
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:11, 2013

1373

Abstract—We present a visualization technique for radial

drawing of trees consisting of two slightly different algorithms. Both

of them make use of node-link diagrams for visual encoding. This

visualization creates clear drawings without edge crossing. One of the

algorithms is suitable for real-time visualization of large trees, as it

requires minimal recalculation of the layout if leaves are inserted or

removed from the tree; while the other algorithm makes better

utilization of the drawing space. The algorithms are very similar and

follow almost the same procedure but with different parameters. Both

algorithms assign angular coordinates for all nodes which are then

converted into 2D Cartesian coordinates for visualization. We present

both algorithms and discuss how they compare to each other.

Keywords—Radial Tree Drawing, Real-Time Visualization,

Angular Coordinates, Large Trees.

I. INTRODUCTION

tree is an undirected graph in which any two nodes are

connected by exactly one simple path. In other words,

any connected graph without simple cycles and loops is a tree.

Trees are commonly used for representing data with a

hierarchical nature and find wide application in various

branches of computer science. Thus, the problem of automatic

drawing of trees has attracted research attention in the last

couple of decades. Many different graph drawing algorithms

have been proposed so far in the research literature, and

among them are also some algorithms specifically designed

for drawing trees, such as the level-based algorithm [1], the

radial tree drawing introduced by Book and Keshari [2] as

well as the upward drawing method discussed by Alam et al.

[3] which is a general graph drawing algorithm which can also

be successfully used for trees.

In this work we present two different algorithms that are

based on information extracted from the topology of tree.

Having a rooted tree, our algorithms start with positioning the

root node in the centre of the drawing and assigning all other

nodes toradial layers. As a next step, angular coordinates are

assigned to all nodes, again starting from root and going

outwards. Finally, a projection method is applied to convert

angular coordinates into 2D Cartesian coordinates for

producing the drawing. We believe that our approach is well

suited for drawing real-time trees with or without preservation

of the mental map.

F. Ghassemi Toosi and N. S. Nikolov are with the Department of

Computer Science and Information Systems, University of Limerick, Ireland

(e-mail: Farshad.Toosi@ul.ie Nikola.Nikolov@ul.ie).

* This work is partially funded by Rayaneh-Scot-Toos [IT company]
www.scotit.com.

II. ALGORITHMS

A. Topology Extraction

Our approach makes use of information about the topology

of the tree to be drawn. The final goal is to produce a radial

drawing of the tree with nodes placed on concentric circles

around the center of the drawing. Both algorithms do this by

assigning angular coordinates to all nodes starting from the

center and then progressing layer by layer outwards. The main

scenario for this step is assigning a limited angular interval for

each node which represents the space allowed for the direct

children of that node.

If the tree is rooted then the root is placed in the center of

the drawing. If the tree is undirected, and thus without a

designated root node, then we can place the center of the tree

(or the two centers, if the tree is bicentered) in the center of

the drawing. Trees can be either centered or bicentered as

shown in Fig. 1. To find the center(s), leaves are removed step

by step until either one or two nodes remain. If only one node

remains, that means the tree is centered; if two nodes remain

then the tree is bicentered.

Fig. 1 An example of a centered tree with a single-node center

(above) and a bicentered tree with two-node center (below)

First, the tree needs to be layered starting from its

root/center/bicenter which we will call simply the drawing

center for convenience. The drawing center is always in the

first layer; its direct children become the second layer, and so

on until all nodes are assigned to a layer. For example, both

layouts in Fig. 1 have three layers.

B. Angular Intervals

The drawing center (in the first layer) is assigned fixed

angular coordinate(s) and thus fixed angular interval(s). The

main difference between the two proposed algorithms is the

way we assign the angular interval to nodes. Let Acv denote

the angular coordinate of node v, and Aiv- the corresponding

Farshad Ghassemi Toosi, Nikola S. Nikolov

Angular-Coordinate Driven Radial Tree Drawing

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:11, 2013

1374

angular interval for the direct children of node v. If the

drawing center consists of a single node r, then the Acr = 0 and

Air = 2π.If the drawing center consists of two nodes (for un-

rooted bicentered tree) r and s, then Acr = 0, Acs = π, and

Air = Ais = π.Ai for all other nodes will be computed either as:

1deg)(

)(

−

=

vp

vp

v

Ai
Ai (1)

or as

v

vp

vp

v w
w

Ai
Ai ×=

)(

)(
, (2)

where p(v) is the parent of node v; and)(deg vp is the degree

of the parent of nodev; vw is the weight of nodev, which we

define as the number of children and grandchildren of v plus 1,

i.e. the number of nodes in the sub-tree with depth 2, rooted at

v. Fig. 2 illustrates the concept of node weight.

Fig. 2 Illustration of the concept of node weight. The weight wv of

node v is the number of nodes in the sub-tree with depth 2, rooted at v

The first algorithm we propose uses (1) for computing the

space allowed space for the direct children of each node, and

the second algorithm uses (2). This interval guarantees that

there will be no edge-crossing since the children of each node

have their own space for being accommodated.

C. Angular Coordinates

As a next step, we use the angular intervals, computed in

the previous section, for assigning angular coordinates to all

nodes. As mentioned above, the angular coordinate of the

drawing center is either 0(for a single-node drawing center) or

0 and π(for bicentred trees). The angular coordinates of the

rest of nodes are computed either as:

)(

)(

)(

1deg
vpv

vp

vp

v Acind
Ai

Ac +×

−

= (3)

or as

)(

)(

)(

vpv

vp

vp

v Acinc
w

Ai
Ac +×=

(4)

Equation (3) is computing Acin our first algorithm, while

(4) is used in our second algorithm. Again, p(v) is the parent

of node v; vind in (3) is the index of node v among its siblings

(assuming the siblings are ordered in no particular fashion).

The function vinc

in (4) is what we call the accumulative

weight of node v among its sibling. Assuming again that the

children of p(v) are ordered somehow, the accumulative

weight of the first child is 0, and the accumulative weight of

node v is it’s the sum of weights of all its siblings placed

before v in the order. The concept of accumulative weight is

illustrated in Fig. 3.

Fig. 3 Illustration of the concept accumulative weight

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:11, 2013

1375

A.1

B.1

C.1

D.1

A.2

B.2

C.2

D.2

Fig. 4 Four different trees drawn by the two proposed algorithms

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:11, 2013

1376

D. Visualization

To compute Ai and Ac for a node, we need to have its parent

data (Ac, Ai).Therefore those values should be computed

starting from the drawing center whose angular interval(s) and

angular coordinate(s) is(are) fixed as explained above. Once

this is done, we need to find the geometric position (x, y) of

each node. We use the angular coordinates for this purpose.

They are scalar values which can be projected into a 2D

Cartesian space with an appropriate technique.

In the drawings above, we used the MDS projection

technique [5] which takes a dissimilarity matrix (computed for

a set of scalar values) as an input and produces mD

coordinates (m ≥2), in this work 2Dcoordinates. The drawing

center does need special care as by definition it will be placed

in the center of the drawing area. The dissimilarity matrix for

a set of n scalar values is an n×n matrix M where Mij is the

distance between i and j, thus all diagonal elements will be 0.

Our algorithms make use of angular coordinates; therefore the

distance between two nodes can be computed as shown in (5).

22)cos(cos)sin(sin jijiij AcAcAcAcD −+−= (5)

Since our goal is a radial drawing, all the nodes are placed

along the edge of a circle with radius 1. We need to take care

for the distance between the layers in order to avoid overlaps.

We do this similarly to how it is done [1] and [2], however we

further adjust the distance between a pair of adjacent layers

depending on the edge density between them. The larger the

edge density, the larger is the distance between them for

producing a clearer drawing. This can be observed in Fig. 4.

A simpler method for computing Cartesian coordinates

would be to simply use (dvcosAcv,dvsinAcv) as the position of

node v, assuming dv is the distance of node v from the drawing

center. This method is faster; however it is limited to radial

drawings and cannot be generalized for other types of

drawings, which may use scalar values for producing might

graph layouts, such as the dynamics-driven graph drawing

introduced by Toosi et al. [4].

III. RESULT AND DISCUSSION

A. Comparison between the Algorithms

In Fig. 4 we show the results of our algorithms for 4

different tree topologies. The layouts in left column show the

result from the first algorithm; and the right column shows the

results from the second algorithm. It can be observed that the

first algorithm divides the space reserved for the children of

each node evenly between those children, disregarding their

weights. Therefore, the further sibling nodes are located from

the drawing center, the closer they are placed to each other.

This approach, however, has the advantage that it reserves

space for new leaves in the outer layers, which can be

interactively (or real-time) introduced with minimum

recalculation of the layout.

The second algorithm takes care of the node weights and

this can be seen very well in the difference between drawings

D.1 and D.2 in Fig. 4. In D.1, the space for future leaves in the

third layer has been reserved, therefore, if a node is inserted in

that layer there is no need to re-compute the positions of any

other nodes. However, in D.2 a new leaf in the third layer

leads to re-computing the coordinates of a portion of the

nodes. From another point of view, the nodes in the third layer

in D.1 are tightly close to each other, while in third layer in

D.2 looks like a better drawing. In B.2 and C.2, we can also

observe that nodes with heavier weight are better spaced in

comparison to B.1 and C.1, respectively. However, for small-

size trees, like the one in A.1, the result of the first algorithm

is similar to the one of the second but more aesthetic for small

size trees.

B. Discussion

We propose a graph visualization technique for trees which

produces radial tree drawings. Two slightly different

algorithms within the same approach have been proposed and

applied. The time complexity for both algorithms is O(n) for a

tree with n nodes.

The first algorithm has an advantage for drawing trees

either interactively or in real-time. While it results in a tighter

space for nodes in outer layers, it leads to drawings in which

the branches of the tree are better expressed and easily

distinguishable. We suggest that this version of our drawing

approach might be suitable for drawing very large trees in

real-time with preservation of the mental map, where it is

more important to visualize the general structure of the tree at

first and then apply an appropriate navigation technique to

explore specific parts of the tree in detail.

The second algorithm is suitable enough for large trees

since it takes care for the descendants of nodes in order to

space them accordingly. This version of the algorithm can be a

better option for static drawings of large trees. As our results

suggest, either of the two algorithms can produce an

aesthetically pleasing drawing for small trees.

APPENDIX

All the results have been produced with a system written in

C++ and OpenGL. All example trees are generated by the

authors. Our software and example trees are available on

request.

REFERENCES

[1] Rusu, A., Tree Drawing Algorithms, in Tamassia, R. (ed.): Handbook of
Graph Drawing and Visualization. Chapman and Hall/ CRC, 2013,

chapter 5, pp. 155–192.

[2] Book, G. and Keshary, N., Radialtree graph drawing algorithm for
representing large hierarchies. Technical report, University of
Connecticut, 2001.

[3] Alam, Md. J., Samee, Md. A. H., Rabbi, M. and Rahman, Md. S.,
Upward drawings of trees on the minimum number of layers.

WALCOM, 2008, pp.88—99.

[4] Ghassemi Toosi, F., Paulovich, F. V., Hutt, M.-T. and Linsen, L.
Projection-based Visualization of Dynamical Processes on Networks.

Eurovis 2012, pp. 61--65.
[5] Cox, T.F. and Cox, A. A. Multidimensional Scaling, Second Edition.

Chapman & Hall/CRC Monographs on Statics & Applied Probablility.

Taylor & Francis, 2010.

