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Application of He’s amplitude frequency
formulation for a nonlinear oscillator with fractional

potential
Meng Hu and Lili Wang

Abstract—In this paper, He’s amplitude frequency formulation
is used to obtain a periodic solution for a nonlinear oscillator
with fractional potential. By calculation and computer simulations,
compared with the exact solution shows that the result obtained is of
high accuracy.
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I. INTRODUCTION

IN this paper, we shall consider the following nonlinear
oscillator with fractional potential

u′′ + au + bu2n+1 + cu
1

2n+1 = 0, u(0) = A, u′(0) = 0, (1)

where a, b, c are constants, and n ∈ N+.
If we take n = 1 in equation (1), then equation (1) reduced

to a class of nonlinear oscillator[1]

u′′ + au + bu3 + cu
1
3 = 0.

If we take a = 1, c = 0, n = 1 in equation (1), then equation
(1) reduced to the well-known Duffing equation

u′′ + u + bu3 = 0. (2)

In recent years, with the ever-increasing development of
nonlinear science, various kinds of analytical methods and
numerical methods have been used to handle the problem and
other nonlinear problems, such as the Exp-function method [2-
4], the variational iteration method [5,6], parameter-expansion
method[7], and the homotopy perturbation method [8-10], etc.
Hereby, we will apply He’s frequency amplitude formulation
[11,12] to solve the problem.

II. HE’S FREQUENCY AMPLITUDE FORMULATION

In order to use He’s amplitude frequency formulation, we
choose two trial functions u1(t) = A cos t and u2(t) =
A cos ωt, which are, respectively, the solutions of the following
linear equations:

u′′ + ω2
1u = 0, ω2

1 = 1,

u′′ + ω2
2u = 0, ω2

2 = ω2,
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where ω is assumed to be the frequency of the nonlinear
oscillator equation (1). Substituting u1(t) and u2(t) into
equation (1), we obtain, respectively, the following residuals

R1(t) = −A cos t + aA cos t + bA2n+1 cos2n+1 t

+cA
1

2n+1 cos
1

2n+1 t, (3)
R2(t) = −Aω2 cos ωt + aA cos ωt + bA2n+1 cos2n+1 ωt

+cA
1

2n+1 cos
1

2n+1 ωt. (4)

He’s amplitude frequency formulation reads[11,12]

ω2 =
ω2

1R2(t2) − ω2
2R1(t1)

R2(t2) − R1(t1)
, (5)

where t1 and t2 are location points. Generally, setting

t1 =
T1

12
, t2 =

T2

12
,

where T1 and T2 are periods of the trial functions u1(t) =
A cos t and u2(t) = A cos ωt, respectively, i.e. T1 = 2π and
T2 = 2π/ω.

From(3),(4),(5), by direct calculates, yields

ω2 = a + bA2n
(3
4
)n + cA− 2n

2n+1
(3
4
)− n

2n+1 ,

then

ω =
(
a + bA2n

(3
4
)n + cA− 2n

2n+1
(3
4
)− n

2n+1
) 1

2 . (6)

We, therefore, obtain the following periodic solution

u(t) = A cos
[(

a + bA2n
(3
4
)n + cA− 2n

2n+1
(3
4
)− n

2n+1
) 1

2 t
]
.

To illustrate the accuracy of the obtained results, we give
two examples as follows:

In case n = 1, a = b = 0, equation (1) becomes

u′′ + cu
1
3 = 0,

its frequency reads ω = c
1
2 A− 1

3
(

3
4

)− 1
6 = 1.0491c

1
2 A− 1

3 ,
its exact frequency[1] is ωex = 1.0705c

1
2 A− 1

3 . Therefore its
accuracy reaches 0.0204.

In case n = 1, a = c = 0, equation (1) becomes

u′′ + bu3 = 0,

its frequency reads ω = ( 3
4 )

1
2 Ab

1
2 = 0.866Ab

1
2 , its exact

frequency is ωex = 0.8472Ab
1
2 . Therefore its accuracy reaches

0.0222.
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III. NUMERICAL SIMULATIONS

In this section, we will present some numerical results at
different values.

Dashed line: exact solution, continuous line: approximate
solution.

As examples, Fig.1, Fig.2 and Fig.3 illustrate excellent
agreement of the obtained result with the exact one.

IV. CONCLUSIONS

In this work, the nonlinear equations are efficiently handled
by He’s frequency formulation. It has been proved to be a
powerful mathematical tool for searching exact solutions for
nonlinear equations without requirement of perturbation or
nonlinearities. The analytical approximation obtained by this
new method is valid for the whole solution domain with high
accuracy.
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Fig.1. In case n=1, comparison of exact solution of equation(1) with
approximate solution u = A cos ωt under different values of a, b, c
and A, where ω is defined by equation(6).
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Fig.2. In case n=3, comparison of exact solution of equation(1) with
approximate solution u = A cos ωt under different values of a, b, c
and A,where ω is defined by equation(6).
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Fig.3. Considering Duffing equation, comparison of exact solution of
equation(2) with approximate solution u = A cos ωt under different
values of b and A, where ω is defined by equation(6).


