
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1255

Abstract—A separation-kernel-based operating system (OS) has

been designed for use in secure embedded systems by applying formal
methods to the design of the separation-kernel part. The separation
kernel is a small OS kernel that provides an abstract distributed
environment on a single CPU. The design of the separation kernel was
verified using two formal methods, the B method and the Spin model
checker. A newly designed semi-formal method, the extended state
transition method, was also applied. An OS comprising the
separation-kernel part and additional OS services on top of the
separation kernel was prototyped on the Intel IA-32 architecture.
Developing and testing of a prototype embedded application, a
point-of-sale application, on the prototype OS demonstrated that the
proposed architecture and the use of formal methods to design its
kernel part are effective for achieving a secure embedded system
having a high-assurance separation kernel.

Keywords—B method, embedded systems, extended state
transition, formal methods, separation kernel, Spin.

I. INTRODUCTION
MBEDDED systems have become ubiquitous, and their
functionalities are becoming richer and reaching higher
levels. Obtaining high-assurance embedded systems is

critical in many environments. The layered approach has been
adopted to obtain these high-assurance systems. The lowest
layer is an operating system (OS) kernel, which needs to have
the highest assurance. Attaining high assurance is not easy as
today’s OS kernels tend to be large and have rich functionality.
A small kernel called the separation kernel, which was
proposed by Rushby [1] [2], has attracted attention as a
potential high-assurance kernel for embedded systems. The
separation kernel provides an abstract distributed environment
on a single CPU. Because the separation kernel is small, its
secure design, including verification of its correctness, is easier
than with traditional kernels. The Common Criteria for
Information Technology Security Evaluation [5], which
defines the requirements for secure systems, calls for a formal
design at its highest evaluation assurance level (EAL 7).

This paper reports the results obtained for the secure design
and implementation of a separation-kernel-based OS
(tentatively called OS-K), which is intended for use in secure

Kei Kawamorita was a graduate course student at Kanagawa University,
Japan. He is now with the Hitachi Software Engineering, Inc., Tokyo, Japan.
(e-mail: kei.k.0203@gmail.com).

Ryouta Kasahara and Yuuki Mochizuki are graduate course students at
Kanagawa University.

Dr. Kenichiro Noguchi is with the Department of Information and Computer
Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka-shi 259-1293, Japan
(corresponding author to provide phone: +81-463-59-4111; fax:
+81-463-58-9684; e-mail: noguchi@kanagawa-u.ac.jp).

embedded systems. The architecture is proposed for a
separation-kernel-based system. The separation-kernel layer
provides an abstract distributed environment to partitions. It
was designed using two formal methods: the B method and the
Spin model checker. Also applied was a newly developed
semi-formal method, the extended state transition (EST)
method. These methods played complementary roles in the
verification of the design. The separation-kernel layer and the
additional OS services on top of it were prototyped on the Intel
IA-32 architecture. The additional OS services comprised the
partition OSs in the client partitions and the OS servers in the
server partitions. The OS servers included the file server and
device drivers. A sample embedded application, a POS (point
of sale) application, was developed on the prototype OS,
resulting in a POS system in a simulated environment. The
development result demonstrated that the proposed architecture
and the use of formal methods to design its kernel part are
effective for achieving a secure embedded system having a
high-assurance separation kernel.

II. SEPARATION-KERNEL-BASED ARCHITECTURE

A. Overview
A separation-kernel abstraction was adopted for the OS

kernel to enable achievement of a secure and reliable embedded
system. Because an OS kernel designed using this abstraction is
small and simple, the possibility of kernel failure is minimized.
Moreover, proving the correctness of the kernel is easier. The
security of the system can be further improved by dividing an
application into multiple processes with different privileges
and running them in the different partitions provided by the
separation kernel.

The overall architecture for the developed
separation-kernel-based system is outlined in Fig. 1. The
separation-kernel layer provides multiple partitions on top of it.
Client-server-mode operations are used to enable the multiple
partitions to work together. The client partitions are for the user
processes. One user process runs in one client partition. The
partition OS in each client partition acts as an interface for
providing OS services to the user process. The partition OSs
send requests to the server partitions for required services. The
server partitions provide common OS services to the client
partitions and to other server partitions. Such OS functions as
the file server and device drivers, which are located in the OS
kernel in traditional OSs (and even in microkernels for device
drivers), run in the server partitions as server processes in user
(non-privilege) mode, which reduces the possibility of kernel

Kei Kawamorita, Ryouta Kasahara, Yuuki Mochizuki and Kenichiro Noguchi

Application of Formal Methods for Designing
a Separation Kernel for Embedded Systems

E

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1256

failure.

Hardware

Partition OS Partition OS

Separation kernel

Interrupt handler

Inter-partition communication

SchedulerMemory management Timer

I/O synchronization

・・・ ・・・

User
process

User
process Server

process

Client partitions Server partitions

Server
process

Partition management

Access control

Fig. 1 Architecture of separation-kernel-based system

The separation-kernel layer provides several functions:
- partition management;
- inter-partition communication;
- access control for inter-partition communication;
- memory management;
- timer management;
- processor scheduling;
- I/O interrupt synchronization for device driver operation;
- interrupt-handling.

B. Separation-kernel calls
The separation-kernel layer provides services to the upper

layer via separation-kernel calls. The separation-kernel calls
are classified into three service categories.

- Message-passing service: The main service provided by
the separation-kernel layer to the upper layer is
inter-partition communication. The client-server-mode
message-passing service is used to align the service with
the overall architecture of the partition layer. There are
four separation-kernel calls for this service: send, receive,
fetch, and reply. The client side uses send, and the server
side uses receive and reply, or receive, fetch, and reply, as a
combination. A send is issued to transmit a message to the
destination partition and wait for a reply message. A
receive waits for a message that another partition is
sending. If a message has already been sent to this
partition, a receive returns immediately. When a receive
returns with information that a variable-length message
has been sent, a fetch is issued to retrieve the message. A
reply is issued to send a reply message to the partition that
issued a send, and the partition’s wait state is released.

- I/O synchronization service: This service is for the device
drivers in the server partitions. A device driver issues a
dwait separation-kernel call after initiating an I/O
operation and waits for an I/O completion interrupt.

- Timer service: A partition that has issued sleep is put into
wait state until a specified timer-interval expires. The
gettime returns the current clock time.

C. Inter-partition access control
The separation kernel provides the access-control function

for inter-partition communication, which provides the only
linkage between otherwise separate partitions. Therefore, it is
critical to maintaining the security of the system. For example,
even if the control of a partition is taken over by a malicious
program, properly set access control can minimize its effect on
other partitions. The access-control function regulates which
partition can communicate with which other partitions. The
rules for access control are set by a system administrator.

Example access-control rules for inter-partition
communication are shown in Table I. Client A is allowed to
communicate, i.e., to send a message and receive a reply, with
Client B and Server B. Client B is allowed to communicate with
Servers A and B. Server A is allowed to communicate with
Server C. The separation kernel prohibits other combinations of
inter-partition communication.

Running components such as device drivers in the server
partitions enables accesses to such components to be controlled
by using the access-control function for inter-partition
communication.

D. Memory Protection

Effective memory protection is critical to isolate the memory
spaces of partitions, which is the key security feature of the
separation kernel. There are three requirements for memory
protection.

- The memory space of each partition must be isolated from
that of the other partitions; i.e., a process in one partition
cannot access the memory space of another partition.

- The memory area of the separation kernel must not be
accessible by the user processes, the partition OSs in the
client partitions, or the processes in the server partitions.

- The memory area of a partition OS must not be accessible
by user processes.

In this IA-32-architecture-based implementation of the
separation kernel and the upper-layer OS services, two
memory-protection features of the IA-32 architecture are
utilized.

- The ring protection feature of the IA-32 architecture is
used to protect the memory area of the separation kernel
against access by the processes and the partition OSs. As
illustrated in Fig. 2, the memory area of the separation
kernel is assigned privilege level 0, which is the highest
level in the system. The memory spaces for the server
processes are assigned level 1. The memory areas for the

TABLE I
EXAMPLE ACCESS-CONTROL RULES FOR INTER-PARTITION COMMUNICATION

Source
Destination

Client A Client B Server A Server B Server C
Client A P A P A P
Client B P P A A P
Server A P P P P A
Server B P P P P P
Server C P P P P P

A: Allowed, P: Prohibited

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1257

partition OSs are assigned level 2. The memory spaces for
the user processes are assigned level 3.

- Each partition is assigned a local descriptor table in which
the partition segments are registered to isolate the partition
memory spaces. This prevents programs in one partition
from accessing the memory space of another partition
although their spaces have identical privilege levels.

User processes

Partition OSs

Server processes

Separation kernel

0

3
2

1

Fig. 2 Assignment of privilege levels in ring protection

III. FORMAL DESIGN WITH B METHOD
As mentioned above, one of the requirements defined by the

Common Criteria for Information Technology Security
Evaluation [5] for secure systems is formal design at the highest
evaluation assurance level, EAL 7. The kernel part that runs in
kernel (privileged) mode and controls the whole system needs
to have the highest assurance level.

 Several formal methods were considered for designing the
separation kernel, including Z language [9], the B method [10],
[11], and the Spin model checker [14], [15]. The B method is
particularly attractive because the abstract description of the
specifications can be refined to a more concrete description,
i.e., the description of the IMPLEMENTATION in B
terminology, and the correctness of the refinement can be
verified using the tool associated with the B method. Therefore,
the B method was selected for designing the overall structure of
the separation kernel.

A. Modeling
The specifications of the separation kernel in the proposed

architecture are described in B. The main components in the
description and their relationships are outlined in Fig. 3. The
components are called abstract machines and are described as
MODELs. The memorymanager MODEL describes the main
function of memory management. The memorymanager
operations internally call operations in the msegaccess
MODEL. The skinterface MODEL describes the main
functions of message passing, scheduler, the timer, I/O
synchronization, and the interrupt handler. Because MODEL
description in B does not allow sequential processing, the
skinterface MODEL is necessarily a large component with a
nondeterministic description. It was thus refined into the
skinterface_i IMPLEMENTATION in which the operations
internally call operations in the midmanager, mdata_mgr,
pidmanager, sktimer, pscheduler, and msgpass MODELs.

skinterface

MODEL

skinterface_i
IMPLEMENTATION

REFINES

mdata_mgr

MODEL

midmanager
MODEL

pidmanager

MODEL

sktimer

MODEL

pscheduler

MODEL

msgpass

MODEL

task
manager

MODEL

IMPORTS IMPORTS

IMPORTS IMPORTS IMPORTS IMPORTS

INCLUDES

memory
manager

MODEL

msegaccess
MODEL

INCLUDES

Fig. 3 Main components of separation kernel in B description

An example MODEL description, that of memalc operation
in the memorymanager MODEL, is shown in Fig. 4.

Fig. 4 Example MODEL description in B: memalc operation

B. Verification of Abstract Machines
The correctness, i.e., consistency, of the descriptions was

verified using B4free [12]. B4free is a tool for the B method
that supports the generation of proof obligations and their
proofs. It verifies the proof obligations automatically as much
as possible; any that it cannot verify are left for verification by
hand. In automatic verification, the tool verifies whether the
invariant conditions described in the INVARIANT clause of
the operation description hold after the operation has been
executed as well as at initialization. It has an interactive
verification mode that supports verification by hand.

ridx <-- memalc(isize) =
 PRE isize : NAT1 & isize mod 4 = 0
 THEN
 CHOICE
 ANY
 idx
 WHERE
 idx : MLIDX & mstate(idx)=m_free & msize(idx) >=
isize
 THEN
 IF msize(idx) = isize
 THEN
 update_state(idx, m_allocd)
 ELSE
 divide_mseg(idx, isize)
 END ||
 ridx := idx
 END
 OR
 ridx := max_segs
 END
 END

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1258

As shown in Table II, all the proof obligations generated by
the tool, except 1 for memorymanager and 125 for msegaccess,
were verified automatically by B4free. The 126 others were
verified interactively or manually. The reason for the large
number of msegaccess ones requiring interactive or manual
verification may be that the conditions described in its
INVARIANT clause were stricter compared with the
descriptions of the other components.

C. Description Refinement

The abstract descriptions of the specifications were refined
to the IMPLEMENTATION descriptions by converting the
nondeterministic sections to sequential processing. An example
refined description is shown in Fig. 5. It is for the memalloc
operation and corresponds to the abstract description in Fig. 4.

Fig. 5 Refined description in B: memalc operation

D. Verification of Refinement
The consistency of the refined descriptions was verified

using B4free. Both the consistency of the description itself and
the consistency between the abstract description and the refined
description were verified.

As shown in Table III, all the proof obligations generated by
the tool for components other than memorymanager_i,
msegaccess_i, and skinterrface_i were automatically verified.
A small number of them for memorymanager_i and
msegaccess_i were verified interactively or manually. The

number of non-trivial proof obligations exceeded 1,000 for
skinterface, which resulted in an error and could not be
verified.

IV. MODEL CHECKING WITH EXTENDED STATE TRANSITION
METHOD

The extended state transition (EST) method was applied in
parallel with the B method. The EST model extends the normal
state-transition model by incorporating variables into behavior
descriptions. Its application to software design is described in
[13]. A scheme was developed to describe the model of the
specifications on the basis of the EST model, and tools were
developed to check the validity of the model description by
executing it. Since it does not yet have exhaustive model
verification capability, it is a semi-formal method.

A. Modeling
Selected functionalities of the separation-kernel

specifications, i.e., inter-partition communication, scheduler
and timer are included in the model. In the model description
(see Fig. 6), the partition entities, the scheduler, and the timer
are modeled as extended state machines. A partition entity
controls the operation of each partition. The upper partition is
the non-kernel part of a partition; it uses the separation kernel
by issuing separation-kernel calls.

Separation
kernel

Partition
entity

SchedulerTimer

Partition
entity

sk_call

Upper
partition

timer_int

Partition
entity

Fig. 6 Configuration of model description of separation kernel

The partition entity model has seven major states, which do
not include finer states represented by variables. The

TABLE II
GENERATED PROOF OBLIGATIONS (POS) AND VERIFICATION RESULTS

Component POs generated POs proved
automatically

POs proved
interactively
or manually

memorymanager 14 13 1
msegaccess 228 103 125
skinterface 6 6 0
mdata_mgr 2 2 0
midmanager 6 6 0
msgpass 95 95 0
pidmanager 6 6 0
pscheduler 62 62 0
sktimer 180 180 0
taskmanager 1 1 0

ridx <-- memalc(isize) =
 BEGIN
 VAR idx IN
 idx <-- search_fmsegbysize(isize);
 IF idx < max_segs
 THEN
 IF msize(idx) = isize
 THEN
 update_state(idx, m_allocd)
 ELSE
 divide_mseg(idx, isize)
 END;
 ridx := idx
 ELSE
 ridx := max_segs
 END
 END
 END

TABLE III
GENERATED PROOF OBLIGATIONS (POS) AND VERIFICATION RESULTS

Component POs
generated

POs proved
automatically

POs proved
interactively
or manually

memorymanager_i 214 213 1
msegaccess_i 244 220 24
skinterface_i* Over 1000 0 0
mdata_mgr_i 15 15 0
midmanager_i 20 20 0
msgpass_i 104 104 0
pidmanager_i 20 20 0
pscheduler_i 56 56 0
sktimer_i 354 354 0

 *Verification for skinterface_i is incomplete.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1259

state-transition diagram for the major states is shown in Fig. 7.
When a partition entity receives a send kernel call, it internally
issues an isend (internal send) request to the destination’s
partition entity. Similarly, when a reply kernel call is received,
an ireply (internal reply) request is internally issued.

runoffkrunoffk

runkexitrunkexit

skcall int

[send]

[receive
& ! msgQ]

isend
timeout

ireply
timeout

dispatch2

dispatch

[receive & msgQ]
[fetch]
[reply]

isend

isend
ifetch

[sleep]

timeout

timer int

runink

swaitswait rwaitrwait

isend

twaittwait

readyready

Fig. 7 State transition diagram of partition entity (for major states)

The model of the specifications is described in

extended-state-transition diagrams, i.e., by allowing the
incorporation of variables into behavior descriptions associated
with the state transition. To enable descriptions to be analyzed
by programs, we formulated the XML format for
extended-state-transition diagrams. Fig. 8 shows a part of
description of partition entity specification.

Fig. 8 Part of description of partition entity specification
(XML format)

B. Model Checking

The EST method has a tool, the converter, that converts the

description in XML format into a Java method. Another tool,
the specification-execution-environment, receives an execution
scenario as input, executes the Java methods, and outputs the
execution results. An execution scenario is composed of the
descriptions of the upper partitions. The results consist of log
information, sequence diagrams generated from the log
information, coverage information on the state transitions, and
detailed information on the system’s state, including the values
of the variables at the beginning and the end of the execution.
Fig. 9 shows a part of the automatically converted Java method
from the description in Fig. 8. Fig. 10 shows an example of a
generated sequence diagram.

Fig. 9 Part of generated Java method for partition entity

|| running | ready : waiting

Fig. 10 Example generated sequence diagram (partial view)

The model of the specifications was executed under various
scenarios, and the validity of the results was checked. It was
found that the EST method could be effectively used for testing
with tentative specifications by executing the model and then
revising it on the basis of the results. The method was
particularly useful for finalizing the specifications for
inter-partition communication.

public boolean StateMachine(IOObj in) {
 :
 switch (in.type) {
 case SEND:
 :
 Condition = sk.skmode;
 if (Condition) {
 switch (state) {
 case RUNINK:
 << Content of action here>>
 break;
 default:
 systemError("Input not acceptable in this state");
 return false;
 }
 break;
 }
 case RECEIVE:
 :

<statemachine>
 :
 <input name = "SEND">
 <predicate name = "PREDICATE1">
 :
 </predicate>
 <predicate name = "PREDICATE2">
 Condition = sk.skmode;
 <state name = "RUNINK">
 <action>
 if (in.val == pid || ! existPID(in.val)) {
 ret = returnInfo(ERROR);
 state = RUNKEXIT;
 Output(SCHEDULER, SCHEDULE);
 } else {
 timeout = in.val2;
 in.val2 = genID();
 Output(in.val, ISEND, in.val, in.val2, in.str);
 saveSendInfo(in.val, in.val2);
 }
 </action>
 </state>
 <stategroup name = "default">
 <action dontcare = "true">
 </action>
 </stategroup>
 </predicate>
 </input>
 <input name = "RECEIVE">
 :

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1260

V. MODEL CHECKING WITH SPIN
The Spin model checker is primarily aimed at the design of

concurrent systems. Because a separation kernel provides an
abstract distributed environment, the Spin model checker is
potentially an effective tool in its design. It was thus used for
the design described here.

A. Modeling
The Spin model checker was applied to the same scope of

separation-kernel functionalities as the EST method. The
model description had the same composition as the EST model
outlined in Fig. 6. As a result, the Spin model could easily be
obtained by directly translating the descriptions of an EST
model into those in the Spin model description language,
Promela.

The entities in Fig. 6 are described as active proctypes in
Promela:

- an array of partition entities
- an upper partition for each partition entity
- scheduler
- timer
- idle partition entity.

These entities are connected through the Promela input/output
channels.

The major states of a partition entity and the transitions
among them illustrated in Fig. 7 also apply to the Spin model.
There is no nondeterminism in the description of the separation
kernel.

B. Verification
The checking of the model using Spin was done in two

modes, simulation and verification. The model was checked in
simulation mode with various descriptions of the upper
partitions. Random simulations, done by incorporating
nondeterminism into the descriptions of upper partitions,
enabled the efficiency of the checking to be enhanced. Some
errors in the Promela model coding were found.

With nondeterministic descriptions in the upper layers, an
exhaustive check of the model was performed in verification
mode. The correctness property of successful message passings
was verified using assertions. The safety property of the model
was verified by checking that the upper partitions were always
served to the completion by the separation kernel and that the
system reached the end state. The model checking in the
verification mode was possible for relatively small models with
at most three partition entities, due to CPU time and memory
space constraints in the verification run and the size of the
model descriptions (about 1,000 lines in Promela).

Fig. 11 shows an example nondeterministic description of an
upper partition. Inline constructs were used to code the
separation-kernel calls.

Because the model checking with Spin was carried out after
that with the EST method, no feedback was obtained for the
specifications of the separation kernel. Better confidence in the
validity of the specifications, however, was gained.

Fig. 11 Example nondeterministic description of upper partition

VI. PROTOTYPING
The separation kernel and other OS components were

implemented on an IA-32-architecture [16] processor after the
application of the B and EST methods to the design of the
separation kernel.

A. Separation-kernel Layer
The separation kernel was implemented on an

IA-32-architecture processor starting with a boot program. The
IMPLEMENTATIONs of the separation kernel in B were
converted into C programs on an almost one-to-one basis. The
program implemented for the separation kernel had about 3,000
lines of C code and about 1,000 lines of assembler code.

B. Partition OSs
The partition OSs that provide system calls to user processes

to access the following services were prototyped.
- File-management service: This service has five system

calls commonly found in file systems: open, read, write,
seek, and close.

- Standard I/O service: This service has two system calls:
prints and scans. A prints is issued to display an output
string. A scans is issued to retrieve an input string from the
keyboard.

- Inter-client-partition communication: This service has
three system calls: put_request, get_request, and
done_request. A put_request is issued to send a message to
another client partition. A get_request is issued to receive a
message from a client partition. A done_request is issued
to reply to a message sent to the client partition.

The partition OSs call the server partitions to fulfill the
file-management and standard I/O services.

C. OS Server Layer
Three server partitions (the disk driver, the terminal driver,

and the file server) were implemented.
(1) Disk driver

active proctype UP1()
provided (! skmode && current == _pid - PENUM)

{
 :
 :

 do
 :: count1 > 0 ->
 if
 :: sendf(dest, 10, val1, result, from, msgid, val2)
 :: receivef(20, result, source, msgid, val2)
 val1 = val2 + 1
 :: replyf(source, msgid, val1, result)
 :: yieldf()
 fi;
 count1--
 :: count1 == 0 -> break
 od;
 exitf()
}

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1261

The disk driver provides two functions to the file server,
disk_read and disk_write. A disk_read is issued to read data on
the disk. A disk_write is issued to write data to the disk. The ten
I/O ports required for the disk driver to work were made
available.
(2) Terminal driver

The terminal driver provides standard I/O service to the other
partitions. The service is called by the standard I/O service in
the partition OSs. The two I/O ports required for the terminal
driver to work were made available.
(3) File server

The file server provides a file-management service to the
other partitions. This server is called by the file-management
service in the partition OSs. The format of the file in the file
server is FAT16. The file server calls the disk driver to read
data from and write data to the disk.

D. Access Control
Access-control services were implemented in the upper

layer. These services are independent of the inter-partition
access control in the separation-kernel layer and are intended to
provide the finer access control needed for building secure and
reliable embedded systems.
(1) I/O port access

The I/O ports available to the partitions must be controlled to
minimize the effect if a partition is attacked. I/O-port-access
privileges were assigned to the components in accordance with
the privilege levels of the IA-32 architecture, as summarized in
Table IV. I/O-port-access privileges are not granted to user
processes and partition OSs. Instead, privileges are granted to
server partitions on the basis of their type. The separation
kernel can access all I/O ports.

(2) File access

An access-control function in the file server was
implemented using the Bell-LaPadula model [17] as the
access-control model for controlling client partitions that can
communicate with the file server and access files. Client
partitions and files are assigned confidential levels. Information
at a higher level is thus prevented from leaking to lower ones.

E. Sample Application
A POS application was prototyped on the prototyped OS. As

illustrated in Fig. 12, a POS register receives a merchandise
code, a customer code and received money amount as input.
The POS register manages payment, merchandise, sales, and
customer services. It also manages customer personal data,
customer’s reward point data, merchandise data, and sales

history data.

POS register

Customer
personal data

Customer
code

Merchandise
code

(JAN code)

① Payment manager
② Merchandise manager
③ Sales manager
④ Customer services manager

Customer
card

Merchandise

Money amount

Cash

Reward point
data

Merchandise
data

Sales history
data

Fig. 12 Overview of sample application

The services for users are divided into ten client partitions:

function selecting, payment, customer-information reference,
etc.

The access-control rules for inter-partition communication
are listed in Table I: Clients A and B correspond to function
selecting and the other client partitions; Servers A, B, and C
correspond to the file server, the terminal driver, and the disk
driver, respectively. Function selecting is allowed to
communicate with the other client partitions corresponding to
functions required by the user and with the terminal driver to
receive input data from the keyboard and to output messages to
the user. The other client partitions are allowed to communicate
with the file server and the terminal driver. The file server is
allowed to communicate with the disk driver. The separation
kernel prohibits other combinations of inter-partition
communication.

The confidential levels are assigned to client partitions and
files for the access control provided by the file server.
Customer-information reference is assigned the highest level
among the partitions, and customer personal data is assigned
the highest level among the files.

VII. DISCUSSION

A. Separation-kernel-based architecture
The advantages of the proposed separation-kernel-based

architecture for secure embedded systems were verified and
demonstrated through the design and development of the kernel
and an application in a sample embedded-system environment.

Four advantages in particular contribute to achieving secure
embedded systems.

- The separation kernel can be kept small, minimizing the
security-critical kernel-mode program. Such OS services
as a file server and device drivers can be implemented as
non-kernel-mode programs. Even if a file server or device
driver is taken over and controlled by a malicious program,
it cannot control the kernel.

- A small kernel makes it easy for the correctness of its
design to be formally verified.

- A separation kernel provides an isolated environment for

TABLE IV
DEVICE I/O PRIVILEGES

Privilege level I/O port privileges

3 None
2 None
1 Granted on basis of server type
0 All

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1262

multiple components of an embedded application,
enabling a malfunction in or a security attack against some
component to be localized in that component, thereby
minimizing its effect on other components. The
segregation of partition memory spaces and of the
separation kernel and partition memory areas can be
effectively achieved in the IA-32-hardware environment
by making use of ring-protection and segment
mechanisms.

- The access-control function for inter-partition
communication controls the communication channels
between partitions and prevents unwanted flows of
information between partitions.

Because the separation kernel is small and its functionality is
limited, it alone cannot provide all the OS services needed by
embedded applications. The remaining services need to be
provided as upper-layer OS services. The design and
development of such upper-layer OS services reported here
have demonstrated that they can be designed to be secure by
taking advantage of the separated partitions provided by the
separation kernel and that appropriate security functions need
to be provided by them to complement the security functions
provided by the separation kernel. The upper-layer OS services
offer advantages and additional functionalities.

- Additional OS services are implemented as distributed
services. Each service is in its own partition, isolated from
other services, which improves the security and reliability
of the system. Additionally, access control to such services
is established by making use of the access-control function
for inter-partition communication provided by the
separation kernel. A service can be provided to
applications and other services on the basis of the
least-privilege policy.

- Additional access-control functions are implemented in the
upper-layer OS services. The file-access-control function
is implemented in the file server. The prototype application
makes use of this, restricting access to confidential
information such as customer data to limited applications
on the basis of the least-privilege policy. Access control to
I/O ports is implemented in the device drivers.

B. Application of formal methods to kernel development
The B method was used in designing and implementing the

separation-kernel part of the proposed architecture. Experience
has shown that the effectiveness of its application to secure
kernel design depends on the components.

- The B method is effective for such components as those for
memory management, where verification of the static
properties of the model is a key part of the design process.
Memory addresses can be represented mathematically as a
set, and memory properties can be precisely described.

- Its effectiveness is limited for such components as those
for inter-partition communication, the scheduler, and the
timer, where sequential, i.e., dynamic, properties are
important. This is because an abstract machine cannot
verify dynamic properties. For inter-partition
communication and the timer, much of the static properties

description was nondeterministic, so complete verification
was not possible. For the scheduler, there was not much
description of the static properties.

The EST method, which is based on the extended
state-transition model, was used to check the model.

- It was used to check inter-partition communication, the
scheduler, and the timer. It revealed several design flaws
that had a sequential nature, indicating that the EST
method is effective for checking the dynamic properties of
the model.

- Since it does not work well for mathematical descriptions
of the properties of variables, is not effective for checking
static properties. Since memory management has
properties that are mostly static, it was excluded from the
checking.

- The functionality of this method is limited compared with
Spin; e.g., it lacks an exhaustive verification feature. It is
effective for building a well-structured model based on the
EST model.

Spin was applied after the model was checked with the EST
method.

- Spin was effective for verifying the dynamic properties of
the model. In simulation mode, it provided the same level
of model checking as the EST method. Further, its
nondeterministic capability was effective in improving the
efficiency of the checking.

- Spin has a powerful verification feature, so model
checking in verification mode resulted in better confidence
in the validity of the separation-kernel specifications. Due
to CPU time and memory space constraints, it was applied
to relatively small models.

Following application of the B and EST methods to the
design, the actual coding of the separation kernel was
undertaken. Very few bugs (less than ten) have since been
found in the separation-kernel code.

VIII. RELATED WORK
Secure OSs, such as SELinux and LIDS for Linux, have

enhanced security features such as access control with fine
granularity. SELinux has been applied to embedded systems
[6]. Although stringent access control was provided to
applications, OS-server programs, such as file systems and
device drivers, were not the target of control. Therefore, if their
control is taken over by a malicious program, its effect can
spread throughout the entire kernel.

The Least Privilege Separation Kernel (LPSK) [3] provides
access control with finer granularity than that with the
traditional separation kernel. In the traditional separation
kernel, the subject of access control is in the partition.
However, the partition in LPSK consists of one or more
subjects and resources. The access-control policy is defined in
subjects and resources. LPSK more stringently provides the
principle of least privilege with this approach.

The specifications of a separation kernel were described with
TAME (Timed Automata Modeling Environment) and verified

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1263

with a prover called the Prototype Verification System [4].
Application of Z notation to kernel development has been

reported in [7] and [8], including the verification of a separation
kernel [8]. Although Z has advantages due to description and
verification at the top level, verification of the correctness of a
refinement is not easy.

Application of Spin to process scheduling in a distributed
operating system has been reported in [15].

IX. CONCLUSION
A separation-kernel-based OS has been designed for use in

secure embedded systems by applying formal methods to the
separation-kernel part. The architecture was proposed for a
separation-kernel-based system. The design of the
separation-kernel part was verified using two formal methods,
the B method and the Spin model checker. A newly developed
semi-formal method, the extended state transition (EST)
method, was also applied. The effectiveness of these three
methods for kernel design was complementary, and applying
them was effective in attaining a well designed separation
kernel.

The separation-kernel part and additional OS services on top
of the separation kernel were prototyped on the Intel IA-32
architecture. The additional OS services were designed on the
basis of the client-server model and comprised partition OSs in
the client partitions and OS servers in the server partitions. A
sample embedded application, a POS application, was also
developed on the prototype OS, resulting in a POS system in a
simulated environment. This application took advantage of the
abstract distributed environment provided by the prototype OS.

The results of this work demonstrate the feasibility of the
proposed architecture for designing secure embedded systems.
They also show that design using formal methods can be used
to effectively create a secure and reliable kernel.

REFERENCES
[1] J. Rushby, “The design and verification of secure systems,” in ACM

Operating Systems Review, vol. 15, no. 5, Eighth ACM Symposium on
Operating System Principles (SOSP), 1981, pp. 12–21.

[2] J. Rushby, “Proof of Separability―A verification technique for a class of
security kernels,” in Proc. 5th International Symposium on Programming,
vol. 137 of Lecture Notes in Computer Science, 1982, pp. 352–367.

[3] T. E. Levin, C. E. Irvine, and T. D. Nguyen, “Least privilege in separation
kernels,” in Proc. International Conf. on Security and Cryptography
SECRYPT 2006, 2006, pp 355–362.

[4] C. L. Heitmeyer, M. Archer, E. I. Leonard, and J. D. McLean, “Formal
specification and verification of data separation in a separation kernel for
an embedded system,” in ACM Conf. on Computer and Communications
Security, 2006, pp. 346–355.

[5] Common Criteria for Information Technology Security Evaluation,
Version 3.1 Revision 2, CCMB-2007-09-003. Common Criteria Project
Sponsoring Organizations, 2007.

[6] Y. Nakamura and Y. Sameshima, “SELinux for Consumer Electronics
Devices,” in Proc. the Linux Symposium, vol. 2, 2008, pp. 125–134.

[7] I. D. Craig, Formal Design for Operating System Kernels. London:
Springer-Verlag, 2006.

[8] I. D. Craig, Formal Refinement for Operating System Kernels. London:
Springer-Verlag, 2007.

[9] B. Potter, J. Sinclair, and D. Till, An Introduction to Formal Specification
and Z. Prentice Hall, 1991.

[10] J.-R. Abrial, The B-Book－Assigning programs to meanings. Cambridge
University Press, 1996.

[11] B Language - Reference Manual. ClearSy. Available:
http://www.b4free.com.

[12] B4free. ClearSy. Available: http://www.b4free.com.
[13] K. Noguchi, Logical Method for Software Design. Kyoritsu Publishing,

Japan, 1990. (in Japanese)
[14] G. J. Holzmann, The Spin Model Checker: Primer and Reference Manual.

Addison Wesley, 2004.
[15] G. J. Holzmann, “The Model Checker Spin,” in IEEE Trans. on Software

Engineering, vol. 23, no. 5, 1997, pp. 1–17.
[16] IA-32 Intel Architecture Software Developer’s Manuals. Intel

Corporation.
[17] D. Bell and L. LaPadula, Secure Computer System: Mathematical

Foundations and Model. MITRE Rep. MTR 2547, 1973.

