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Abstract—Although water only takes a little percentage in the 

total mass of soil, it indeed plays an important role to the strength of 
structure. Moisture transfer can be carried out by many different 
mechanisms which may involve heat and mass transfer, 
thermodynamic phase change, and the interplay of various forces such 
as viscous, buoyancy, and capillary forces. The continuum models are 
not well suited for describing those phenomena in which the 
connectivity of the pore space or the fracture network, or that of a fluid 
phase, plays a major role. However, Lattice Boltzmann methods 
(LBMs) are especially well suited to simulate flows around complex 
geometries. Lattice Boltzmann methods were initially invented for 
solving fluid flows. Recently, fluid with multicomponent and phase 
change is also included in the equations. By comparing the numerical 
result with experimental result, the Lattice Boltzmann methods with 
phase change will be optimized. 
 

Keywords—Frozen soil, Lattice Boltzmann method, Phase change, 
Test rig. 

I. INTRODUCTION 
OISTURE control in pavement bases, subgrades and 
roadbeds is acknowledged as a basic requisite to ensure a 

lasting road performance. Although water only takes a little 
percentage in the total mass of soil, it indeed plays an important 
role to the strength of structure. Many engineering hazards, 
such as slope failures, frost heaving, road boiling, pavement 
cracking, etc., are closely related to the relocation of water in 
bases, subgrades and roadbeds. Moisture transfer can be carried 
out by many different mechanisms which may involve heat and 
mass transfer, thermodynamic phase change, and the interplay 
of various forces such as viscous, buoyancy, and capillary 
forces. Therefore, it is important to understand the mechanisms 
of heat and moisture transfer in unsaturated soils. 

At present, research on heat and moisture transfer in 
unsaturated soils are mainly based on two models, continuum 
model and discrete model. The continuum model has been 
widely used due to its convenience and familiarity to the 
researchers. Up till now, most of the research works are based 
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on continuum model. However, they are not well suited for 
describing those phenomena in which the connectivity of the 
pore space or the fracture network, or that of a fluid phase, 
plays a major role. Continuum model also breaks down if there 
are correlations in the system with an extent that is comparable 
with the linear size of the porous medium. In order to precisely 
describe heat and moisture transfer process in unsaturated soils, 
one must deal with the complex pore structure of the medium 
and how it affects the distribution, flow, displacement of one or 
more fluids, or dispersion of one fluid in another. Other than 
continuum model, discrete model is mostly based on a network 
representation of porous media and fracture networks. Once the 
mapping is complete, one can study a given phenomenon in 
porous media in great detail. 

Lattice Boltzmann methods (LBMs) are a class of 
mesoscopic particle based approaches to simulate fluid flows. 
They are becoming a serious alternative to traditional methods 
for computational fluid dynamics [1]-[4]. LBMs are especially 
well suited to simulate flows around complex geometries [11], 
and they are straightforwardly implemented on parallel 
machines [12]. Historically, the lattice Boltzmann approach 
developed from lattice gases [5][6] although it can also be 
derived directly from the simplified Boltzmann BGK equation. 
In lattice gases [5][7][8], particles live on the nodes of a 
discrete lattice. The particles jump from one lattice node to the 
next, according to their (discrete) velocity. This is called the 
propagation phase. Then, the particles collide and get a new 
velocity. This is the collision phase. Hence the simulation 
proceeds in an alternation between particle propagations and 
collisions. 

II.   HEAT AND MOISTURE TRANSFER IN FROZEN SOIL 
Frost heaving of soil is caused by crystallization of ice within 

the larger soil voids and usually a subsequent extension of this 
ice to form continuous ice lenses, layers, veins, or other ice 
masses. Frost heave results from the formation of discrete ice 
lenses in the soil. As depicted in Figure 1, an ice lens grows and 
thickens in the direction of heat transfer until the water supply 
is depleted or until freezing conditions at the freezing interface 
no longer support further crystallization. As the ice lens grows, 
the overlying soil and pavement will “heave” up potentially 
resulting in a rough, cracked pavement. 

Frost heave occurs primarily in soils containing fine particles 
(often termed “frost susceptible” soils), while clean sands and 
gravels (small amounts of fine particles) are non-frost 
susceptible (NFS). Thus, the degree of frost susceptibility is 
mainly a function of the percentage of fine particles within the 
soil. 
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