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Anisotropic Total Fractional Order Variation Model
in Seismic Data Denoising

Jianwei Ma, Diriba Gemechu

Abstract—In seismic data processing, attenuation of random noise
is the basic step to improve quality of data for further application
of seismic data in exploration and development in different gas
and oil industries. The signal-to-noise ratio of the data also highly
determines quality of seismic data. This factor affects the reliability
as well as the accuracy of seismic signal during interpretation
for different purposes in different companies. To use seismic data
for further application and interpretation, we need to improve the
signal-to-noise ration while attenuating random noise effectively.
To improve the signal-to-noise ration and attenuating seismic
random noise by preserving important features and information
about seismic signals, we introduce the concept of anisotropic
total fractional order denoising algorithm. The anisotropic total
fractional order variation model defined in fractional order bounded
variation is proposed as a regularization in seismic denoising. The
split Bregman algorithm is employed to solve the minimization
problem of the anisotropic total fractional order variation model
and the corresponding denoising algorithm for the proposed method
is derived. We test the effectiveness of theproposed method for
synthetic and real seismic data sets and the denoised result is
compared with F-X deconvolution and non-local means denoising
algorithm.

Keywords—Anisotropic total fractional order variation, fractional
order bounded variation, seismic random noise attenuation, Split
Bregman Algorithm.

I. INTRODUCTION

IN seismic data processing the main goal of noise

attenuation is to condition the seismic data so that an

improved and better resolved seismic data can be obtained

for further investigation for exploration and development in

different gas and oil industries. One way of obtaining an

improved and better resolved seismic data is through inversion

methods. Variational regularization method is one of the

inversion method that have been used in image processing.

Partial differential equations (PDEs) based denoising methods

have been discussed in different literatures [1], [2] is the

most frequently used inversion method. PDE models either the

nonlinear diffusion [3], or the variation of energy functional

[4] have been applied for natural image processing [5]-[7]. The

PDE models have been also applied for the noise attenuation

of seismic data [8]-[13]. Different methods have been also

proposed for the removal of noise from seismic data based

on the hybrid of variational model and multi-scale geometry

transforms Curvelet-based SOTV regularization, [14], shearlet

and total generalized variation (TGV) [15] regularization.
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In our work, we focused on variation model which is
new for seismic signal processing especially for the seismic
noise attenuation. Total variation (TV) is one of the variation
model which have been introduced by [4] for the noise
removal from natural image. Because of its drawback in
introducing the staircase artifact, TV have been not applied for
seismic data processing for a long time. Now a day different
improvement was employed to apply TV for seismic data
processing for noise removal [10], [12], [9]. [16], [17] showed
that the fractional order derivative is an alternative tool for
the improvement of drawback of TV. Different methods based
on fractional order derivatives have been applied for image
denoising [16], [18]-[20]. Discrete optimization framework has
been employed in fractional order derivative in the denoising
problem as regularization [21] which is given by

min{
N∑

i,j=1

|(∇αu)|+1

2

N∑
j=1

2−2jsj |[λ(f−u)j ]|, 1 ≤ α ≤ 2, 0 ≤ sj ≤ 1}.
(1)

To solve (1) alternating projection algorithm have been used

[22].

For this paper, we employed anisotropic total fractional

order variation model defined in fractional order bounded

variation to improve the signal-to-noise ratio (SNR) and

remove noise from seismic data by preserving valid seismic

signals.

II. METHOD

For this paper, the solution of anisotropic total fractional

order variation model in the space of α-BV is employed to

preserve both edges and smoothness of seismic data. The total

order derivatives in the fractional α-order variation is defined

as

Dα
[a,x]f(x) =

1

Γ(n− α)
(
d

dx
)n

∫ x

a

f(τ

)
(x− τ)α−n+1

for 0 < α < 1, with Γ(n− α) is a gamma function. The space

available for total α-order variation (TV α) using α-order

derivatives is the space BV α(Ω) of functions of α-bounded

variation on Ω. For more details and definition for total α-order

variation, we refer the reader to [20]. Suppose

u = v + n, (2)

be the seismic denoising model where u is observed noisy

seismic data, v is noise free seismic data, and n is band-limited

Gaussian random noise with variance σ2. Then, in the space

of bounded variation (BV) we can restore the clean seismic

data v by solving the following model.

argmin
v

{‖v‖BV α +
μ

2
‖u− v‖22}, (3)
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(a) (b)

Fig. 1 (a) Original data, (b) Noisy data (SNR=4.25 dB)

(a) (b) (c)

Fig. 2 (a) F-X deconvolution denoised result (SNR=13.73 dB), (b) NLM denoised result (SNR=16.18 dB), (c) Proposed method denoised result (SNR=19.58
dB)

(a) (b) (c)

Fig. 3 (a) F-X deconvolution residual, (b) NLM residual, and (c) proposed method residual



International Journal of Earth, Energy and Environmental Sciences

ISSN: 2517-942X

Vol:12, No:1, 2018

42

(a) (b)

(c) (d)

Fig. 4 (a) Original noisy real data, (b-d) The denoised result of real data by F-X deconvolution, NLM, and Proposed method respectively

(a) (b) (c)

Fig. 5 (a) F-X deconvolution residual, (b) NLM residual, (c) Proposed method residual
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Based on α-BV semi-norm, ‖v‖BV defined as

‖v‖BV α = ‖v‖BV + TV α(v)

Remark: Let q ∈ N+ and

Wα
q (Ω) = {v ∈ Lq(L), suchthat‖v‖Wα

q
< ∞}

be a function space which is embedding with

Wα
q = (

∫
Ω

|v|qdx+

∫
Ω

|∇α(v)|qdx) 1
q ,

where

∇α(v) = (
∂αu

∂x1
,
∂αu

∂x2
,
∂αu

∂x3
, ...,

∂αu

∂xd
)T .

Since TV α is a convex function and for q = 1, v ∈ Wα
1 , then

TV α =

∫
Ω

|∇α(v)|dx.

Then (3) becomes,

argmin
v

{‖v‖L1 +

∫
Ω

|∇αv|dx+
μ

2
‖u− v‖22}. (4)

For α1 > 0 and α2 > 0

∇αv = ∇(α1,α2)v = (Dα1
x v,Dα2

y v)

with

|∇αv| =
√
(Dα1

x v)
2
+ (Dα2

y v)
2
.

Dα1
x v denotes the derivative of fractional order of α1 of v with

respect to x and Dα2
y v denotes the derivative of fractional

order of α2 of v with respect to y. The model in (4) is

anisotropic total fractional order variation model in α − BV
which can be rewritten as

F (v) = argmin
v

{‖v‖L1 +

∫
Ω

|∇(α1,α2)v|dx+
μ

2
‖u− v‖22}.

(5)

To solve the minimization problem in (5), we use the

EulerLagrange equation. Let

G(v) = argmin
v

{‖v‖L1 +

∫
Ω

|∇(α1,α2)v|dx+
μ

2
‖u− v‖22}.

Substitute the value of v by v+aγ provided that γ ∈ C∞(Ω)
and rewrite G(v) as

Ψ(a) := G(v + aγ) = argmin
v

{‖v + aγ‖L1+
∫
Ω

|∇(α1,α2)(v + aγ)|dxdy + μ

2
‖u− (v + aγ)‖22}.

(6)

Wee find the derivative of (6) and we get

Ψ
′
(a) =

∫
Ω

Dα1
x (v + aγ)Dα1

x γ +Dα2
y (v + aγ)Dα2

y γ√
(Dα1

x (v + aγ))
2
+ (Dα2

y (v + aγ))
2

dxdy+

(v + aγ)γ + μ(v + aγ − u).
(7)

We evaluated (7) at a = 0

Psi
′
(0) =

∫
Ω

Dα1
x vDα1

x γ +Dα2
y vDα2

y γ√
(Dα1

x v)
2
+ (Dα2

y v)
2

dxdy+vγ+μ(v−u).

(8)

Equation (8) is the same with

Ψ
′
(0) =

∫
Ω

((D
α1
x )

∗ D
α1
x v

|∇(α1,α2)v|
+ D

α2
y

D
α2
y v

|∇(α1,α2)v|
)dxdy + v(1 + μ) − μu))γ,

where (Dα1
x )∗ and (Dα2

y )∗ are the adjoint operators of (Dα1
x )

and (Dα2
y ) respectively.

To find the extreme value of the function F (v) in (5), v
must satisfy the EulerLagrange equation
∫
Ω
((Dα1

x )∗
Dα1

x v

|∇(α1,α2)v|+(Dα2
y )∗

Dα2
y v

|∇(α1,α2)v| )dxdy+v(1+μ)−μu) = 0

One method which can find the minimum of F (v) is taking

the smallest step size �t in opposite direction of Laplace of

F (∇F ), that means

vk+1 = vk +�t(−∇F ).

We use the gradient descent method to solve the
EulerLagrange equation.

∂v

∂t
= −(Dα1

x )∗
Dα1

x v

|∇(α1,α2)v| − (Dα2
y )∗

Dα2
y v

|∇(α1,α2)v| )− v(1 + μ) + μu

Let �α1
x and �α2

y be a fractional difference operators which

are corresponding to the fractional order derivative operators

Dα1
x and Dα2

y respectively, then we introduce the adjoint

operator (�α1
x )∗ and (�α2

y )∗.

�α1
x vi,j =

K−1∑
k=0

Wα1

k vi−k,j

�α2
y vi,j =

K−1∑
k=0

Wα2

k vi,j−k

(�α1
x )∗vi,j =

K−1−j∑
k=0

Wα1

k vi+k,j

(�α2
y )∗vi,j =

K−1−i∑
k=0

Wα2

k vi,j+k,

(9)

with Wα1

k = (−1)k
(
α1

k

)
and Wα1

k = (−1)k
(
α2

k

)
is the

coefficients of polynomial and K ≥ 3 is the number of terms

involved in α fractional order derivative. Let

�α1
xxvi,j =

K−1−j∑
a=0

Wα1

k

�α1
x vi+a,j√

(∇α1
x vi+a,j)2 + (�α2

y vi+a,j)2 + ε

�α2
yyvi,j =

K−1−j∑
a=0

Wα2

k

�α2
y vi,j+a√

(∇α1
x vi,j+a)2 + (�α2

y vi,j+a)2 + ε

(10)

be the discritization of (Dα1
x )∗ Dα1

x v

|∇(α1,α2)v| and

(Dα2
y )∗

Dα2
y v

|(∇α1,α2)v| respectively with a very small positive

number ε such that 0 < ε ≤ 1. Now we can solve for vk+1

vk+1
i,j = vki,j −�t(�α1

xxv
k
i,j +�α2

yyv
k
i,j + μui,j − μvki,j − vki,j)
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III. OVERVIEW

Step 1: Input is noisy seismic data u, with vk = u
Step 2: Solve (9) and (10) for �α1

xxvi,j and �α2
yyvi,j

Step 3: Solve for vk+1
i,j = vki,j−�t(�α1

xxv
k
i,j+�α2

yyv
k
i,j+μui,j−

μvki,j − vki,j) and iterate until the desired result is obtained

otherwise go back to step two

Step 4: Output vk which is denoised seismic data.

IV. RESULT AND DISCUSSION

In this work, we analyses and test anisotropic

fractional-order derivative based total α-order variation

model which is an improvement of the currently popular high

order regularization models. For the choice f value of α, we

employed the method which has been discussed in [19]. In

signal processing, the frequency responses of fractional order

differential operator are a kind of nonlinear filter and for

0 < α < 1, it can filter the high frequency component of the

signal as well as it avoids its low frequency components [9]

the large value of α, the proposed method removes the high

frequency textures and details of the signal and for the small

value of α it removes only a small amount of noises with

high frequency. To effectively remove the noise with high

frequency by preserving the valid seismic signal with high

frequency, we chose α ∈ [1.2, 1.65]. From this interval, the

value of α is determined for which SNR reaches maximum

value.
Finally, we test our proposed method in random noise

attenuation of synthetic data with parabolic events and a

real seismic data set with different events and features. The

synthetic seismic data and it’s noisy version is indicated in

Fig. 1. Theoretically and experimentally the proposed method

preferably attenuates noises, enhance the lateral continuity

of seismic events, and preserve useful detail information in

the horizontal as well as vertical direction while improving

the signal-to-noise ratio. The performance of the proposed

method compared with F-X deconvolution and non-local

means (NLM) denoising algorithm in terms of SNR and

resolution. As indicated in Fig. 2, our approach attains higher

performance in terms of SNR and visual quality. From Fig.

3, the events and important features of the seismic signal also

effectively preserved when the proposed method is applied.

As we observed from Fig. 3, F-X deconvolution and NLM

damages some important informations and some part of the

seismic events are left in the noise section. The proposed

method also applied to the real data with strong noise in

Fig. 4. The proposed method shows it’s performance in

removing the strong and coherent noise as showen in Fig. 4

compared with F-X deconvolution and NLM denoising. In Fig.

4 F-X deconvolution over-smooths the denoised data and NLM

denoisng leaves some noises in the denoised result. As we can

observe from Fig. 5, F-X deconvolution and NLM denoising

affact some use full features as well as informations of the

data and some parts of the data left in the noise section as we

can observe from Fig. 5.

V. CONCLUSION

In this work, we have presented an algorithm based on

anisotropic total fractional order variation model in α bounded

variation for random noise attenuation in seismic data. The

proposed method is applied for both synthetic and real

seismic data set. We compared the denoised result with

F-X deconvolution and NLM and the numerical results have

demonstrated that, the proposed method effectively removes

random noise from seismic sections while preserving the

hyperbolic events as well as weak features and improves

signal-to-noise ratio.
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