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Abstract—Importance of software quality is increasing leading to 

development of new sophisticated techniques, which can be used in 
constructing models for predicting quality attributes. One such 
technique is Artificial Neural Network (ANN).  This paper examined 
the application of ANN for software quality prediction using Object-
Oriented (OO) metrics. Quality estimation includes estimating 
maintainability of software. The dependent variable in our study was 
maintenance effort. The independent variables were principal 
components of eight OO metrics. The results showed that the Mean 
Absolute Relative Error (MARE) was 0.265 of ANN model. Thus we 
found that ANN method was useful in constructing software quality 
model. 
 

Keywords—Software quality, Measurement, Metrics, Artificial 
neural network, Coupling, Cohesion, Inheritance, Principal 
component analysis.  

I. INTRODUCTION 
HERE are several metrics proposed in the literature to 
capture the quality of OO design and code, for example, 

(Aggarwal et al. [13]; Briand et al., [14, 15]; Bieman and 
Kang [7]; Cartwright and Shepperd [17]; Chidamber and 
Kamerer [21, 22 ]; Harrison et al. [20]; Henderson-sellers [3]; 
Hitz and Montazeri [18]; Lake and Cook [2]; Li and Henry 
[27]; Lee et al. [28] Lorenz and Kidd [19]; Tegarden et al [5]).  

These metrics provide ways to evaluate the quality of 
software and their use in earlier phases of software 
development can help organizations in assessing large 
software development quickly, at a low cost. But how do we 
know which metrics are useful in capturing important quality 
attributes such as fault-proneness, effort, productivity or 
amount of maintenance modifications. An empirical study of 
real systems can provide relevant answers. There have been 
few empirical studies evaluating the impact of OO metrics on 
software quality and constructing models that utilize them in 
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predicting quality attributes in the system, such as  (Basili et 
al. [26]; Binkley and Schach [1]; Briand et al [16]; Cartwright 
and Shepperd [17]; Chidamber and Kamerer [23]; El Emam et 
al. [9]; Gyimothy et al. [24]; Harrison et al. [20]; Li and Henry 
[27]; Ping et al. [29]). 

Khoshgaftaar at al. [25] introduced the use of the neural 
networks as a tool for predicting software quality. In [25], 
they presented a large telecommunications system, classifying 
modules as fault prone or not fault prone. They compared the 
ANN model with a non-parametric discriminant model, and 
found the ANN model had better predictive accuracy. We 
conduct our study in the OO paradigm. However, since the 
OO paradigm is different from procedural paradigm, different 
software design metrics have to be defined and used. We 
explore the relationship between these design metrics and 
maintainability effort in this paper. Our ANN model aims to 
predict OO software quality by estimating the number of lines 
changed per class. 
    The paper is organized as follows: Section 2 provides 
overview of existing studies. Section 3 summarizes the 
metrics studied and describes sources from which data is 
collected. Section 4 presents the research methodology 
followed in this paper. The results of the study are given in 
section 5. Conclusions of the research are presented in section 
6.  

II. RELATED WORK 
Based on a study of eight medium-sized systems, developed 

by students Basili et al. [26] found that several of the 
Chidamber and Kamerer metrics were associated with fault 
proneness. Briand et al. [18] empirically explored the 
relationship between OO metrics and the probability of fault 
detection in system classes. Their results indicated that very 
accurate prediction models could be derived to predict faulty 
classes. 

Yu et al. [29] chose eight metrics and they examined the 
relationship between these metrics and the fault-proneness. 
The subject system was the client side of a large network 
service management system developed by three professional 
software engineers. It was written in Java consisting of 123 
classes and around 34,000 lines of code. First, they examined 
the correlation among the metrics and found four highly 
correlated subsets. Then, they used univariate analysis to find 
out which metrics could detect faults and which could not.  
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TABLE I 
METRICS STUDIED

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Gyimothy et al. [24] empirically validated Chidamber and 

Kamerer [22] metrics on open source software for fault 
prediction. They employed regression (linear and logistic 
regression) and machine learning methods (neural network 
and decision tree) for model prediction. 

Most of these prediction models are built using statistical 
models. ANN have seen an explosion of interest over the 
years, and are being successfully applied across a range of 
problem domains, in areas as diverse as finance, medicine, 
engineering, geology and physics. Indeed, anywhere that there 
are problems of prediction, classification or control, neural 
networks are being introduced. ANN can be used as a 
predictive model because it is very sophisticated modeling 
techniques capable of modeling complex functions.  

In [25], Khoshgoftaar et al. presented a case study of real-
time avionics software to predict the testability of each 
module from static measurements of source code. They found 
that ANN is a promising technique for building predictive 
models, because they are able to model nonlinear 
relationships.  

Our ANN model aims to predict software quality by 
estimating the number of lines changed per class. 

III.  RESEARCH BACKGROUND 
In this section we present the summary of metrics studied in 

this paper (Section 2.1) and empirical data collection (Section 
2.2).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

A.  Dependent and Independent Variables 
The continuous dependent variable in our study is 

maintainability. The goal of our study is to empirically 
explore the relationship between OO metrics and maintenance 
effort at the class level.  We use ANN to predict maintenance 
effort per class. The independent variables are principal 
components from OO metrics chosen for this study. The 
metrics selected in this study are summarized in Table I. 

 
B.  Empirical Data Collection 
This investigation is to predict the maintenance effort. The 

commercial software products UIMS (User Interface System) 
and QUES (Quality Evaluation System) data are used in this 
investigation, which is presented in [27]. The maintenance 
effort is measured by using the number of lines changed per 
class. A line change could be an addition or a deletion. A 
change of the content of a line is counted as a deletion 
followed by an addition. This measurement is used in this 
study to estimate the maintainability of the OO systems. 
UIMS system consists of 39 classes and QUES system 
consists of 71 classes. 

IV.  SOME COMMON MISTAKES 
We used the following methodology in this study: 

1. The input metrics were normalized using min-max 
normalization. Min-max normalization performs a linear 
transformation on the original data [8]. Suppose that minA 
and maxA are the minimum and maximum values of an 
attribute A. It maps value v of A to v’ in the range 0 to 1 
using the formula: 

Metric Definition Sources 
Lack of Cohesion (LCOM) It counts number of null pairs of methods that do not have common 

attributes. 
[22][11] [12] 

Number of Children 
(NOC) 

The NOC is the number of immediate subclasses of a class in a hierarchy. [22][11] [12] 

Depth of Inheritance (DIT) The depth of a class within the inheritance hierarchy is the maximum 
number of steps from the class node to the root of the tree and is measured 
by the number of ancestor classes. 

[22][11] [12] 

Weighted Methods per 
Class (WMC) 

The WMC is a count of sum of complexities of all methods in a class. 
Consider a class K1, with methods M1,…….. Mn that are defined in the 
class. Let C1,……….Cn be the complexity of the methods. 

∑
=

=
n

1i

iCWMC
 

[22][11] [12] 

Response for a Class 
(RFC) 

The response set of a class (RFC) is defined as set of methods that can be 
potentially executed in response to a message received by an object of that 
class. It is given by  
RFC=|RS|, where RS, the response set of the class, is given by 

}{R  M ijjalli  ∪=RS
 

[22][11] [12] 

Data Abstraction Coupling 
(DAC) 

Data Abstraction is a technique of creating new data types suited for an 
application to be programmed. 
DAC = number of ADTs defined in a class. 

[27] 

Message Passing Coupling 
(MPC) 

It counts the number of send statements defined in a class. [27] 

Number of Methods per 
Class (NOM) 

It counts number of methods defined in a class.  
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2. Perform principal components analysis on the normalized 
metrics to produce domain metrics. 

3. We divided data into training, test and validate sets using 
3:1:1 ratio. 

4. Develop ANN model based on training and test data sets. 
5. Apply the ANN model to validate data set in order to 

evaluate the accuracy of the model. 
 

A.  Principal-Component (or P.C.) Analysis  
 Many OO metrics have high correlation with each other. 
P.C analysis transforms raw metrics to variables that are not 
correlated to each other when the original data are OO 
metrics, we call the new P.C. variables domain metrics [25].  

P.C. analysis is used to maximize the sum of squared 
loadings of each factor extracted in turn [4].  The P.C. analysis 
aims at constructing new variable (Pi), called Principal 
Component (P.C.) out of a given set of 
variables ),....,2,1(' kjsXj = . 

 

.....

....
....

kkkkkk

kk

kk

XbXbXbP

XbXbXbP
XbXbXbP

+++=

+++=
+++=

2211

22221212

12121111

.               .             .          .       .
                     (2) 

 
All  bij’s called loadings are worked out in such a way that 

the extracted P.C.s satisfy the following two conditions: 
(i) P.C.s are uncorrelated (orthogonal) and 
(ii) The first P.C. (P1) has the highest   variance; the 

second P.C. has the next highest variance so on. 
The variables with high loadings help identify the 

dimension P.C. is capturing but this usually requires some 
degree of interpretation. In order to identify these variables, 
and interpret the P.C.s, we consider the rotated components. 
As the dimensions are independent, orthogonal rotation is 
used. There are various strategies to perform such rotation. 
We used the varimax rotation, which is the most frequently 
used strategy in literature. Eigenvalue or latent root is 
associated with P.C., when we take the sum of squared values 
of loadings relating to dimension, then the sum is referred to 
as eigenvalue. Eigenvalue indicates the relative importance of 
each dimension for the particular set of variables being 
analyzed. The P.C.s with eigenvalue greater than 1 is taken for 
interpretation. Given an n by m matrix of multivariate data, 
P.C. analysis can reduce the number of columns.  In our study 
n represents the number of classes for which OO metrics have 
been collected. Using P.C. analysis, the n by m matrix is 
reduced to n by p matrix (where p<m). 

 
B.  ANN Modeling 

 The network used in this work belongs to Multilayer Feed 
Forward networks and is referred to as M-H-Q network with 
M source nodes, H nodes in hidden layer and Q nodes in the 
output layer [10]. The input nodes are connected to every 
node of the hidden layer but are not directly connected to the 

output node. Thus the network does not have any lateral or 
shortcut connection. 

ANN repetitively adjusts different weights so that the 
difference between desired output from the network and actual 
output from ANN is minimized. The network learns by 
finding a vector of connection weights that minimizes the sum 
of squared errors on the training data set. The summary of 
ANN used in this study is shown in Table II. 

 
TABLE II 

ANN SUMMARY 
Architecture 
Layers      3 
Input Units  8 
Hidden Units 9 
Output Units 1 
Training  
Transfer Function Tansig 
Algorithm  Back Propagation 
Training Function TrainBR 

 
 
The ANN was trained by the standard error back 

propagation algorithm at a learning rate of 0.005, having the 
minimum square error as the training stopping criterion.  
 

C.  Performance Evaluation 
In this study the main measure used for evaluating model 

performance is the Mean Absolute Relative Error (MARE). 
MARE is the preferred error measure for software 
measurement researchers and is calculated as follows [6]: 
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where: 
estimate is the network output for each observation 
n is the number of observations 
to estimate whether models are biased and tend to over or 
under estimate, the Mean Relative Error (MRE) is calculated 
as follows[6]: 
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A large positive MRE would suggest that the model over 

estimates the number of lines changed per class, whereas a 
large negative value will indicate the reverse. 

V.  RESULTS 
In this section we present the analysis performed to find the 

relationship between OO metrics and maintainability effort of 
the classes. 
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In this section we present the analysis performed to find the 
relationship between OO metrics and maintainability effort of 
the classes. 
 

A.  Principal Component Analysis Results 
    In this section the results of applying P.C. analysis are 
presented. The P.C. extraction analysis and varimax rotation 
method is applied on all metrics.  The rotated component 
matrix is given in Table III. Table III shows the relationship 
between the original OO metrics and he domain metrics. The 
values above 0.7 (shown in bold in Table III) are the metrics 
that are used to interpret the PCs. For each PC, we also 
provide its eigenvalue, variance percent and cumulative 
percent. The interpretations of PCs are given as follows: 

• P1: DAC, LCOM, NOM, RFC and WMC are 
cohesion, coupling and size metrics. We have size, 
coupling and cohesion metrics in this dimension. 
This shows that there are classes with high internal 
methods (methods defined in the class) and external 
methods (methods called by the class). This means 
cohesion and coupling is related to number of 
methods and attributes in the class. 

• P2: MPC is coupling metric that counts number of 
send statements defined in a class.  

• P3: NOC and DIT are inheritance metrics that count 
number of children and depth of inheritance tree in a 
class. 

 
 

TABLE III 
ROTATED PRINCIPAL COMPONENTS 

P.C. P1 P2 P3 
Eigenvalue 3.74 1.41 1.14 
Variance % 46.76 17.64 14.30 

Cumulative % 46.76 64.40 78.71 
DAC 0.796 0.016 0.065 
DIT -0.016 -0.220 -0.85 

LCOM 0.820 -0.057 -0.079 
MPC 0.094 0.937 0.017 
NOC 0.093 -0.445 0.714 
NOM 0.967 -0.017 0.049 
RFC 0.815 0.509 -0.003 

WMC 0.802 0.206 0.184 
 

B.  ANN Results  
We employed ANN technique to predict the maintenance 

effort of the classes. This method is rarely applied in this area. 
The inputs to the network were all the domain metrics P1, P2, 
and P3. The network was trained using the back propagation 
algorithm. Table II shows the best architecture, which was 
experimentally determined. The model is trained using 
training and test data sets and evaluated on validation data set. 
Table IV shows the MARE, MRE, r and p-value results of 
ANN model evaluated on validation data. The correlation of 
the predicted change and the observed change is represented 
by the coefficient of correlation (r). The significant level of a 

validation is indicated by a p-value. A commonly accepted p-
value is 0.05. 

TABLE IV 
VALIDATION RESULTS OF ANN MODEL 

MARE 0.265 
MRE 0.09 

r 0.582 
p-value 0.004 

 
TABLE V 

ANALYSIS OF MODEL EVALUATION ACCURACY 
 
 
 
 
 
 
 
 
For validate data sets, the percentage error smaller than 10 

percent, 27 percent and 55 percent is shown in Table V. We 
conclude that impact of prediction is valid in the population. 

VI.  CONCLUSION 
This empirical study presents the prediction of maintenance 

effort using ANN technique. The independent variables were 
principal components from eight OO metrics. The results 
presented above shows that these independent variables 
appear to be useful in predicting maintenance effort. The 
ANN model demonstrated that they were able to estimate 
maintenance effort within 30 percent of the actual 
maintenance effort in more than 72 percent of the classes in 
the validate set, and with a MARE of 0.265. Thus ANNs have 
shown their ability to provide an adequate model for 
predicting maintenance effort. 

The performance of ANN model is to a large degree 
dependent on the data on which they are trained, and the 
availability of suitable system data will determine the extent to 
which maintenance effort models can be developed. 

More similar type of studies must be carried out with large 
data sets to get an accurate measure of performance outside 
the development population. We plan to replicate our study on 
large data set and industrial OO software system. We further 
plan to replicate our study to predict models based on early 
analysis and design artifacts. 
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