
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3312

Abstract—Importance of software quality is increasing leading to

development of new sophisticated techniques, which can be used in
constructing models for predicting quality attributes. One such
technique is Artificial Neural Network (ANN). This paper examined
the application of ANN for software quality prediction using Object-
Oriented (OO) metrics. Quality estimation includes estimating
maintainability of software. The dependent variable in our study was
maintenance effort. The independent variables were principal
components of eight OO metrics. The results showed that the Mean
Absolute Relative Error (MARE) was 0.265 of ANN model. Thus we
found that ANN method was useful in constructing software quality
model.

Keywords—Software quality, Measurement, Metrics, Artificial
neural network, Coupling, Cohesion, Inheritance, Principal
component analysis.

I. INTRODUCTION
HERE are several metrics proposed in the literature to
capture the quality of OO design and code, for example,

(Aggarwal et al. [13]; Briand et al., [14, 15]; Bieman and
Kang [7]; Cartwright and Shepperd [17]; Chidamber and
Kamerer [21, 22]; Harrison et al. [20]; Henderson-sellers [3];
Hitz and Montazeri [18]; Lake and Cook [2]; Li and Henry
[27]; Lee et al. [28] Lorenz and Kidd [19]; Tegarden et al [5]).

These metrics provide ways to evaluate the quality of
software and their use in earlier phases of software
development can help organizations in assessing large
software development quickly, at a low cost. But how do we
know which metrics are useful in capturing important quality
attributes such as fault-proneness, effort, productivity or
amount of maintenance modifications. An empirical study of
real systems can provide relevant answers. There have been
few empirical studies evaluating the impact of OO metrics on
software quality and constructing models that utilize them in

Manuscript received August 24, 2006
Prof. K.K.Aggarwal is Vice Chancellor of GGS Indraprastha University,

Delhi, India (email: kka@ipu.edu)
Prof. Yogesh Singh is with GGS Indraprastha University, Delhi, India

(email: ys66@rediffmail.com)
Dr. Arvinder Kaur is with GGS Indraprastha University , Delhi, India (e-

mail: arvinderkaurtakkar@yahoo.com.)
Ruchika Malhotra (Corresponding Author phone: 91-011-26431421) is

with GGS Indraprastha University, Delhi, India (email:
ruchikamalhotra2004@yahoo.com).

predicting quality attributes in the system, such as (Basili et
al. [26]; Binkley and Schach [1]; Briand et al [16]; Cartwright
and Shepperd [17]; Chidamber and Kamerer [23]; El Emam et
al. [9]; Gyimothy et al. [24]; Harrison et al. [20]; Li and Henry
[27]; Ping et al. [29]).

Khoshgaftaar at al. [25] introduced the use of the neural
networks as a tool for predicting software quality. In [25],
they presented a large telecommunications system, classifying
modules as fault prone or not fault prone. They compared the
ANN model with a non-parametric discriminant model, and
found the ANN model had better predictive accuracy. We
conduct our study in the OO paradigm. However, since the
OO paradigm is different from procedural paradigm, different
software design metrics have to be defined and used. We
explore the relationship between these design metrics and
maintainability effort in this paper. Our ANN model aims to
predict OO software quality by estimating the number of lines
changed per class.
 The paper is organized as follows: Section 2 provides
overview of existing studies. Section 3 summarizes the
metrics studied and describes sources from which data is
collected. Section 4 presents the research methodology
followed in this paper. The results of the study are given in
section 5. Conclusions of the research are presented in section
6.

II. RELATED WORK
Based on a study of eight medium-sized systems, developed

by students Basili et al. [26] found that several of the
Chidamber and Kamerer metrics were associated with fault
proneness. Briand et al. [18] empirically explored the
relationship between OO metrics and the probability of fault
detection in system classes. Their results indicated that very
accurate prediction models could be derived to predict faulty
classes.

Yu et al. [29] chose eight metrics and they examined the
relationship between these metrics and the fault-proneness.
The subject system was the client side of a large network
service management system developed by three professional
software engineers. It was written in Java consisting of 123
classes and around 34,000 lines of code. First, they examined
the correlation among the metrics and found four highly
correlated subsets. Then, they used univariate analysis to find
out which metrics could detect faults and which could not.

Application of Artificial Neural Network for
Predicting Maintainability using Object-

Oriented Metrics
K. K. Aggarwal, Yogesh Singh, Arvinder Kaur, and Ruchika Malhotra

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3313

TABLE I
METRICS STUDIED

Gyimothy et al. [24] empirically validated Chidamber and

Kamerer [22] metrics on open source software for fault
prediction. They employed regression (linear and logistic
regression) and machine learning methods (neural network
and decision tree) for model prediction.

Most of these prediction models are built using statistical
models. ANN have seen an explosion of interest over the
years, and are being successfully applied across a range of
problem domains, in areas as diverse as finance, medicine,
engineering, geology and physics. Indeed, anywhere that there
are problems of prediction, classification or control, neural
networks are being introduced. ANN can be used as a
predictive model because it is very sophisticated modeling
techniques capable of modeling complex functions.

In [25], Khoshgoftaar et al. presented a case study of real-
time avionics software to predict the testability of each
module from static measurements of source code. They found
that ANN is a promising technique for building predictive
models, because they are able to model nonlinear
relationships.

Our ANN model aims to predict software quality by
estimating the number of lines changed per class.

III. RESEARCH BACKGROUND
In this section we present the summary of metrics studied in

this paper (Section 2.1) and empirical data collection (Section
2.2).

A. Dependent and Independent Variables
The continuous dependent variable in our study is

maintainability. The goal of our study is to empirically
explore the relationship between OO metrics and maintenance
effort at the class level. We use ANN to predict maintenance
effort per class. The independent variables are principal
components from OO metrics chosen for this study. The
metrics selected in this study are summarized in Table I.

B. Empirical Data Collection
This investigation is to predict the maintenance effort. The

commercial software products UIMS (User Interface System)
and QUES (Quality Evaluation System) data are used in this
investigation, which is presented in [27]. The maintenance
effort is measured by using the number of lines changed per
class. A line change could be an addition or a deletion. A
change of the content of a line is counted as a deletion
followed by an addition. This measurement is used in this
study to estimate the maintainability of the OO systems.
UIMS system consists of 39 classes and QUES system
consists of 71 classes.

IV. SOME COMMON MISTAKES
We used the following methodology in this study:

1. The input metrics were normalized using min-max
normalization. Min-max normalization performs a linear
transformation on the original data [8]. Suppose that minA
and maxA are the minimum and maximum values of an
attribute A. It maps value v of A to v’ in the range 0 to 1
using the formula:

Metric Definition Sources
Lack of Cohesion (LCOM) It counts number of null pairs of methods that do not have common

attributes.
[22][11] [12]

Number of Children
(NOC)

The NOC is the number of immediate subclasses of a class in a hierarchy. [22][11] [12]

Depth of Inheritance (DIT) The depth of a class within the inheritance hierarchy is the maximum
number of steps from the class node to the root of the tree and is measured
by the number of ancestor classes.

[22][11] [12]

Weighted Methods per
Class (WMC)

The WMC is a count of sum of complexities of all methods in a class.
Consider a class K1, with methods M1,…….. Mn that are defined in the
class. Let C1,……….Cn be the complexity of the methods.

∑
=

=
n

1i

iCWMC

[22][11] [12]

Response for a Class
(RFC)

The response set of a class (RFC) is defined as set of methods that can be
potentially executed in response to a message received by an object of that
class. It is given by
RFC=|RS|, where RS, the response set of the class, is given by

}{R M ijjalli ∪=RS

[22][11] [12]

Data Abstraction Coupling
(DAC)

Data Abstraction is a technique of creating new data types suited for an
application to be programmed.
DAC = number of ADTs defined in a class.

[27]

Message Passing Coupling
(MPC)

It counts the number of send statements defined in a class. [27]

Number of Methods per
Class (NOM)

It counts number of methods defined in a class.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3314

AA

Avv
minmax

min'
−

−
=

 (1)

2. Perform principal components analysis on the normalized
metrics to produce domain metrics.

3. We divided data into training, test and validate sets using
3:1:1 ratio.

4. Develop ANN model based on training and test data sets.
5. Apply the ANN model to validate data set in order to

evaluate the accuracy of the model.

A. Principal-Component (or P.C.) Analysis
 Many OO metrics have high correlation with each other.
P.C analysis transforms raw metrics to variables that are not
correlated to each other when the original data are OO
metrics, we call the new P.C. variables domain metrics [25].

P.C. analysis is used to maximize the sum of squared
loadings of each factor extracted in turn [4]. The P.C. analysis
aims at constructing new variable (Pi), called Principal
Component (P.C.) out of a given set of
variables),....,2,1(' kjsXj = .

.....

....
....

kkkkkk

kk

kk

XbXbXbP

XbXbXbP
XbXbXbP

+++=

+++=
+++=

2211

22221212

12121111

.
 (2)

All bij’s called loadings are worked out in such a way that

the extracted P.C.s satisfy the following two conditions:
(i) P.C.s are uncorrelated (orthogonal) and
(ii) The first P.C. (P1) has the highest variance; the

second P.C. has the next highest variance so on.
The variables with high loadings help identify the

dimension P.C. is capturing but this usually requires some
degree of interpretation. In order to identify these variables,
and interpret the P.C.s, we consider the rotated components.
As the dimensions are independent, orthogonal rotation is
used. There are various strategies to perform such rotation.
We used the varimax rotation, which is the most frequently
used strategy in literature. Eigenvalue or latent root is
associated with P.C., when we take the sum of squared values
of loadings relating to dimension, then the sum is referred to
as eigenvalue. Eigenvalue indicates the relative importance of
each dimension for the particular set of variables being
analyzed. The P.C.s with eigenvalue greater than 1 is taken for
interpretation. Given an n by m matrix of multivariate data,
P.C. analysis can reduce the number of columns. In our study
n represents the number of classes for which OO metrics have
been collected. Using P.C. analysis, the n by m matrix is
reduced to n by p matrix (where p<m).

B. ANN Modeling

 The network used in this work belongs to Multilayer Feed
Forward networks and is referred to as M-H-Q network with
M source nodes, H nodes in hidden layer and Q nodes in the
output layer [10]. The input nodes are connected to every
node of the hidden layer but are not directly connected to the

output node. Thus the network does not have any lateral or
shortcut connection.

ANN repetitively adjusts different weights so that the
difference between desired output from the network and actual
output from ANN is minimized. The network learns by
finding a vector of connection weights that minimizes the sum
of squared errors on the training data set. The summary of
ANN used in this study is shown in Table II.

TABLE II

ANN SUMMARY
Architecture
Layers 3
Input Units 8
Hidden Units 9
Output Units 1
Training
Transfer Function Tansig
Algorithm Back Propagation
Training Function TrainBR

The ANN was trained by the standard error back

propagation algorithm at a learning rate of 0.005, having the
minimum square error as the training stopping criterion.

C. Performance Evaluation
In this study the main measure used for evaluating model

performance is the Mean Absolute Relative Error (MARE).
MARE is the preferred error measure for software
measurement researchers and is calculated as follows [6]:

n
actual

actualestimaten

i

÷⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
= ∑

=1

MARE

(3)

where:
estimate is the network output for each observation
n is the number of observations
to estimate whether models are biased and tend to over or
under estimate, the Mean Relative Error (MRE) is calculated
as follows[6]:

n
actual

actualestimaten

i

÷⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
= ∑

=1

MRE

(4)

A large positive MRE would suggest that the model over

estimates the number of lines changed per class, whereas a
large negative value will indicate the reverse.

V. RESULTS
In this section we present the analysis performed to find the

relationship between OO metrics and maintainability effort of
the classes.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3315

In this section we present the analysis performed to find the
relationship between OO metrics and maintainability effort of
the classes.

A. Principal Component Analysis Results
 In this section the results of applying P.C. analysis are
presented. The P.C. extraction analysis and varimax rotation
method is applied on all metrics. The rotated component
matrix is given in Table III. Table III shows the relationship
between the original OO metrics and he domain metrics. The
values above 0.7 (shown in bold in Table III) are the metrics
that are used to interpret the PCs. For each PC, we also
provide its eigenvalue, variance percent and cumulative
percent. The interpretations of PCs are given as follows:

• P1: DAC, LCOM, NOM, RFC and WMC are
cohesion, coupling and size metrics. We have size,
coupling and cohesion metrics in this dimension.
This shows that there are classes with high internal
methods (methods defined in the class) and external
methods (methods called by the class). This means
cohesion and coupling is related to number of
methods and attributes in the class.

• P2: MPC is coupling metric that counts number of
send statements defined in a class.

• P3: NOC and DIT are inheritance metrics that count
number of children and depth of inheritance tree in a
class.

TABLE III
ROTATED PRINCIPAL COMPONENTS

P.C. P1 P2 P3
Eigenvalue 3.74 1.41 1.14
Variance % 46.76 17.64 14.30

Cumulative % 46.76 64.40 78.71
DAC 0.796 0.016 0.065
DIT -0.016 -0.220 -0.85

LCOM 0.820 -0.057 -0.079
MPC 0.094 0.937 0.017
NOC 0.093 -0.445 0.714
NOM 0.967 -0.017 0.049
RFC 0.815 0.509 -0.003

WMC 0.802 0.206 0.184

B. ANN Results
We employed ANN technique to predict the maintenance

effort of the classes. This method is rarely applied in this area.
The inputs to the network were all the domain metrics P1, P2,
and P3. The network was trained using the back propagation
algorithm. Table II shows the best architecture, which was
experimentally determined. The model is trained using
training and test data sets and evaluated on validation data set.
Table IV shows the MARE, MRE, r and p-value results of
ANN model evaluated on validation data. The correlation of
the predicted change and the observed change is represented
by the coefficient of correlation (r). The significant level of a

validation is indicated by a p-value. A commonly accepted p-
value is 0.05.

TABLE IV
VALIDATION RESULTS OF ANN MODEL

MARE 0.265
MRE 0.09

r 0.582
p-value 0.004

TABLE V

ANALYSIS OF MODEL EVALUATION ACCURACY

For validate data sets, the percentage error smaller than 10

percent, 27 percent and 55 percent is shown in Table V. We
conclude that impact of prediction is valid in the population.

VI. CONCLUSION
This empirical study presents the prediction of maintenance

effort using ANN technique. The independent variables were
principal components from eight OO metrics. The results
presented above shows that these independent variables
appear to be useful in predicting maintenance effort. The
ANN model demonstrated that they were able to estimate
maintenance effort within 30 percent of the actual
maintenance effort in more than 72 percent of the classes in
the validate set, and with a MARE of 0.265. Thus ANNs have
shown their ability to provide an adequate model for
predicting maintenance effort.

The performance of ANN model is to a large degree
dependent on the data on which they are trained, and the
availability of suitable system data will determine the extent to
which maintenance effort models can be developed.

More similar type of studies must be carried out with large
data sets to get an accurate measure of performance outside
the development population. We plan to replicate our study on
large data set and industrial OO software system. We further
plan to replicate our study to predict models based on early
analysis and design artifacts.

REFERENCES
[1] A.Binkley and S.Schach, “Validation of the Coupling Dependency

Metric as a risk Predictor”, Proceedings in ICSE 98, 452-455, 1998.
[2] A.Lake, C.Cook, “Use of factor analysis to develop OOP software

complexity metrics”. Proc. 6th Annual Oregon Workshop on Software
Metrics, Silver Falls, Oregon, 1994.

[3] B.Henderson-sellers, “Object-Oriented Metrics, Measures of
Complexity”, Prentice Hall, 1996.

[4] C.R.Kothari. “Research Methodology. Methods and Techniques”, New
Age International Limited.

[5] D.Tegarden, S. Sheetz, D.Monarchi, “A Software Complexity Model of
Object-Oriented Systems. Decision Support Systems”, vol. 13, pp.241-
262.

ARE Range Percent

0-10% 50

11-27% 9.09

28-43% 18.18

>44% 22.72

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3316

[6] G.Finnie and G. Witting, “AI Tools for Software Development Effort
Estimation”, International Conference on Software Engineering:
Education and practice, 1996.

[7] J.Bieman, B.Kang, “Cohesion and Reuse in an Object-Oriented System”,
Proc. ACM Symp. Software Reusability (SSR’94), pp.259-262, 1995.

[8] J.Han, M. Kamber, “Data Mining: Concepts and Techniques”, Harchort
India Private Limited, 2001.

[9] K.El Emam , S.Benlarbi , N.Goel , Rai, “A Validation of Object-
Oriented Metrics”, Technical Report ERB-1063, NRC, 1999.

[10] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, “A Neural Net Based
Approach to Test Oracle”, ACM SIGSOFT, vol. 29, issue 3, 2004.

[11] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika Malhotra,
“Analysis of Object-Oriented Metrics”, International Workshop on
Software Measurement (IWSM), 2005.

[12] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika Malhotra,
“Empirical Study of Object-Oriented Metrics”, Accepted to be published
in Journal of Object-Technology.

[13] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika Malhotra,
“Software Reuse Metrics for Object-Oriented Systems”, Third ACIS Int'l
Conference on Software Engineering Research, Management and
Applications (SERA'05), IEEE Computer Society, pp. 48-55, 2005.

[14] L.Briand , W.Daly and J. Wust, “Unified Framework for Cohesion
Measurement in Object-Oriented Systems”, Empirical Software
Engineering, vol. 3, pp.65-117, 1998.

[15] L.Briand , W.Daly and J. Wust, “A Unified Framework for Coupling
Measurement in Object-Oriented Systems. IEEE Transactions on
software Engineering”, Vol. 25, pp.91-121, 1999.

[16] L.Briand , W.Daly and J. Wust, “Exploring the relationships between
design measures and software quality”, Journal of Systems and
Software, Vol. 5, pp.245-273, 2000.

[17] M.Cartwright, M.Shepperd, “An Empirical Investigation of an Object-
Oriented Software System”, IEEE Transactions of Software
Engineering, 1999.

[18] M.Hitz, B. Montazeri, “Measuring Coupling and Cohesion in Object-
Oriented Systems”, Proc. Int. Symposium on Applied Corporate
Computing, Monterrey, Mexico, 1995.

[19] M.Lorenz, and J.Kidd, “Object-Oriented Software Metrics”, Prentice-
Hall, 1994.

[20] R.Harrison, S.J.Counsell, and R.V.Nithi, “An Evaluation of MOOD set
of Object-Oriented Software Metrics”, IEEE Trans. Software
Engineering, vol. SE-24, no.6, pp. 491-496, June 1998.

[21] S.Chidamber and C.F.Kamerer, “A metrics Suite for Object-Oriented
Design”, IEEE Trans. Software Engineering, vol. SE-20, no.6, 476-493,
1994.

[22] S.Chidamber, C. Kemerer, “Towards a Metrics Suite for Object Oriented
design”. Proc. Conference on Object-Oriented Programming: Systems,
Languages and Applications (OOPSLA’91). Published in SIGPLAN
Notices, vol 26 no. 11, pp.197-211, 1991.

[23] S.Chidamber, D. Darcy, C. Kemerer, “Managerial use of Metrics for
Object-Oriented Software: An Exploratory Analysis”, IEEE
Transactions on Software Engineering, vol.24 no.8, 629-639, 1998.

[24] T.Gyimothy , R.Ferenc , I.Siket , “Empirical validation of object-
oriented metrics on open source software for fault prediction”, IEEE
Trans. Software Engineering, vol. 31, Issue 10, pp.897 – 910, Oct.
2005.

[25] T.M.Khoshgaftaar, E.D.Allen, J.P Hudepohl, S.J Aud,., "Application of
neural networks to software quality modeling of a very large
telecommunications system," IEEE Transactions on Neural Networks,
Vol. 8, No. 4, pp. 902--909, 1997.

[26] V.Basili, L.Briand, W.Melo, “A Validation of Object-Oriented Design
Metrics as Quality Indicators”, IEEE Transactions on Software
Engineering, vol. 22 no.10, pp. 751-761, 1996.

[27] W.Li, S.Henry, “Object-Oriented Metrics that Predict Maintainability”,
Journal of Systems and Software, vol 23 no.2, pp.111-122, 1993.

[28] Y.Lee, B.Liang, S.Wu and F.Wang, “Measuring the Coupling and
Cohesion of an Object-Oriented program based on Information flow”,
1995.

[29] Yu Ping, Ma Xiaoxing, Lu Jian , “Predicting Fault-Proneness using OO
Metrics: An Industrial Case Study”, CSMR 2002, Budapest, Hungary,
pp.99-107, 2002.

