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Abstract—Artificial Immune Systems (AIS), inspired by the

human immune system, are algorithms and mechanisms which are
self-adaptive and self-learning classifiers capable of recognizing and
classifying by learning, long-term memory and association. Unlike
other human system inspired techniques like genetic algorithms and
neural networks, AIS includes a range of algorithms modeling on
different immune mechanism of the body. In this paper, a mechanism
of a human immune system based on apoptosis is adopted to build an
Intrusion Detection System (IDS) to protect computer networks.
Features are selected from network traffic using Fisher Score. Based
on the selected features, the record/connection is classified as either
an attack or normal traffic by the proposed methodology. Simulation
results demonstrates that the proposed AIS based on apoptosis
performs better than existing AIS for intrusion detection.

Keywords—Apoptosis, Artificial Immune System (AIS), Fisher
Score, KDD dataset, Network intrusion detection.

I. INTRODUCTION

YSTEMS like firewalls or authentication mechanisms are
no longer enough to provide security for existing network

systems. Conventional intrusion detection systems integrate
available information from a system that provides normal
activity details called Self, to ensure that the system can
differentiate unusual activities, categorized as Nonself.
Unauthorized actions are detectable as an intruder’s behavior
will be different from that of a legitimate user. Hence a system
attack can be determined by collecting and analyzing
operating system and network activity data [1].

Intrusion Detection System (IDS) monitors continuously
and record current activities which are then compared with
past normal behavior. Based on the deviation level, it is then
classified as attacks, errors or abnormalities. IDS do not react
against attacks immediately. They generally inform the
administrator about an intrusion through several attack
detecting methods [2]. Monitoring/analyzing network
activities, locating a network’s vulnerable spots and integrity
testing of sensitive and important data are some ways IDS
operates to detect intrusions [3].

The IDS software analyzes/automates an intrusion detection
process effectively [4], checking all possibilities surrounding
network activity and identifies suspicious signatures that
indicate a network/system attack. Being up-to-date on current
affairs in computing can confirm various attacks on branded
company servers. Though firewalls are a useful defense their
current technology makes them insufficient in
detecting/blocking all types of attacks [5].
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Fig. 1 shows a Network Intrusion Detection in computer
systems. An IDS can be located in a router, Firewall or LAN
to detect network intrusions and provide information about
known signatures. Thus, normal activity and intrusions
classification accuracy has an important role in an IDS’s
efficiency.

Classification models are based on various algorithms and
are the tools which partition given data sets into various
classifications based on specific data features [6]. Currently,
data mining algorithms are popular for effective classification
of intrusion using algorithms including decision trees, naïve
Bayesian classifier, neural network, and support vector
machines. But classification accuracy of many present data
mining algorithms should be improved as attack detection is
difficult as attackers constantly change attack patterns.
Network intrusion detection models that are presently used
have high false positives. For efficiency, the intrusion
detection model depends on Detection Rates (DR) and False
Positives (FP). DR is the number of intrusion instances
detected correctly by the system and divided by total intrusion
instances in the analyzed data. FP is an alarm which indicates
that an attack might not really be so. IDS aim to maximize DR
and minimize FP.

Signature-based methods limitation is that they are unable
to detect cyber threats; as such threats are launched through
unknown attacks patterns. When a new attack is discovered
and its signature is developed, it requires a large latency
period to ensure its deployment on networks. Such
shortcomings led to the need for discovery of intrusion
detection techniques for identifying attacks. Artificial Immune
Systems (AIS) are a relatively new research area having a lot
of potential to solve various related issues [7]. Its growth has
ensured many new techniques and approaches for solving
problems.

AIS is increasingly popular today. Many immunology
concepts have been used for solving real-world science and
engineering problems like theoretical modelling and
simulation in various applications [8]. The Human Immune
System (HIS) is a rich theory source which inspires creation of
new approaches to computational problems and so this new
field is known as Immunological Computation (IC) [9].
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II.MATERIALS AND METHODS
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Experiments were performed using a KDD
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Fig. 1 Network with Intrusion Detection System
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integer programming, which is converted to a quadratically
constrained linear programming. A cutting plane algorithm is
utilized for finding solutions where in each iterationa multiple
kernel learning problem is resolved alternatively by
multivariate ridge regression and projected gradient descent
[16]. To find a feature subset of size ‘m’ containing the most
informative features using generalized Fisher score can be
obtained by Fig. 2.

Fig. 2 Fischer Score based feature selection

C.Proposed Methodology
Immunologists believe that 'immunity is the identification

of the Self and Nonself, and eliminating Nonself ensures the
body’s integrity as a physiological response’. The skin,
physiological conditions, congenital immune system and
adaptive immune system form the human’s natural immune
system. The HIS’s primary function can be said to be the
differentiation between things which belong in the body and
those that do not. The HIS can differentiate between self and

non-self antigens and the process of detecting and removing
non-self includes both innate and adaptive immunity. Innate
components are nonspecific and unchanging in spite of
repeated antigen exposure. Adaptive immunity is specific and
involves memory which permits the immune system to react
more quickly when an antigen is located the second time. Hall
et al. evaluated immune based system by introducing
architecture with two systems leading to promising results
after system tests [17].

Associations between immune and computer systems are
quite strong. The former safeguards the body from pathogens,
similar to a computer security system protecting a computer
from malicious users. AIS is now attracting a lot of attention
in the monitoring of engineered systems. Processes of the
natural immune system are applied to solve real world
problems using AIS [18].

AIS technology attempts to model defense mechanism
characteristics and functionalities of living beings. Such a
defense mechanism allows an organism to safeguard against
foreign substance invasions. Such substances recognition is
based on a key and lock analogy, where the aim is the location
of antibodies with the best immune response to an invading
antigen [19].

The natural immune system’s genetic memory stores
excellent antibodies which are later used to identify antigens
which invaded the organism earlier. This in turn leads to a
quicker response. The biological environment’s new
functionalities were observed to model a new immunological
approach, principally through the organization/clustering of
similar antibodies (Ab) through the process. It is felt that such
functionalities improve the AIS recognition capacity [20].A
matching concept is used to search for a solution. As AIS are
evolutionary algorithms, they suit problems that change over
time requiring solutions repeatedly rather than being one-off
optimizations [21].

In this paper, the Apoptosis mechanism of the immune
system is used for classification. A cell can die in two ways;
necrosis and apoptosis. The former is when a cell is damaged
by an external force like poison, a body injury, infection or
being cut off from a blood supply. Apoptosis is relatively
civil; it’s a cell’s suicide. Apoptosis cleanup is easier,
sometimes being referred to as programmed cell death as
apoptosis follows a controlled, predictable routine.

When a cell kills itself, proteins called caspases start acting.
They break down cellular components required for survival
spurring production of enzymes called DNases, which in turn
destroy the cell’s nucleus’ DNA. The cell shrinks sending out
distress signals answered by macrophages which are known as
vacuum cleaners. They clean the shrunken cells without a
trace. Hence these cells are unable to cause damage similar to
necrotic cells. Fig. 3 shows the apoptosis procedure.

Notations:
C- number of classes;
Ω - a polynomial sized subset;
d - is the number of features;
p – indicator variable which represents where feature is selected or

not;
P – pt

� P;V is a Lagrangian multiplier;
��kernel weights;
� I – perturbation term.

Pseudo code for Generalized Fisher Score for Feature Selection

Input: C and m;
Output: V and Ω;
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Solve for � using gradient descent as:
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until converge
Find the most violated constraint pt+1 and setΩt+1 = Ωt�pt+1;
t = t + 1;
until converge
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Fiig. 4 Flowchart of the Proposed Methodology
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The fitness function is evaluated using

2 * *( )
( )

P RF I
P R

�



where P is the precision, R is the recall.

III. RESULTS AND DISCUSSION

Experimental results are summarized to construct patterns
for intrusion detection over the KDD’99 datasets. The

evaluation of the proposed AIS classifier based on apoptosis
was carried out by integrating our Java code withWEKA data-
mining tool and its classification accuracy is compared with
Artificial Immune Recognition system [22]. Table I shows the
training summary of the AIS and the proposed method. Table
II gives the results of the classification and Root Mean
Squared Error (RMSE). Tables III and IV give the detailed
accuracy by class and confusion matrix for AIS and the
proposed method.

TABLE I
TRAINING SUMMARY OF VARIOUS METHODS

AIS AIS with PCA AIS + Fisher score
feature selection

Proposed AIS
technique

Proposed AIS with
PCA

Proposed AIS technique
+ Fisher score

Affinity Threshold 0.227 0.058 0.229 0.178 0.145 0.162
Mean ARB clones per refinement iteration 51.313 51.817 51.533 51.275 51.812 15.487
Mean memory cell clones per antigen 19.606 19.979 19.79 19.238 19.82 19.476

TABLE II
SUMMARY OF CLASSIFICATION ACCURACY AND RMSE

AIS AIS with PCA AIS + Fisher score
feature selection

Proposed AIS
technique

Proposed AIS
with PCA

Proposed AIS technique +
Fisher score

Correctly Classified Instances 99.35% 99.54% 97.90% 99.37% 99.51% 99.65%
RMSE 0.138732 0.0479 0.1024 0.1073 0.0521 0.0428

The proposed technique improves the classification
accuracy by 1.97% compared to a similar feature selection
technique used by AIS. Table III shows the precision and
Recall obtained using existing AIS under different feature

selection techniques. However from Table IV it can be seen
that precision and recall outrank existing AIS method
establishing the proposed technique as a better solution for
IDS.

TABLE III
DETAILED ACCURACY BY CLASS FOR AIS

Class Precision with AIS Recall with AIS Precision with AIS
and PCA

Recall with AIS and
PCA

Precision with AIS
and Fisher Score

Recall with AIS and Fisher
score

Normal. 0.992 0.994 0.997 0.998 0.999 0.979
Teardrop. 0.612 0.582 0.677 0.603 0.217 0.932
Satan. 0.987 0.987 0.987 0.987 1 0.987
Nmap. 0.963 1 0.963 1 0.938 0.962

TABLE IV
DETAILED ACCURACY BY CLASS FOR PROPOSED AIS

Class Precision-Proposed
AIS technique

Recall-Proposed
AIS technique

Precision -Proposed
AIS with PCA

Recall-Proposed
AIS technique

Precision-Proposed
AIS technique +

Fisher score

Recall-Proposed AIS
technique + Fisher score

Normal. 0.997 0.992 0.997 1 1 1
Teardrop. 0.618 0.608 0.714 0.728 0.764 0.954
Satan. 0.976 0.989 0.992 0.992 0.992 0.994
Nmap. 0.921 1 1 1 1 1

IV. CONCLUSION

AIS protects a complex system against malicious defects
achieving its efficiency through an extension of the concept of
organizing multi-cellular organisms to information systems.
AIS main features include self-maintenance, distributed and
being adaptive to computational systems. The mechanism of
the apoptosis based human immune system has been adapted
to build an intrusion detection system for protecting computer
networks. The proposed method is compared with AIS.
Experiments reveal that accuracy, precision and recall of the
proposed procedure is better than that of AIS.
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