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Abstract—Development of a method to estimate gene functions is
an important task in bioinformatics. One of the approaches for the
annotation is the identification of the metabolic pathway that genes are
involved in. Since gene expression data reflect various intracellular
phenomena, those data are considered to be related with genes’
functions. However, it has been difficult to estimate the gene function
with high accuracy. It is considered that the low accuracy of the
estimation is caused by the difficulty of accurately measuring a gene
expression. Even though they are measured under the same condition,
the gene expressions will vary usually. In this study, we proposed a
feature extraction method focusing on the variability of gene
expressions to estimate the genes' metabolic pathway accurately. First,
we estimated the distribution of each gene expression from replicate
data. Next, we calculated the similarity between all gene pairs by KL
divergence, which is a method for calculating the similarity between
distributions. Finally, we utilized the similarity vectors as feature
vectors and trained the multiclass SVM for identifying the genes'
metabolic pathway. To evaluate our developed method, we applied the
method to budding yeast and trained the multiclass SVM for
identifying the seven metabolic pathways. As a result, the accuracy
that calculated by our developed method was higher than the one that
calculated from the raw gene expression data. Thus, our developed
method combined with KL divergence is useful for identifying the
genes' metabolic pathway.

Keywords—Metabolic ~ pathways, gene expression data,
microarray, Kullback-Leibler divergence, KL divergence, support
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I. INTRODUCTION

OR understanding life system, it is important to identify the

genes that are involved in metabolic pathways. Because
gene expression data reflect various intracellular phenomena,
gene expression data are useful for revealing the genes that are
involved in metabolic pathways.

The Pearson product-moment correlation coefficient has
been utilized to gene expression data for revealing the relevant
genes [1]-[3]. The method is based on the idea that
co-expression genes have similar function. However, the
Pearson product-moment correlation coefficient can express
only linear relationship between genes. Thus, we cannot utilize
the method to infer the relevant genes that have non-linear
relationship with other relevant genes.

Support vector machines (SVMs) [4], [5] are useful to treat
this problem. SVMs are a supervised machine learning method
for classification. SVMs can treat non-linear relationships
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between genes by the kernel trick. Brown et al. [6] utilized
SVMs with gene expression data to recognize six functional
classes of genes: tricarboxylic acid (TCA) cycle, respiration,
cytoplasmic  ribosomes, proteasome, histones, and
helix-turn-helix proteins. They compared the classification
performances of the SVMs with those of four machine learning
algorithms (Parzen windows, Fisher’s linear discriminant,
C4.5, and MOC1), and showed that the SVMs achieved the best
classification performance among them.

Brown et al. [6] applied raw gene expression data to SVMs.
However, typical gene expression data includes the replicates
for estimation of the variability associated with gene
expressions. Thus, it is considered that gene expression data
have to be applied to SVMs with the method reflecting the
variability associated with gene expressions.

In this report, we propose a method based on the SVM
approach, for identifying the genes’ metabolic pathways from
the gene expression data. To reflect the variability of gene
expressions, we calculated the similarities between genes by
KL divergence, and utilized the similarities as the feature
vectors of SVMs. Then, we applied our developed method to
the gene expression data of Saccharomyces cerevisiae against
seven metabolic pathways defined by KEGG, and evaluated
their classification performances.

II. METHODS

To estimate the genes' metabolic pathway accurately by
reflecting the variability of gene expressions, first, we
estimated the distribution of each gene expression from
replicate data. Next, we calculated the similarity between all
gene pairs by KL divergence, which is a method for calculating
the similarity between distributions. Finally, we utilized the
similarity vectors as feature vectors and trained the multiclass
SVM for identifying the genes' metabolic pathway.

A. Estimation of Distribution of Gene Expression

To reflect the variability of gene expressions, we estimated
the distribution of the gene profiles. We assumed that
1. The distribution of each gene profile follows multivariate

normal distribution.
2. Experiments are statistically independent.

Because of the independence of experiments, the covariance
matrix of the multivariate normal distribution can be written by
only the variance of each experiment. The mean and the
variance, which are the parameters of the multivariate normal
distribution, were estimated by calculating the mean and the
unbiased variance from the replicates of each experiment.
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B. Kullback-Leibker Divergence (KL divergence)

The KL divergence [7] is a measure of the difference
between two probability distributions. To calculate the
similarities between genes reflecting the variability of gene
expressions, we utilized the KL divergence.

For genes A and B, KL divergence is defined to be

[e9]
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where X is a gene profile, and p, and pg are the probability
density functions of each gene’s profile.

We calculated the similarities between all gene pairs and
created the similarity matrix, whose rows mean gene A and
columns mean gene B. Then, we utilized the similarity vectors,
which are the rows of the similarity matrix, as the feature
vectors of the SVM classifiers.

C.Support Vector Machines (SVM)

To infer whether a gene is involved in a certain metabolic
pathway, we trained the SVM classifiers from the similarity
vectors, where the similarity vectors were mapped to a higher
dimension space by the kernel trick. We define the positive
genes as the genes that are involved in the certain pathway, and
the negative genes as the genes that are not involved in a certain
pathway. Given a similarity vector X of a certain gene, the
SVM method constructs the model as follows:

{thb(x) +b >0, The gene is positive. @
wT¢p(x) + b <0, The gene is negative.

where w is the vector of coefficients, b is a bias parameter and
¢(x) denotes a feature-space transformation.

Let us suppose that we have a training data set, which
consists of N similarity vectors X; ,..., Xy with the
corresponding target values tq, ..., ty, where t, is +1 when
the gene n is positive and t, is —1 when the gene n is
negative. The training algorithm of the soft margin SVMs [4]
solves the optimization problem

N
1
arg min{=||w]|? + C Z &n 3)
wib 2 n=0
subject to
taWTp(x) +b) = 1—¢,, &, >0, n=1,..,N. 4)

where C is a constant that controls the error penalties.

The optimization problem (2) can be expressed only in terms
of a kernel function k(X X,) = ¢X,) ¢(X,,) . Thus, we
implicitly mapped the similarity vectors to a higher dimension
space by the kernel function.

We utilized the radial basis function (RBF) kernel for SVMs.
The RBF kernel is defined as

k(X Xp) = exp(=y[xm — XalI*), ¥ > 0. (&)

where X, and x,, are the similarity vectors.

To solve the problem of multiclass classification by SVM,
we utilized a one versus one classifier. One versus one classifier
constructs one classifier per pair of pathways. At prediction
time, the pathway that received the most votes is selected.

III. EXPERIMENTAL DESIGN

To evaluate our developed method, we applied the method to
Saccharomyces cerevisiae and trained the multiclass SVM for
identifying the seven metabolic pathways.

A. Gene expression data

We compiled the profiles of 4,783 Saccharomyces cerevisiae
genes, which were measured in 4,214 experiments by
Affymetrix arrays. They were downloaded as raw CEL files
from the Gene Expression Omnibus (GEO) database [8]. The
raw CEL files were processed by MASS.0 [9], [10]. Each
experiment was normalized with mean 0 and variance 1.

B. Metabolic Pathways

We utilized seven metabolic pathways which are classified at
the KEGG PATHWAY database [11]. Both of “Amino acid
metabolism” and “Metabolism of other amino acids” are the
pathways that are related amino acids. Thus, we merged the two
pathways as one “Amino acid metabolisms”. Table I shows the
list of metabolic pathways and the number of genes that are
involved in each metabolic pathway.

TABLEI
LIST OF METABOLIC PATHWAYS AND THE NUMBER OF GENES INVOLVED IN
EACH PATHWAY
Metabolic pathway # of genes
Carbohydrate metabolism (Crb.) 213
Energy metabolism (Enr.) 106
Lipid metabolism (Lpd.) 117
Nucleotide metabolism (Ncl.) 116
Amino acid metabolism (Amn.) 188
Glycan biosynthesis and metabolism (Gly.) 76
Metabolism of cofactors and vitamins (Vtm.) 110

C.Evaluation Measure

To evaluate the classification performances of the binary
classifiers, which compose the one versus one classifiers for
identification of the genes' metabolic pathway, we utilized
accuracy. Similarly, to evaluate the classification performances
of the multiclass classifier, we utilized recall. Accuracy and
recall are defined as

(relevant genes) N (retrieved genes)

accuracy = il genes) : (6)
(relevant genes) N (retrieved genes)
recall = : @)
(relevant genes)

where the relevant genes are the genes that are involved in a
certain pathway, and the retrieved genes are the genes that are
identified as the genes that involved in the pathway.
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Fig. 1 Accuracies of the binary classifiers that compose the one
versus one classifier for identification of the genes’ metabolic
pathway (a) the accuracies with the raw gene expression data (b) the
accuracies with the similarities that are calculated by KL divergence
(our method). The vertical axis means the mean of accuracies of
10-fold cross validation. The horizontal axis means the pair of
metabolic pathway that each binary classifier identifies. The error
bar means the range of (mean) + (standard deviation)

IV. RESULTS

A. Classification Performances of Binary Classifiers

In Fig. 1, we show the accuracies of the binary classifiers,
which compose the one versus one classifiers for identification
of the genes' metabolic pathway. Fig. 1 (a) shows the accuracies
with the raw gene expression data, and Fig 1 (b) shows the
accuracies with the similarities that are calculated by KL
divergence. When we trained SVMs using the raw gene
expression data, the accuracies of the SVMs are around 70%.
The best classifier in (a) is the pair of “Carbohydrate
metabolism” and “Glycan biosynthesis and metabolism”,
whose accuracy is 86.61%. The worst classifier in (a) is the pair
of “Carbohydrate metabolism” and “Energy metabolism”,
whose accuracy is 64.20%.

On the other hand, when we trained SVMs using the
similarities that are calculated by KL divergence, the accuracies
of the SVMs are around 90%, except “Energy metabolism”
versus “Lipid metabolism” and “Nucleotide metabolism”
versus “Metabolism of cofactors and vitamins”. The best
classifier in (b) is the pair of “Carbohydrate metabolism” and
“Glycan biosynthesis and metabolism”, whose accuracy is
95.98%. The worst classifier in (b) is the pair of “Nucleotide
metabolism” and “Metabolism of cofactors and vitamins”,
whose accuracy is 61.32%.

B. Classification Performances of Multiclass Classifiers

Fig. 2 shows the comparison of the recall of the one versus
one classifier for identification of the genes’ metabolic
pathway. In the entire metabolic pathway except “Energy
metabolism”, the recall of each metabolic pathway was
improved by using KL divergence. The most improved
metabolic pathway is “Amino acid metabolism”, whose
difference of recall is 50.30%. The worst improved metabolic
pathway is “Nucleotide metabolism”, whose difference of
recall is 3.61%. The recall of “Energy metabolism” was not
improved; there is no difference between the recall with the raw
gene expression data and that with the similarities that are
calculated by KL divergence.

The recalls of “Amino acid metabolism”, “Carbohydrate
metabolism” and “Glycan biosynthesis and metabolism” are
higher than 80%. On the other hand, the recall of “Energy
metabolism”, “Lipid metabolism”, “Metabolism of cofactors
and vitamins” and “Nucleotide metabolism” are lower than
80%. Thus, the recalls of the four metabolic pathways are low
compared to that of the others.

C.Breakdown of Estimated Genes’ Metabolic Pathways

Fig. 3 illustrates the breakdown of the metabolic pathways
when we estimated the relevant metabolic pathways of the
relevant genes of “Energy metabolism”. Fig. 3 (a) shows the
breakdown with the raw gene expression data, and Fig. 3 (b)
shows the breakdown with the similarities that are calculated by
KL divergence. The ratio, which “Energy metabolism” genes
are identified as “Energy metabolism” genes, is same between
the raw gene expression data and the similarities calculated by
KL divergence.
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Fig. 2 Comparison of the recall of the one versus one classifier for
identification of the genes’ metabolic pathway. The blue bars are
the recalls with the raw gene expression data. The red bars are the
recalls with the similarities that are calculated by KL divergence

(our method). The vertical axis means the mean of recalls of 10-fold

cross validation. The horizontal axis means the metabolic pathway

that genes are involved in. The error bar means the range of
(mean) + (standard deviation)

On the other hand, the ratio that “Energy metabolism” genes
are identified as the other metabolism genes is different. When
we used the raw gene expression data, genes were identified as
various metabolic pathways. When we used the similarities
calculated by KL divergence, genes were basically identified as
“Lipid metabolism”.

V.DISCUSSION

Comparing Figs. 1 (a) and (b), the classification
performances of most metabolic pathway pairs were improved
by using KL divergence. On the average, the accuracies
increased about 14%. This result suggests that it is useful for
identifying genes’ metabolic pathway to reflect the variability
associated with gene expressions in the feature vectors of
SVMs by KL divergence.

The only two accuracies, “Energy metabolism” versus
“Lipid metabolism” and ‘“Nucleotide metabolism” versus
“Metabolism of cofactors and vitamins”, were not improved by
using KL divergence. The accuracies of these two pairs were
low by both KL divergence and raw gene expression data. The
Reductive citrate cycle and Phosphate acetyltransferase-acetate
kinase pathway in “Energy metabolism” are known to be
related with the main flow of Fatty acid biosynthesis in “Lipid
metabolism”. Those two different pathways were connected by
a famous core component “acetyl-CoaA”. Furthermore,
Uridine monophosphate  biosynthesis in  “Nucleotide
metabolism” shares the one of main flow with Pantothenate
biosynthesis in “Metabolism of cofactors and vitamins”. Thus,
we considered that it is difficult to identify this two pairs from
gene expression data. This two pairs need the classifiers based
on the different ways from gene expression data.
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Fig. 3 Breakdown of the estimated “Energy metabolism” genes’
metabolic pathways (a) the breakdown with the raw gene
expression data (b) the breakdown with the similarities that are
calculated by KL divergence. “Undecidable” means the ratio of the
genes that cannot be identified

As shown in Fig. 2, most classification performances of the
one versus one classifier for identification of the genes’
metabolic pathway were improved by using KL divergence.
Especially, the recalls of “Amino acid metabolism” and
“Carbohydrate metabolism” increased about two fold or so. By
using the raw gene expression data, the recalls of “Amino acid
metabolism” and “Carbohydrate metabolism” were less than
40%. Utilizing KL divergence, the recalls of those two
metabolisms became around 90%. Combined KL divergence
with SVM is one of the most powerful methods to classify the
genes into their metabolic functions.

The lower recalls of some metabolic pathways were
considered to be occurred by low comparison with that of the
others. This is caused by the low accuracy pairs in Fig. 1 (b). As
shown in Fig. 3 (b) many genes of “Energy metabolism” were
classified exactly, but identified some genes were identified as
the “Lipid metabolism”. It is difficult to identify the similar or
shared metabolic pathways by our binary classifier. Thus, if we
obtain the two exact classifiers (“Energy metabolism” versus
“Lipid metabolism”, “Nucleotide metabolism” versus
“Metabolism of cofactors and vitamins™), we will achieve high
classification performances in “Energy metabolism”, “Lipid
metabolism”, “Metabolism of cofactors and vitamins” and
“Nucleotide metabolism”.

VL CONCLUSIONS

We have proposed a new method based on the SVM
approach, for identifying the genes’ metabolic pathway from
the gene expression data. To improve classification
performances of SVMs, we calculated the similarities between
genes by KL divergence, and utilized them as the feature
vectors of SVMs. By using KL divergence, one can reflect the
variability associated with gene expressions in the feature
vectors of SVMs. Then, we applied our method to the
Saccharomyces cerevisiae gene expression data against seven
metabolic  pathways, and evaluated its classification
performances. As a result, the classification performances
using our method were higher than that using the raw gene
expression data in most metabolic pathways. Thus, our method
is useful for identifying the metabolic pathway that genes are
involved in.
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