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Abstract—In Secondary Surveillance Radar (SSR) systems, it is
more difficult to locate and recognise aircrafts in the neighbourhood
of civil airports since aerial traffic becomes greater. Here, we propose
to apply a recent Blind Source Separation (BSS) algorithm based
on Time-Frequency Analysis, in order to separate messages sent by
different aircrafts and falling in the same radar beam in reception.
The above source separation method involves joint-diagonalization
of a set of smoothed version of spatial Wigner-Ville distributions.
The technique makes use of the difference in the t− f signatures of
the nonstationary sources to be separated. Consequently, as the SSR
sources emit different messages at different frequencies, the above
method is fitted to this new application. We applied the technique in
simulation to separate SSR replies. Results are provided at the end
of the paper.

Keywords—Blind Source Separation, Time-Frequency Analysis,
Secondary Radar

I. INTRODUCTION

Air traffic control consists mainly in detecting aircrafts,

identifying them, and estimating their location and speed.

This task is made more and more difficult because of greater

aerial traffic. In particular, the probability that two aeroplanes

fall in the same radar beam of a civil airport is no longer

negligible[1], [2]. The radar antenna interrogates aircrafts

that return the requested information (i.e. the reply) to the

radar antenna. Due to the increase of air traffic, the density

of replies increases as well. It is proposed in this paper to

separate the replies from two or more airplanes arriving at the

same time on the antenna. Since SSR sources emit different

messages at different frequencies, we propose to use a recent

blind source separation technique based on time-frequency

analysis making use of the difference in the t − f signatures

of the nonstationary sources to be separated[3], [4].

The paper is organized as follows. In Section II, we briefly

describe the principe and the SSR data model. The theoretical

issues of the time-frequency-based Blind Souce Separation

(BSS) technique and its practical implementation are recalled

in Section III. Finally, Section IV proposes some simulation

results of SSR signals separation. .

II. SECONDARY RADAR

A. Principle

The aim of a secondary radar is to receive information

from aircrafts in order to locate and recognise them. Aircrafts

are equipped with a device called a ’transponder’. An

interrogation message is sent to aircrafts. In the past with

SSR mode A/C, all aircrafts in the radar range were thus

questioned and they answered only in the case they were

in the main beam of the secondary radar. Now with the

new technology called SSR mode S (where ’S’ stands for

selectivity), the radar is able to question a limited number

of aircrafts so that reducing the density of replies. This

technology was designed to reduce the ”Garbling” problem

resulting from the interference of the replies of two or

more airplanes arriving at the same time on the reception

antenna[2]. The answer of the transponder is composed of a

preamble and a 56 or 112- bits binary message (see figure 1).

This message carries the information (altitude, speed, etc ...).

t

8 µs

...

56/112 µs

Preamble Message carrying information

Fig. 1. Message to be sent by an aircraft

B. Data model

1) The emitted replies: Let b(t) the message emitted by the

transponder and represented in figure 1. Before being emitted,

the message is up-converted to the frequency band f = [fc −

B/2, fc + B/2] where fc is the nominal carrier frequency

(fc = 1093 MHz), B is the bandwidth (B = 6 MHz)[1], [2].

The resulting signal takes the following form:

s(t) = b(t) cos(2πft) (1)
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2) Received data model: We now present complex model

for the received signal after downconversion by fc to

baseband[5]. The construction of the general model is valid

under some assumptions : the model is based on narrow-band

and far-field assumptions. Moreover, at reception we consider

that during a time interval of interest there are M single-

path replies impinging on a N-element Uniform Linear Array

(ULA): see[5], [6], [2] for more details.

Y

X
. . .

N Sensors

∆

k0

θ0

. . .

S0

SM-1

θM-1

kM-1

M Sources

Fig. 2. Uniform Linear Array in 2-D geometry.

First for clarity sake, let us considering M sources impinging

on only one sensor, the complex model for data recorded by

this given sensor is expressed as:

d(t) =

M−1
∑

m=0

g(θm) exp (−j ~km · ~r)sm(t) + η(t) (2)

where g(θ) is the response of the sensor that depends

on the direction of propagation θ (defined counter-

clockwise relative the X-axis) of the emitted signal

(the response is assumed to be flat over the signal

bandwidth), ~r = (x, y)T is the position vector of the

sensor, ~km = k
(

cos θm, sin θm

)T
is the wavevector of the

source with index m noted sm(t) with k = 2πf/c (f :

frequency, c: speed of propagation) and θm is the direction

of propagation of the source with index m. η(t) refers to

noise.The sources {sm(t)}06m6M−1 in (2) are obtained from

the emitted signals in the form of (1) by downconversion

by fc to baseband, including an Hilbert filtering stage.

Now we give the general model by considering the 2-D geom-

etry in the figure 2, i.e. we suppose that M sources impinge

on an N-element antenna array of ULA geometry (N >

M ), from distinct DOAs (Direction Of Arrival) θ0, ..., θM−1.

Moreover we assume that all the sensors have the same

directivity g0(θ) = ... = gN−1(θ) = g(θ). Consequently the

array output vector is obtained as :

d(t) = As(t) + η(t) (3)

where d(t) = [d0(t) · · · dN−1(t)]
T are the data collected by

the N sensors, A is a mixing matrix (N × M ) , s(t) =
[s0(t) · · · sM−1(t)]

T denote the M baseband sources, η(t) =
[η0(t) · · · ηN−1(t)]

T is the noise vector. By recalling that in

ULA geometry, the location of the sensor with index n is ~rn =
(

n∆ , 0
)T

, the elements of the matrix A are:

{An,m}
06n6N−1

06m6M−1

= g(θm) exp
(

− jkn∆cos θm

)

(4)

where ∆ is the distance between two consecutive sensors (see

figure 2) such that ∆ 6 λ/2 where λ = c/f is the wavelength.

Each transponder do not exactly emit at the nominal carrier

frequency fc but at a frequency f = fc + δ where δ is a

deviation relative to the nominal frequency. This deviation

is proper to each transponder. In other words, the sources

emit theirs messages at different frequencies. Now let us make

two assumptions concerning the sources and the noise.These

assumptions will be used in the time-frequency-based blind

source separation algorithm described next. These assumptions

are the following ones:

H1) Since transponders generally emit different messages at

different frequencies, it can be reasonably assumed that

the sources {sm}
06m6M−1

are mutually uncorrelated[1].

H2) As the noise mainly originates from the thermal noise

of the receiver, but also from atmospheric sources, we

assume that the noise vector is spatially white, and that

its entries {η0(t), ..., ηN−1(t)} are Gaussian, independent

identically distributed (i.i.d) with equal variance σ2[2].

III. TIME-FREQUENCY-BASED BLIND SOURCE

SEPARATION

A. Principle

The problem of Blind Source Separation (BSS) in its

simplest form consists in recovering N mutual independent

unknown sources from the sole observations of M instanta-

neous linear mixtures of these sources. Belouchrani and Amin

(1998) proposed a method for blind separation of nonstation-

ary sources in the overdetermined case (M > N )[3]. This

method relies on joint-diagonalization of a set of spatial time-

frequency distributions (STFDs) of the whitened observations

at selected time-frequency (t-f) locations. Févotte and Doncarli

(2004) extended the BSS technique to the stochastic case and

proposed a new criterion that allows to select more efficiently

the time-frequency locations where the spatial matrices should

be joint-diagonalized[4]: this is this algorithm that we use for

recovering the SSR replies.

B. Theoretical background

In this paragraph, we revisit the main equations of the BSS

technique developed in [3], [4]. We consider the same model

as (3):

d(t) = As(t) + η(t) (5)

where d(t) = [d0(t) · · · dN−1(t)]
T is the vector of size N con-

taining the observations, s(t) = [s0(t) · · · sM−1(t)]
T is the

vector of size M containing the sources supposed nonstation-

ary, zero-mean and mutually uncorrelated, A is the N×M un-

known full-rank mixing matrix (with N > M ), and η(t) is
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an independent identically distributed (i.i.d) noise vector, in-

dependent of the sources with

E
{

η
(

t +
τ

2

)

ηH

(

t −
τ

2

) }

= δ(τ)σ2IN (6)

IN denotes the identity matrix of size N , δ(τ) the

Dirac δ function, H ”conjugate transpose”, and σ2 the

unknown variance of the noise, assumed identical for all

observations.

The overall objective of BSS is to find an estimate Â of A,

up to the standard BSS indeterminacies on ordering and scale.

Once Â is known, the sources are estimated by:

ŝ(t)
def
= Â#d(t) ≈ Cs(t) + Â#η(t) (7)

where # denotes the Moore-Penrose pseudoinverse and C is

a permutation matrix.

1) From Time-lag to Time-Frequency Plane: Using the

sources uncorrelation assumption, at time t and lag τ the

covariance of s(t) = [s0(t), ..., sM−1(t)]
T is written as:

Rss(t, τ)
def
= E

{

s
(

t +
τ

2

)

sH

(

t −
τ

2

) }

(8)

= diag[ρ0(t, τ), ..., ρM−1(t, τ)] (9)

where for fixed values (t, τ), diag[ρ0(t, τ), ..., ρM−1(t, τ)] is

a diagonal matrix whose diagonal elements starting

in the upper left corner are ρ0(t, τ), ..., ρM−1(t, τ);

with ρm(t, τ)
def
= E

{

sm

(

t +
τ

2

)

s∗m

(

t −
τ

2

)}

, m =

0, ..., M − 1, where ∗ denotes complex conjugate.

Now using (5), the covariance matrix Rdd(t, τ) of d(t) is:

Rdd(t, τ) = ARss(t, τ)AH + δ(τ)σ2IN (10)

From (10), the Spatial Wigner-Ville Spectrum (SWVS) is

obtained by Fourier transform of Rdd(t, τ) with respect to τ :

Wdd(t, f)
def
=

∫ +∞

−∞

Rdd(t, τ)e−j2πfτdτ (11)

For a given t − f location (ti, fj), Wdd(ti, fj) is a square

matrix of size N which diagonal elements contain the auto

Wigner-Ville spectra (WVS) of the observations at (t, f) =
(ti, fi), whereas nondiagonal elements contain cross-WVS

at (t, f) = (ti, fj). In the t − f plane, (10) becomes:

Wdd(t, f) = Adiag [ωo(t, f), ..., ωM−1(t, f)]AH + σ2IN

(12)

with ωm(t, f) the Fourier transform of ρm(t, τ) with respect

to τ ; m = 0, ..., M − 1.

One can write eq. (12) as:

Wdd(t, f) = AWss(t, f)AH + σ2IN (13)

where Wss(t, f) = diag [ωo(t, f), ..., ωM−1(t, f)].

2) Recovering of matrix A: The first step consists in turning

the recovering of the N × M mixing matrix A into the

determination of a M × M unitary matrix U. Let W be

an M × N full-rank matrix such that W(AAH)WH = IM .

Actually, the matrix W allows the whitening of the noise-

compensated observations y(t) = d(t) − η(t) = As(t).
Indeed, let us consider the signals z(t) = Wy(t), we have:

E
{

z(t)zH(t)
}

= WAE
{

s(t)sH(t)
}

AHWH (14)

With the source decorrelation assumption and assuming the

source signals with unit power, we have E
{

s(t)sH(t)
}

= IM .

Consequently eq.(14) becomes:

E
{

z(t)zH (t)
}

= WAAHWH = IM (15)

and the signals z(t) are the whitened noise-compensated

observations and W is called a ”whitening” matrix.

Let U = WA. From the definition of W, U is unitary,

and A satisfies:

A = W#U. (16)

In this paragraph, we suppose that W and the noise vari-

ance σ2 are known (we will see in the next paragraph that

they can be estimated from the correlation matrix of the

observations). From now, our objective is to determine U with

the knowledge of Wdd(t, f), W and σ2. By following

the steps in Section III-B1 with z(t) = W(d(t) − η(t)),
we can define ”whitened and noise-compensated” SWVS-

matrices Wzz(t, f)[4] that expresse as:

Wzz(t, f) = W
(

Wdd(t, f) − σ2IN

)

WH (17)

Combining eq. (13) and eq. (17), we have:

Wzz(t, f) = UWss(t, f)UH (18)

Since Wss(t, f) is diagonal for any (t, f) and since U is

unitary, U diagonalizes Wzz(t, f) for any (t, f). Conse-

quently, U may be obtained as a unitary matrix diagonalizing

any ”whitened and noise-compensated” matrix Wzz(t, f). The

mixing matrix A is then computed witn eq. (16) and the

sources are retrieved with (7).

C. The method in practice

Now we consider the practical implementation of the above

method. This implementation was proposed by Fevotte and

Doncarli[4]. Because only one realization of the observations

is generally available, we have to estimate the Wigner-Ville

Spectrum (WVS). It is shown in[7], [8] that a smoothed

version of the Wigner-Ville Distribution (WVD) is a good

estimate of the WVS. For a given smoothing kernel φ(t, f) we

denote W
φ(t, f) the smoothed version of the WVD W(t, f):

W
φ

dd(t, f)
def
=

∫ +∞

−∞

∫ +∞

−∞

φ(u − t, v − f)Wdd(u, v)dudv

(19)

where Wdd(t, f) is defined as:

Wdd(t, f)
def
=

∫ +∞

−∞

d
(

t +
τ

2

)

dH

(

t −
τ

2

)

e−j2πfτdτ

(20)
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Using the estimate W
φ

dd(t, f) of Wdd(t, f), eq.(18) becomes:

W
φ

zz(t, f) ≈ UW
φ

ss(t, f)UH (21)

where

W
φ

zz(t, f)
def
= Ŵ

(

W
φ

dd(t, f) − σ̂2Im

)

ŴH (22)

where Ŵ and σ̂2 are the estimates of W and σ2 obtained

classically from the eigenelements of the empirical correlation

matrix of the observations[3], [9].

At this step, W
φ
zz(t, f) is known. Now, we have to

estimate U from (21). W
φ
ss(t, f) is only an estimate

of Wss(t, f) and it is not diagonal for every t − f location

(as opposed to Wss(t, f); see III-B1). Bélouchrani and Amin

proposed to estimate U throught joint-diagonalization of a set

of K matrices {Wφ
zz(ti, fi)} at K t−f locations {(ti, fi); i =

1..., K} for which W
φ
ss(ti, fi) is diagonal[3]. The above

authors noticed that searching the above set of t− f locations

is equivalent to detect ”single autoterm” locations. Févotte and

Doncarli proposed a new criterion that allows a more efficient

selection of the time-frequency locations[4]. The overall Time-

Frequency-based Blind Source Separation (TFBSS) algorithm

can be found in[10]. Once an estimate Û is available, an

estimation of the mixing matrix A is then obtained as follows:

Â = Ŵ#Û (23)

and the sources are retrieved with (7).

D. Performance index

To quantify the performance of the method in terms of sepa-

ration, Belouchrani et al.[3] propose to use the interference

rejection as index. Once a mixing matrix estimate Â is

obtained via eq. (23), the sources can be estimated by the

following non-optimal procedure:

ŝ(t)
def
= Â#d(t) = Â#As(t) + Â#η(t) (24)

where we use eq. (5) and eq. (7). We can define the

interference-to-signal ratio (ISR) as[3]:

Ipq = E







∣

∣

∣
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∣

∣

∣
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(25)

where (Â#A)pq is the element of row p and column q of the

matrice Â#A, E is the expectation. Ipq measures the ratio of

the power of the interference of the qth source to the power

of the pth source signal estimate. As a measure of the global

quality of the separation, we also define the global rejection

level

Iperf
def
=

∑

q 6=p

Ipq (26)

IV. SIMULATION RESULTS

Here we consider 3 sensors and 2 sources. The number

of time samples is Nt = 600. The distance between 2

sensors is fixed to ∆ = 12 cm in order that ∆ 6

c/(2fc) where fc = 1093Mhz and c = 3 × 108m/s are the

central carrier frequency and the propagation speed of the

signals respectively. The 2 sources S1 and S2 emit different

messages b1(t) and b2(t) whose carrier frequencies are f1 =
0.7MHz and f2 = 1MHz respectively after downconversion

by fc to baseband. The 2 sources emit at the direction of

propagation θ1 = π/6 (in radians) and θ2 = π/4 (in radians)

respectively. We choose the response of the sensors equal to

unity at θ = θ0 and θ = θ1, i.e. g(θ0) = g(θ1) = 1. We

applied the TFBSS to the real-valued data corresponding to

model in equation eq. (3):

d(t) = As(t) + η(t) (27)

where d(t) = [d0(t) d1(t) d2(t)]
T and s(t) = [s0(t) s1(t)]

T

are the 3 observations and the 2 baseband sources respectively.

The elements of the matrix A are computed as:

{An,m}
06n62

06m61

= g(θm) cos
(

kcn∆cos θm

)

(28)

where kc = 2πfc/c. We simulated zero-mean White Gaussian

noises {ηn(t)}
06n62

with same variance σ2 = 3× 10−2 that

corresponds to SNR = 22 dB.

Figure 3 shows the two messages in the form of the figure 1.

These messages are provided by the sources (transponders).

Before being emitted by the sources, they are up-converted

to the frequency band (see section II-B1 ). The messages are

chosen uncorrelated as we can see in figure 3. In this paper we

choose the Smoothed Pseudo Wigner-Ville Distribution[11] as

the smoothed version of the WVD in (19). In this paper we

do not study the choice of the smoothing kernel in eq. (19).

Figure 4 represents the Time-Frequency Representation of the

baseband signals emitted by the sources. We can see that the

signals are located at the two different carrier frequencies we

chose for the signals, i.e. f1 = 0.7MHz and f2 = 1MHz

respectively. By observing the distribution along the time

axis, clearly the signals are nonstationary relative to time.

Figure 5 shows the three observations recorded by the sensors.

They are obtained by following the model (27). Figure 6

shows the estimated sources ŝ0(t) and ŝ1(t) (after fixing

permutation, sign and scale) obtained from the above data.

The previous estimates are compared with the corresponding

theoretical sources s0(t) and s1(t). In order to match the

estimated sources with the original ones, we compute the

cross-correlation between original and estimated sources:

Ci =

∫

si(t)ŝi(t)dt

Ei

; i = {0, 1} (29)

where Ei =

∫

si(t)si(t)dt is the energy of the source si(t),

used for normalisation. With the definition (29), the cross-

correlation is close to unity if the estimate is close to the
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original source. We have C0 = 0.9995 for the first source,

and C1 = 0.9996 for the second source. With the above results

and by observing Figure 6, we conclude that the separation

of the signals is of satisfactory quality. After the separation

is completed by the TFBSS algorithm, postprocessing is

performed on each channel output to recover the codes

presented in Figure 3.

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
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0
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3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

x 10
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0.8

1
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Fig. 3. Portion of the messages (codes) to be sent by the first source (left)
and the second source (right).

The table I illustrates the rejection level Iperf (described in

eq. (26)) in decibels for three SNR values : 27dB, 11.5dB,

0dB. The overall rejection level is evaluated over 50 inde-

pendent runs. We can notice that the separation performances

deteriorates while SNR decreases.
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Fig. 4. Time-Frequency signatures of the baseband signals emitted by the
first source (above) and the second source (below).

V. CONCLUSION AND PERSPECTIVES

The simulation example that we propose in this paper with

realistics parameters, reveals that the Secondary Radar sources

can be recovered almost perfectly using the TFBSS algorithm.
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Fig. 5. Observations collected by the first sensor (above), the second sensor
(middle), the third sensor (below).
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(a) First original source (above) and its estimate (below).
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(b) Second original source (above) and its estimate (below).

Fig. 6. Comparison of the original sources with theirs estimates.
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Noise level (dB) -35 -30 -25 -20 -8.1

SNR (dB) 27 21.6 16.2 11.5 0

Iperf (dB) -19 -13 -12.6 -6 1.4

TABLE I
PERFORMANCE OF TFBSS VERSUS SNR

Consequently the technique seem very promising for the real-

world problem. The robustness of the TFBSS technique is

due to the use of the decorrelation, the nonstationarity and

the t−f localization differences of the signals to be separated.

In a further theoretical work we could address the problem

of searching the optimal smoothing kernels since it was

demonstrated in [3] that the choice of the t − f kernel has

a direct impact on the performance of the TFBSS.
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