
the binary equivalent of the ASCII ordinal number. Then,
once all characters have been converted in this fashion, the
binary data is embedded in the image by sequentially altering
the least significant bit of the image data as necessary.

IX. CONCLUSION
This paper describes a technique to successfully embed data

in an 8-bit color image. Additional features that could be
added to this project include support for file types other than
bitmap, and implementation of other steganographic methods.
However, this research work and software package provide a
good starting point for anyone interested in learning about
steganography.

REFERENCES
[1] B.Schneier, “Terrorists and Steganography”, 24 Sep. 2001, available:

http://www.zdnet.com/zdnn/stories/comment/0,5859,2814256,00.html.
[2] Y. Linde, A. Buzo, and R. M. Gray, “An Algorithm for Vector Quantizer

Design,” IEEE Transactions on Communications, pp. 84-95, January
1989.

[3] Andersen, R.J., Petitcolas, F.A.P., On the limits of steganography. IEEE
Journal of Selected Areas in Communications, Special Issue on
Copyright and Privacy Protection 16 No.4 (1998) 474481.

[4] Johnson, Neil F. and Jajodia, Sushil. “Steganography: Seeing the
Unseen.” IEEE Computer, February 1998, pp.26 34.

[5] William Stallings; Cryptography and Network Security: Principals and
Practice, Prentice Hall international, Inc.; 2002.[2]

[6] Eric Cole ,"Hiding in Plain Sight: Steganography and the Art of Covert
Communication"

[7] Gregory Kipper,"Investigator's Guide to Steganography "
[8] Stefan Katzenbeisser and Fabien, A.P. Petitcolas ," Information Hiding

Techniques for Steganography and Digital Watermarking "
[9] Hiding secrets in computer files: steganography is the new invisible ink,

as codes stow away on images-An article from: The Futurist by Patrick
Tucker

[10] Ismail Avcıbas¸, Member, IEEE, Nasir Memon,Member, IEEE, and
Bülent Sankur, Member, "Steganalysis Using Image Quality Metrics,"
IEEE Transactions on Image Processing, Vol 12, No. 2,February 2003..

[11] Niels Provos and Peter Honeyman, University of Michigan, "Hide and
Seek: An Introduction to Steganography" IEEE Computer Society IEEE
Security &Privacy.

[12] R. Chandramouli and Nasir Memon, "Analysis of LSB Based Image
Steganography Techniques", IEEE 2001.

