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 
Abstract—Mumbai, being traditionally the epicenter of India's 

trade and commerce, the existing major ports such as Mumbai and 
Jawaharlal Nehru Ports (JN) situated in Thane estuary are also 
developing its waterfront facilities. Various developments over the 
passage of decades in this region have changed the tidal flux 
entering/leaving the estuary. The intake at Pir-Pau is facing the 
problem of shortage of water in view of advancement of shoreline, 
while jetty near Ulwe faces the problem of ship scheduling due to 
existence of shallower depths between JN Port and Ulwe Bunder. In 
order to solve these problems, it is inevitable to have information 
about tide levels over a long duration by field measurements. 
However, field measurement is a tedious and costly affair; 
application of artificial intelligence was used to predict water levels 
by training the network for the measured tide data for one lunar tidal 
cycle. The application of two layered feed forward Artificial Neural 
Network (ANN) with back-propagation training algorithms such as 
Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to 
predict the yearly tide levels at waterfront structures namely at Ulwe 
Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, 
and Vashi for a period of lunar tidal cycle (2013) was used to train, 
validate and test the neural networks. These trained networks having 
high co-relation coefficients (R= 0.998) were used to predict the tide 
at Ulwe, and Vashi for its verification with the measured tide for the 
year 2000 & 2013. The results indicate that the predicted tide levels 
by ANN give reasonably accurate estimation of tide. Hence, the 
trained network is used to predict the yearly tide data (2015) for 
Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was 
predicted by using the neural network which was trained with the 
help of measured tide data (2000) of Apollo and Pir-Pau. 

The analysis of measured data and study reveals that: The 
measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is 
maximum amplification of tide by about 10-20 cm with a phase lag 
of 10-20 minutes with reference to the tide at Apollo Bunder 
(Mumbai). LM training algorithm is faster than GD and with increase 
in number of neurons in hidden layer and the performance of the 
network increases. The predicted tide levels by ANN at Pir-Pau and 
Ulwe provides valuable information about the occurrence of high and 
low water levels to plan the operation of pumping at Pir-Pau and 
improve ship schedule at Ulwe. 

 
Keywords—Artificial neural network, back-propagation, tide 

data, training algorithm. 

I. INTRODUCTION 

UMBAI harbor is one of the oldest harbor of India and 
is situated in Thane estuary on the west coast having an 
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access to the Arabian Sea through its wide entrance. Mumbai 
being traditionally the epicenter of India's trade has two major 
ports in the region namely Mumbai and Jawaharlal Nehru 
(JN). Mumbai port being on the leeside of Salsette Island and 
JN port being well inside from wide estuarine entrance, wave 
tranquility is not a main concern from operational 
consideration. However, the presence of macro tide (tidal 
range of 5.0m) of semi-diurnal in nature, strong tidal currents 
(1-2 m/sec) prevail in the harbour. The entrance to these 
harbors is ultra-wide (10 km) and the tidal water 
spreads/extends 30-40 km north resulting in huge exchange of 
tidal flux during flood/ebb phase of tide. Due to various 
developments over the past several decades in this estuarine 
region there is significant advancement of shoreline on west 
side of estuary and the tidal flux entering/leaving has changed 
considerably. In view of this various water front facilities such 
as intakes at Pi-Pau and jetty at Ulwe Bunder are facing the 
problem of inadequacy of water supply for cooling of 
condensers and operability of berths respectively. In order to 
cope with this problem, it is inevitable to have accurate 
information about tide data for longer duration (over the years) 
by actual field measurement. However, the collection of tide 
data over a long duration is not only tedious but acostly affair. 
In order to overcome these problems and to improve the 
operability of both waterfront structures, application of 
Artificial Intelligence to predict water levels based on the 
actual field measurements for a lunar tidal cycle is made.  

Artificial Neural Network had been used for predicting/ 
forecasting several oceanographic phenomena such as tides, 
waves, etc. The past studies, dealing with ANN involved 
either estimation or forecasting of several parameters such as 
wave heights/period, spectral shapes and directional 
characteristics and has been summarized by [1]. Back 
propagation neural network has been used by several 
researchers [2], [3] to predict tide data. The present study 
represents the application of a two layered feed-forward ANN 
for prediction of yearly (2015) tide data at Ulwe and Pir-Pau. 
Actual tide data which have been collected at 10 minutes’ 
interval for a lunar cycle (15 days) for the year 2013 at Apollo, 
Ulweand Vashi have been used to form the two-layered feed 
forward neural networks. Matlab 7.11.0 (R2010b) software 
was used to operate the model. Back-propagation training 
algorithms have been used to train the network, where 
network weights and bias get updated to minimize the 
difference between actual output of network and the desired 
output. Two different training algorithms such as gradient 
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C. Method of Analysis 

The aim of this study is to use two layered feed forward 
neural networks to predict yearly (2015) tide data at two water 
front facilities such as Pir-Pau and Ulwe. Initially, two types (I 
and II) of two layered feed forward artificial neural network 
were formed. The two layered feed forward neural networks 
of type-I were formed by using two sets of 2160 tide data 
(covering spring-neap-spring tide) which were collected at 
every 10 minutes interval for a lunar cycle in the month of 
May2013, at Apollo and Ulwe. Similarly, the network of type-
II were also formed by using two sets of 2160 tide data 
(covering spring-neap-spring tide) which were collected at 
every 10 minutes’ interval for a lunar cycle in the month of 
May 2013; at Apollo and Vashi. For both the types (I and II) 
of network, out of each 2160 data sets, 70% of this data were 
used for training the network, 15% for validation of network 
and remaining 15% was used for the testing of network. 

The architecture of two layered feed forward neural 
network which is shown in Fig. 4, indicates that for the 
network of type I and II, the hidden layer receives the tide data 
of Apollo Bunder as the input data. Each of the input value 
will then be multiplied by the weight and added to the bias. 
These summation values are passed through a non-linear 
transfer function which is hyperbolic tangent sigmoid (tansig). 
The output from hidden layer will be treated as input to the 
outer layer, where the input will once again be multiplied by 
the weight and it will be added to the bias. Thereafter, all these 
summed up values are added and finally the summation value 
will be passed through the linear transfer function (purelin) 
and it produces the network output. The desired outputs for 
two types (I and II) of network are tide data of Ulwe and 
Vashi, respectively. Once the network is formed, it is trained 
to minimize the overall error of the network. For the present 
study two kinds of back-propagation training algorithm 
(‘trainlm’ and ‘traingd’) were used. 

The ‘traingd’ is gradient decent back-propagation algorithm 
where the network weight and bias are updated based on the 
errors of the network. If the weight and bias variable are 
denoted by a variable Y, these variables are adjusted 
according to the gradient decent. The amount of adjustment 
(dY) to these variables for an iteration is expressed as: 
 

ܻ݀ ൌ ݎ݈ ∗
݀ሺ݂ݎ݁݌ሻ
ܻ݀

 

 
where lr is the learning rate and perf is a function of the 
network error. For ‘traingd’ algorithm the specified value for 
lr is 0.01. One drawback of this training function is that, 
because of its lesser learning rate, its rate of convergence is 
slow but it is a stable training function.  

The ‘trainlm’ is a training algorithm where the network 
weight and bias are updated based on the Lavenberg-
Marquardt optimization technique. This algorithm is faster 
than ‘traingd’. In Lavenberg-Marquardt algorithm, the amount 
by which the weight/bias (Y) get adjusted after an iteration is 
given as 

 

ܻ݀ ൌ ሾࢀ^ࡶ	ࡶ ൅ μࡵሿିଵࢋࢀࡶ 
 

where J is Jacobian matrix that contains derivatives of the 
network error with respect to the weights, biases and e is the 
vector of network errors and µ is a scalar called as the 
combination co-efficient and I is the identity matrix. In this 
training algorithm, the value of combination co-efficient (µ) 
gets updated during the training process. The value of µ is 
decreased after each step of iteration, if total error of the 
network, decreases after that iteration step. Similarly, the 
value of combination co-efficient (µ) increases if total error of 
the network, increases after the iteration step. 

The performance of the neural network is evaluated by the 
calculation of mean square error (MSE) and co-relation co-
efficient (R). The expressions for MSE and R are as: 

 

ܧܵܯ ൌ
∑ ሺݕ௜ െ ௜ሻଶݖ
௡
௜ୀଵ

݊
 

 
and 

ܴ ൌ
∑ ሺݕ௜ െ ܻሻሺݖ௜ െ ܼሻ௡
௜ୀଵ

ඥ∑ ሺݕ௜ െ ܻሻଶ ∑ ሺݖ௜ െ ܼሻଶ௡
௜ୀଵ

௡
௜ୀଵ

 

 
where ݕ௜ is the actual observed value at ith time step and ݖ௜is 
the predicted value at ith time step; n is the number of samples. 
ܻ	and	ܼ are mean of observed and predicted value 
respectively.  

During the training of neural networks (Type I and II) by 
different back-propagation training algorithms (traingd, 
trainlm), the number of neurons in the hidden layer was 
increased to improve the performance of the network. Once 
the desired performance of the network was achieved, it was 
used for the prediction of eight days of tide data (for the year 
2013 and 2000) at Ulwe and Vashi. The predicted tide data at 
these two locations were compared with the measured water 
levels and it indicates that the predicted data compares well 
with the measured data. Hence, the network was used to 
predict yearly (2015) tide data of Ulwe Bunder, with the help 
of yearly (2015) predicted tide data of Apollo Bunder. 
Subsequently, by using ten days of measured tide data (1.19 
AM of 13th Dec 2000 to 3.48 PM of 22nd Dec 2000), at Apollo 
and Pir-Pau, the two layered feed forward artificial neural 
networks (of type-III) were formed. The network was trained 
by the same back-propagation training algorithms (‘traingd’, 
‘trainlm’) where the number of neurons in the hidden layer 
was increased to improve the performance of the network. 
Once the desired performance of the network was achieved, it 
was used to predict yearly (2015) tide data of Pir-Pau, with the 
help of yearly (2015) predicted tide data of Apollo Bunder. 

D.  Results and Discussions 

Basically, three types (Type I, II & III) of two layered feed 
forward neural network had been developed by using the 
measured tide data at Apollo, Ulwe, Vashi and Pir-Pau. These 
networks were trained by training algorithms such as 
‘traingd’& ‘trainlm’. It has been observed that ‘traingd’ 
function is little slower in convergence compared to the 
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IV. CONCLUSION 

The present study attempted to investigate the applicability 
of two layer feed-forward artificial neural networks, having 
one hidden layer and one output layer, in the prediction of 
yearly tide data at two waterfront facilities viz. Ulwe Bunder 
and Pir-Pau of Mumbai harbor. Two types of training function 
(traingd and trainlm) have been used to train the network. The 
number of neurons in the hidden layer has been increased to 
improve the performance of the network. Once the desired 
performances of the networks are achieved, they are used to 
predict the tide data of Ulwe Bunder and Pir-Pau. From this 
experimental study several observations are made, such as: 
 The measured tidal data at Apollo Bunder, Pir-Pau, Vashi 

and Ulwe indicate that there is maximum amplification of 
tide by about 10-20 cm with the phase lag of 10-20 
minutes with reference to the tide at Apollo Bunder 
(Mumbai). 

 In a two layer feed forward network, if the training 
function ‘traingd’ is used, more number of neurons in the 
hidden layer are required to improve the overall 
performance of the network compared to the training 
function ‘trainlm’. 

 The training function ‘traingd’ is little slower in training 
the network, compared to the ‘trainlm’. 

 The comparison of predicted tide data and the actual tide 
data of Ulwe, Vashi and Pir-Pau, indicate that a two layer 
feed forward neural network with sufficient number of 
neurons in the hidden layer is capable of predicting the 
tide data with a good accuracy. 

 Depending on the timing at which high/low tide will 
occur; the timing at which ships/barges of different drafts 
should ply up to Ulwe Bunder can be decided and the 
waiting time of ships at JNP/Panvel mouth can be 
substantially reduced.  

 Similarly, based on the predicted tide data at Pir-Pau, the 
pumping operation/maintenance of pumps for the intake 
structures at Pir-Pau can be planned efficiently.  

ACKNOWLEDGMENT 

The authors are grateful to S. Govindan, Director, Central 
Water and Power Research Station, Pune (India) for his 
continuous encouragement and motivation for carrying out the 
research work. 

REFERENCES 
[1] M. C. Deo, “Artificial neural networks in coastal and ocean 

engineering,” Indian Journal of Geo-marine Science, vol. 39(4), pp. 
589-596, December 2010. 

[2] S. Mandal, “Prediction of tides using back-propagation neural 
networks,” in Proc. International Conference in Ocean Engineering, IIT 
Madras, 2001, pp. 499-504. 

[3] T. L. Lee, “Back-propagation neural network for long-term tidal 
predictions,” ELSEVIER Ocean Engineering, vol. 31, pp. 225-238, 2004. 

[4] A. A. Purohit, M. M. Vaidya and M. D. Kudale, "Use of hydraulic 
model for improving ship scheduling and operability at berth in shallow-
wide estuarine Mumbai harbour", in Proc. National Conference 
OSICON, IITM Pune, 2013, pp. 202-206. 

[5] S. Haykin, Neural Networks A Comprehensive Foundation. India: 
Pearson Education Pte. Ltd., 2005, ch. 1. 


