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Abstract—In this paper, application of Sliding Mode Control 

(SMC) technique for an Active Magnetic Bearing (AMB) system 
with varying rotor speed is considered. The gyroscopic effect and 
mass imbalance inherited in the system is proportional to rotor speed 
in which this nonlinearity effect causes high system instability as the 
rotor speed increases. Transformation of the AMB dynamic model 
into regular system shows that these gyroscopic effect and imbalance 
lie in the mismatched part of the system. A H2-based sliding surface 
is designed which bound the mismatched parts. The solution of the 
surface parameter is obtained using Linear Matrix Inequality (LMI). 
The performance of the controller applied to the AMB model is 
demonstrated through simulation works under various system 
conditions.   
 

Keywords—Active Magnetic Bearing (AMB), Sliding Mode 
Control (SMC), Linear Matrix Inequality (LMI), mismatched 
uncertainty and imbalance.  
 

I. INTRODUCTION 
LIDING Mode Control (SMC) has received great 
attention in recent years because of its robustness against 

uncertainties present in system [1], [2] ,[3] and [4]. SMC is a 
nonlinear control technique that is applicable to a wide range 
of dynamic system including the linear, nonlinear, multi-
input/multi-output, discrete-time and large scale systems. 
There are many approaches have been reported and  
considered in the design process of the sliding-mode control 
law, such that the system is robust or even insensitive to 
parametric uncertainties and disturbance. In the practical 
application of SMC, the controller has also been successfully 
adapted in many forms and applied in numerous real-world 
applications such as  robot manipulator [5], active suspension 
system [6], magnetic suspension system and magnetic 
bearings [7][8]. 
 AMB system however is an advance mechatronic system in 
which it is open loop unstable and inherent high nonlinearity 
effect. Thus the system requires feedback gain such that the 
closed-loop system is stable and able to meet required system 
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performance. Although the system is complex in term of its 
structural and control design, the advantages it offers 
outweigh the design complexity. Thus stabilization of the 
system to meet various application needs has offered great 
challenges to control research group. 
 The main objective of this work is the application of the 
SMC technique to the AMB system. The design of SMC 
controller involves two crucial steps which are commonly 
referred to as the reaching phase and the sliding phase [1][2]. 
In this paper, the latter one which is the design of the sliding 
surface using H2 guaranteed cost surface based on work in [9] 
is of more emphasis. The work in [9] is the extension of the 
surface design reported in [4] and elaborated extensively in 
[2]. In [10], the application of the H2 designed surface based 
on [4] with a new SMC controller into AMB system is 
explored in which the result shows that the present of 
mismatched system uncertainties and disturbance may cause 
degradation of system performance. Thus, based on the 
surface design outlined in [9] and control law in [2], the 
performance of the AMB system with the present of the 
mismatched system uncertainty and disturbance is investigated 
through simulation work. The design steps as well as the 
necessary theoretical background are outlined in which based 
on the final result, it is shown that the proposed method gives 
an improved system performance. 
 The outline of this paper is as follows: In Section II, the 
model of the AMB system based on [8] is illustrated. Section 
III covers the detail design of sliding surface wherein the 
optimal parameter is obtained by solving an LMI optimization 
problem. Then, in Section IV, the performances on the AMB 
system under the designed controller are illustrated through 
simulation works under various system conditions. Finally, the 
conclusion in Section V summarizes the contribution of the 
work. 

II. MODELING OF AN ACTIVE MAGNETIC BEARING SYSTEM 

 In order to synthesize the proposed sliding surface with the 
controller, a vertical shaft AMB system model for the 
application of turbo molecular pump system is re-derived 
based on the work done in [8]. 

A. Mathematical Model 
The gyroscopic effect that causes the coupling between two 

axes of motions (pitch and yaw). Fig. 1 illustrates the five 
DOF vertical magnetic bearing in which the vertical axis (z-
axis) is assumed to be decoupled from the system and hence 
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Fig. 1 Vertical Active Magnetic Bearing System 
 
controlled separately. The top part of the rotor of the system in 
Fig. 1 is controlled actively by the magnetic bearing, labeled 
as AMB, in which the coil currents are the inputs. The bottom 
part of the rotor however is levitated to the center of the 
system by using two sets of permanent magnets labeled as 
PMB.  The rotation of rotor around the z-axis is supplied by 
external driving mechanism and considered as a time-varying 
parameter.  
 Fig. 2 illustrates the free-body diagram of the rotor which 
shows the total forces produced by the AMB and PMB of the 
system. Based on the principle of flight dynamics [11], the 
equations of motion of the rotor-magnetic bearing system is as 
follows: 
 

 
 

     )cos(2 tlmffxm unxxg bu
ωω++=  

     
bu xbxuzar fLfLJJ −+−= αωβ  

     )sin(2 tlmffym unyyg bu
ωω++=    

     
bu ybyuzar fLfLJJ +−= βωα   

 
The terms )cos(2 tlmun ωω and )sin(2 tlmun ωω  are the 
imbalances due the difference between rotor geometric center 
and mass center. These imbalances cause the whirling motion 
and the magnitude is proportional to the rotor rotational speed, 
ω. The gyroscopic effect is represented by the term αωzaJ−  
and βωzaJ , where it can be noticed that this will cause the 
coupling between the axes of motions proportional to the 
speed. The control forces produced by the AMB are given by 
the following equations: 
 

     xiuduugduxu IKKLxKf 222 ++= β  
     yiuduugduyu IKKLyKf 222 +−= α  

  

where xulxurxu fff −=  and yulyuryu fff −= are the net forces 
produced by the AMB on each x- and y-axis respectively (the 
same net force for bottom PMB as well). This is possible by 
having the AMB coil wound to produce differential current 
mode. For the PMB, the net forces produced are given by the 
following equations: 
 

            ββ bbgbbbgbxb LKxKLCxCf 2222 +−+−=  
            αα bbgbbbgbyb LKyKLCyCf 2222 −−−−=  
 

Equations (1), (2) and (3) can be integrated to produce the 
AMB model in the following form: 
 
       ),()()()()( tFtBUtXAtX ωω ++=  
 
where T

gggg yxyxX ],,,,,,,[ αβαβ=  are the states of the 

system, 88)( xA ℜ∈ω  is the system matrix, 28xB ℜ∈  is the input 
matrix, T

yx IItU ][)( =  the input currents. The nonzero 
elements of the matrices are shown in the Appendix A. The 
range of the rotor speed is given below: 
 

           rpmrpm 000,100 ≤≤ ω .                        (5) 

From the dynamic model (4), the uncertainties present in the 
system are in the system and disturbance matrix which are due 
to gyroscopic effect and mass imbalance. The parameters of 
the AMB system are given in Appendix C. 

III. H2-BASED SLIDING MODE CONTROL DESIGN 
 
 Consider a class of uncertain system 
 

         ),()()())(()( tEwtButxAAtx ωω ++Δ+=           (6) 
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where ntx ℜ∈)(  is the system states, mtu ℜ∈)(  is the control 
input and ω is any time-varying scalar function. A and B is the 
system and input matrices, respectively, and B is of full rank. 
ΔA(ω)  represents the uncertainty in the system matrix and 
matrix E is the disturbance matrix that map the disturbance 
w(ω,t) into the system. To complete the description of the 
uncertain dynamical system, the following assumptions are 
introduced and assumed to be valid. 
 
A1) The system uncertainty ΔA(ω) and the disturbance E are  
  mismatched such that: 
   
       )()()( ARERBR Δ+⊄  
  
A2) The linear model mismatch is supposed to belong to a   
  convex polytope in parameter space such that: 
 

  ∑
=

Δ=Δ
k

i
ii AA

1

α ,  ∑
=

=
k

i
i

1

1α , .,,10 kii ⋅⋅⋅∈∀≥α  

 
A3) The pair (A,B) is controllable. 
A4) All states are available. 
 
 The sliding surface is defined as: 
 
         σ = Cx(t) = 0            (7) 
 
where C is the design matrix that determines the desired 
performance of the (n-m) reduced-order closed-loop system.  
 
 Define an output variable as 
 
            z(t) = Lx(t)            (8) 
 
Due to the mismatched condition, the transfer function from 
the exogenous input vector w(t) to this output z(t) is given by 
 
         Z(s) = H(s)W(s)           (9) 
 
where Z(s) and W(s) are the Laplace transform of z(t) and w(t) 
respectively and H(s) is valid for t > τ. When the system in the 
sliding motion, the H2 norm of the transfer function (9) for the 
closed-loop system is defined as follows: 
 

    ∫
∞

∞−

= sss djHjHtrsH ωωω
π

)](*)([
2
1)( 2

2
    (10) 

 
From this, as highlighted in [9], the main objective is to find 
the optimal sliding surface Copt, such that the upper bound of 
the H2 norm (10) over all mismatched ΔA such that: 
 
 
   ),,(maxminarg ACC

ACopt ΔΩ=
Δ

   
2

)(),( sHAC ≥ΔΩ     (11) 

 

The minimization of the upper bound of ),( AC ΔΩ which can 
be found as the solution of the sliding surface as explained in 
the following section. 
 

A. Canonical Transformation 
The design of the sliding surface is carried by transforming 

the system dynamic into a regular form and this is in-line with 
the step outlined in [2][4]. The transformation matrix T is 
chosen such that 

           ⎥
⎦

⎤
⎢
⎣

⎡
=

2

0
B

TB , TTT = I           (12)  

where matrix mmB ×ℜ∈2 is nonsingular. Then applying this 
transformation to system (6), a new system representation is 
obtained as: 
 
              Txx =  
              TEwTBuxTAATx ++Δ+= −1)(  

              
xLTz

xCT
1

1 0
−

−

=

=  

 
Thus, the system states can be partitioned as follows: 
 

        ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

x
x

x , mnx −ℜ∈1 , mx ℜ∈2                   (14)  

 
Then, the matrices of the system can be partitioned to form the 
following new matrices: 
 

      ⎥
⎦

⎤
⎢
⎣

⎡
== −

2221

12111

AA
AA

TATA ,  

      ⎥
⎦

⎤
⎢
⎣

⎡

ΔΔ
ΔΔ

==Δ −

2221

12111

AA
AA

TATA , 

      ⎥
⎦

⎤
⎢
⎣

⎡
==

2

1

E
E

TEE ,   

   [ ]21
1 CCCTC == −  and [ ]21

1 LLLTL == −      (15) 
 
Following the same procedure in [2], the surface equation 
becomes 
 
         02211 =+ xCxC                (16) 
 
By knowing that 0)det( 2 ≠C , this will lead to  
 
         11

1
22 xCCx −−=                   (17) 

 
To simplify the derivation, the following terms are introduced 
which are: 
 
           1

1
2 CCF −Δ , 

(13) 
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         1111 AA Δ+ΔΦ , 

         1212 AA Δ+ΔΓ .         (18) 
 
From (15), (16) and these new terms, the new representation 
of the reduced-order closed-loop system is obtained as 
follows: 
 

wExxx 1211 +Γ+Φ=  
                   12 xFx −=  

          2211 xLxLz +=         (19) 
 
Thus, viewing this closed-loop system, it is obvious that the 
design of the sliding surface is equivalent to designing 
feedback gain, F, for the reduced-order system with 
uncertainties. Looking at the assumption A2), the matrices 

1111 AA Δ+ΔΦ  and 1212 AA Δ+ΔΓ  also belongs to a polytope-

type set with known vertices. The set can be defined as 
follows: 
 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≥=ΓΦ=ΓΦΔ℘ ∑ ∑
= =

k

i

k

i
iiiii

1 1

0,1,,, ααα       (20) 

 
The vertices of this polytope (20) corresponds to he vertices 
of the uncertain defined in A2) in obtained by using the 
transformation matrix T. 
 

B. H2 Guaranteed Cost Sliding Surface Design 
By following the design step outline in [9], an assumption 

on the matrix L in (8) is introduced in which the assumption 
will guarantee that the H2 cost function optimization for the 
sliding surface design is nonsingular. The assumption is as 
follows: 
              022 >LLT                (21)  
 
As discussed in the next section, although for AMB system 
that the freedom of choosing the matrix L is quite flexible, the 
velocities of the gap displacements are also required to fulfill 
this condition and thus to avoid singularity problem in finding 
the solution. In practical point of view, getting the velocities 
of the gap is expensive and may cause some constraints. In 
this work, however, only the theoretical aspect is concerned 
and as imposed by assumption A4) this requirement has not 
put any limitation in obtaining the final result.   
 Then, with this assumption (21), a new variable is 
introduced as follows: 
 
       2122

1
22 )()( xxLLLLte TT += −             (22) 

 
The reduced-order system (19) may be written in term of 1x  
and e as 
 
   wEexLLLLx TT

1112
1

221 ))(( +Γ+Γ−Φ= −  

   eLxLLLLLLz TT
2112

1
2221 ))(( +−= −           (23) 

Furthermore, the system can be simplified by defining the 
following terms: 
 
      12

1
22 )( LLLL TT −Γ−Φ=Φ  

      12
1

2221 )( LLLLLL TT −−=Λ         (24) 
 
Then, the transformed uncertainty polytope (20) can be recast 
as:  
 

℘∈ΓΦ⇔ℵ∈ΓΦ ),(),(  

   12
1

222 )( LLLLL TT
iii

−Γ−Φ=Φ ,  ki ,,1 ⋅⋅⋅=∀         (25) 
 
From (19) and (22), the transformed gain matrix is 
 

122
1

22 ))(()( xLLLLFte TT −+−=  
                 1xK=               (26) 
 
Consider now the set Ξ  of the symmetric positive-definite 
matrices X such that: 
 

{
}ℵ∈ΓΦ∀≤+Γ−Φ+Γ−Φ

>=ℜ∈Ξ −×−

),(,0)()(

;0|:

11

)()(

EEKXXK

XXX
T

Tmnmn

 

 
For an arbitrary but fixed pair of ℵ∈ΓΦ ),( , the H2 norm of 
system (23) is bounded by: 
 
     ),)()(()( 22

2

2
TKLXKLtrsH −Λ−Λ≤    Ξ∈∀X .     (28) 

 
Let a new matrix Ξ∈W  , then a new variable can be defined 
as 
        Z = KW,  1−=∴ ZWK           (29) 
 
Thus, the problem of minimization of the upper bound of the 
H2 norm (28) can be represented as 
 
      min )( 2

1
2

TTT LZZWLWtr −+ΛΛ  
s. t..:  
   .),(,011 ℵ∈ΓΦ∀≤+Γ−Φ+Γ−Φ TTTT EEZWZW    (30) 
 
Obviously, this problem can be expressed as LMI problem 
[12]. Defining the objective function in (30) as a new variable 
as follows: 
 
       TTT LZZWLWQ 2

1
2

−+ΛΛ≥              (31) 
 
Taking the Schur complement of (31), then, the problem can 
be represented as and LMI optimization problem: 
 

)(min
,,

2 Qtr
QZW

=Ω  

(27) 
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s. t. : 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⋅⋅⋅=∀
≤+Γ−Γ−Φ+Φ

>

≥⎥
⎦

⎤
⎢
⎣

⎡

ΛΛ−

.,,1
,0

0

0

11

2

2

ki
EEZZWW
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WQZL
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i

T
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T
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If the solution of (32) is feasible, then Theorem 1 in [9] hold 
and the sliding surface parameter that guarantees the existence 
of the optimal upper bound H2 norm can be obtained. With the 
values of W and Z determined, as stated in the theorem, the 
gain K in (29) can be obtained and lead to the optimal surface 
values as follows: 
 

   [ ]TCKLLLLCC TT
opt 212

1
222 ))(( −= −              (33) 

 
Notice that the matrix 2C does not have any influence in the 
reduced order system and can be chosen freely provided it is 
full rank and 2C = I is a convenient as stated in [2][4][9].  
 

C. Control Law  
The next phase in the design phase of sliding mode control 

is to propose a control law that can ensure the reachability 
condition is met. For this work, the control law in [2] is 
adapted as follows: 
 
    ))(()()()( 1 tCxsigntCAxCBtu ρ−−= −      (34) 
 
where ρ is any small positive constant to bound matched 
uncertainties. The proof of the reachability condition can be 
found in [2] and purposely not shown here. 
 

IV. SIMULATION ON AMB SYSTEM AND DISCUSSION 
The simulation work is performed by using MATLAB® and 

Simulink®. For solving the LMI problem (32), instead of 
using standard LMI Toolbox in Matlab, YALMIP/SeDuMi 
convex problem solver for semi-definite problem is used 
[13][14]. YALMIP/SeDuMi is among the newly developed 
convex problem solver which is proven to produce a less 
conservative solution and a higher convergence rate. The 
procedure of designing the sliding surface of the controller 
and its application on the AMB system is outlined as follows: 
 
Step 1: Choose the output matrix L. For this work two output 
matrix L are chosen as follows: 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

01001100
00010011

sL , 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

11000000
00110000
00001000
00000100
00000010
00000001

bL . 

 
The reason to choose two output matrices is to demonstrate 
how the performance of the controller is significantly affected 
by the structure of L. Specifically for this AMB system, the 
practically desired outputs can be obtained by linear 
combination of the system states in which this provides great 
freedom to choose the structure of matrix L. Thus, both of 
these matrices are valid for this system as long as the 
assumption that all the states are available is valid. 
 
Step 2:  Obtain the orthonormal transformation matrix using 
QR decomposition which is as follows:  
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0.98290.1844-000000
000.9829- 0.1844-0000

0.03400.181200000.98290
0.18120.966000000.1844-0

000.03400.1812-0000.9829-
000.1812-0.96600000.1844-
00001000
00000100

T

 
Note that the transformation matrix is not unique. As outlined 
previously the chosen T must fulfill the requirement (12). 
 
Step 3:  Transform the system into regular form and find the 
matrices 212111 ,,,,, ΦΦΓΓΦΦ  and Λ . 
 
After performing the transformation into reduced-order 
system, the set of matrices using each Ls and Lb are obtained. 
Due to page limitation, only the matrices obtained from Ls are 
included in this paper. The matrices that belong to Lb can be 
obtained in the same manner. The matrices for Ls are shown in 
Appendix B.  
 
Step 4:  Solve LMI set (32) for K and Copt from (33). By using 
the YALMIP/SeDuMi LMI solver, the calculated parameters 
are as follows: 
 

⎥
⎦

⎤
⎢
⎣

⎡
=

0.12780.0251-0.65450.12280.0405-88.7157
0.0170-0.00320.1753-0.0329-0.00312.7145-

K  

 

⎥
⎦

⎤

⎢
⎣

⎡
=

0.0002 5.4224-
00

005.3830-94.1392-0.1302-0.6659
0 5.4236-0.0031-2.71455.4063-5.6019-

C
 

  

(32) 
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With this C matrix available, by using the control law (34), 
the complete closed-loop system can be simulated. The initial 
values of the states are set at T

gggg yxyx ],,,,,,,[ αβαβ = [8×10-6 

m, 0, 20×10-6 m, 0, 0, 0, 0, 0]T. The system is run at two rotor 
speeds which are 6000 rpm and 10000rpm. As highlighted in 
[8], the high resonant speed occurs at 6000 rpm in which the 
radius of the whirling motion of the rotor is the biggest. The 
value ρ = 0.8 is selected for all simulation work. As a 
comparison, the result obtained in [8] as shown in Fig. 3 is 
used for benchmarking in which the rotor orbit is about 95 
micron in diameter.  
 

 
      Fig. 3 Rotor orbit at ω = 6000rpm [8] 
  
 When the rotor speed is set at ω = 6000rpm, Fig. 4 shows 
the trajectories of the states X and Y and the rotor orbit when 
the output matrix Ls is used. It can be seen that the system is 
approaching asymptotic stability and almost not whirling 
motion occurs at steady state. When the output matrix is Lb 
chosen, the rotor orbit of about 12 micron is produced at 
steady state as shown in Fig. 5. This is a reduction of 87% of 
rotor orbit compared to Fig. 3. The different between Fig. 4 
and Fig. 5 is due the structure of 2L  imposed by assumption 
(21). Both Ls and Lb fulfill this requirement, however, from 
this result the solution of the LMI set with 2L  designed based 
on Ls gives a significantly reduced rotor orbit diameter which 
is approaching zero. 
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Fig. 4 X and Y trajectories (top) and rotor orbit (bottom) using Ls at ω 

= 6000rpm 
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Fig. 5 X and Y trajectories (top) and rotor orbit (bottom) using Lb at ω 

= 6000rpm 
 
To further assess the performance of the system, Fig. 6 shows 
the trajectories of X and Y and the rotor orbit with Ls and rotor 
speed of ω = 10000rpm. It can be noticed that the system 
response is almost similar to the response when running at ω = 
6000rpm in which the system is approach zero diameter of 
rotor orbit. For the surface parameter with Ls selected, the 
system response is shown in Fig. 7 where the rotor orbit is 
about 30 micron. This demonstrates that with the present of 
the mismatched uncertainties and disturbance, the system 
response still achieves at the worst the bounded stability as 
constrained by the designed surface.  
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Fig. 6 X and Y trajectories (top) and rotor orbit (bottom) using Ls at ω 

= 10000rpm 
 
 The sliding surfaces σ1 and σ2 are shown in Fig. 8 where 
both surfaces are maintaining at the neighbourhood of ideal 
sliding surface,  σ = 0.  The non-smooth sliding motion is due 
to the present of the mismatched uncertainties and the 
imbalance of the AMB system in which this mismatched 
effect has forced the system to slide off the ideal sliding 
surface and remain in the designed sliding surface. The 
control current Ix and Iy is shown in Fig. 9 in which the 
chattering effect is due to the  signum function  in  the control  
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law There are many methods reported to eliminate the 
chattering effect, however, it is insignificant in this work and 
purposely not covered. 
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Fig. 7 X and Y trajectories (top) and rotor orbit (bottom) using Lb at ω 

= 10000rpm 
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Fig. 8 The sliding surface σ1 and σ2 for Ls at ω = 10000rpm 
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                Fig. 9 Current Ix (top) and Iy (bottom) 
 
 
 

V. CONCLUSION 
In this work, an application of a SMC controller with H2 

guaranteed cost switching function into AMB system is 
performed. The proposed controller is proven to be able to 
achieve the proposed H2 norm bounded stability at a wide 
range of rotational rotor speed although with the present of 
mismatched and matched system uncertainty. The 
performance of the controller is demonstrated through various 
simulation works.   

APPENDIX A 
The nonzero elements of matrix A(ω,t), B where i and j 

indicate the i-th and j-th entry of each element. 
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APPENDIX B 

Elements of matrices 212111 ,,,,, ΦΦΓΓΦΦ  and Λ for Ls.  
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APPENDIX C 
TABLE I 

PARAMETER FOR AMB SYSTEM [8] 

Symbol Parameter     Value  Unit 

m Mass of Rotor 1.595         kg 
Ja Moment of Inertia about 

rotational axis 
1.61 × 10-3    kg.m2 

Jr Moment of Inertia about radial 
axis 

3.83 × 10-3   kg.m2 

Lu Distance of upper AMB to G 0.0128          m 
Lb Distance of lower PMB to G 0.0843          m 
Kiu Linearized force/current factor 200             N/A 
Kdu Linearized force/displ.  factor 2.8 × 105      N/m 
Kb Stiffness coefficient of PMB 1.0 × 105      N/m 
Cb Damping coefficient of PMB 48                kg/s 

mun Static imbalance 0.6 × 10-3     m 
l Distance of unbalance mass 

from G 
0.02             m 

ω Rotor rotational speed 
 

0 – 1047 
(0 – 10000) 
 

rad/sec 
(rpm) 
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