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Abstract—We present a visualization technique for radial 

drawing of trees consisting of two slightly different algorithms. Both 

of them make use of node-link diagrams for visual encoding. This 

visualization creates clear drawings without edge crossing. One of the 

algorithms is suitable for real-time visualization of large trees, as it 

requires minimal recalculation of the layout if leaves are inserted or 

removed from the tree; while the other algorithm makes better 

utilization of the drawing space. The algorithms are very similar and 

follow almost the same procedure but with different parameters. Both 

algorithms assign angular coordinates for all nodes which are then 

converted into 2D Cartesian coordinates for visualization. We present 

both algorithms and discuss how they compare to each other. 

 

Keywords—Radial Tree Drawing, Real-Time Visualization, 

Angular Coordinates, Large Trees.  

I. INTRODUCTION 

tree is an undirected graph in which any two nodes are 

connected by exactly one simple path. In other words, 

any connected graph without simple cycles and loops is a tree. 

Trees are commonly used for representing data with a 

hierarchical nature and find wide application in various 

branches of computer science. Thus, the problem of automatic 

drawing of trees has attracted research attention in the last 

couple of decades. Many different graph drawing algorithms 

have been proposed so far in the research literature, and 

among them are also some algorithms specifically designed 

for drawing trees, such as the level-based algorithm [1], the 

radial tree drawing introduced by Book and Keshari [2] as 

well as the upward drawing method discussed by Alam et al. 

[3] which is a general graph drawing algorithm which can also 

be successfully used for trees. 

In this work we present two different algorithms that are 

based on information extracted from the topology of tree. 

Having a rooted tree, our algorithms start with positioning the 

root node in the centre of the drawing and assigning all other 

nodes toradial layers. As a next step, angular coordinates are 

assigned to all nodes, again starting from root and going 

outwards. Finally, a projection method is applied to convert 

angular coordinates into 2D Cartesian coordinates for 

producing the drawing. We believe that our approach is well 

suited for drawing real-time trees with or without preservation 

of the mental map. 
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II.  ALGORITHMS 

A. Topology Extraction 

Our approach makes use of information about the topology 

of the tree to be drawn. The final goal is to produce a radial 

drawing of the tree with nodes placed on concentric circles 

around the center of the drawing. Both algorithms do this by 

assigning angular coordinates to all nodes starting from the 

center and then progressing layer by layer outwards. The main 

scenario for this step is assigning a limited angular interval for 

each node which represents the space allowed for the direct 

children of that node. 

If the tree is rooted then the root is placed in the center of 

the drawing. If the tree is undirected, and thus without a 

designated root node, then we can place the center of the tree 

(or the two centers, if the tree is bicentered) in the center of 

the drawing. Trees can be either centered or bicentered as 

shown in Fig. 1. To find the center(s), leaves are removed step 

by step until either one or two nodes remain. If only one node 

remains, that means the tree is centered; if two nodes remain 

then the tree is bicentered. 

 

 

Fig. 1 An example of a centered tree with a single-node center 

(above) and a bicentered tree with two-node center (below) 

 

First, the tree needs to be layered starting from its 

root/center/bicenter which we will call simply the drawing 

center for convenience. The drawing center is always in the 

first layer; its direct children become the second layer, and so 

on until all nodes are assigned to a layer. For example, both 

layouts in Fig. 1 have three layers. 

B. Angular Intervals 

The drawing center (in the first layer) is assigned fixed 

angular coordinate(s) and thus fixed angular interval(s). The 

main difference between the two proposed algorithms is the 

way we assign the angular interval to nodes. Let Acv denote 

the angular coordinate of node v, and Aiv- the corresponding 
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angular interval for the direct children of node v. If the 

drawing center consists of a single node r, then the Acr = 0 and 

Air = 2π.If the drawing center consists of two nodes (for un-

rooted bicentered tree) r and s, then Acr = 0, Acs = π, and 

Air = Ais = π.Ai for all other nodes will be computed either as: 

 

1deg )(

)(

−

=

vp

vp

v

Ai
Ai  (1) 

 

or as 

v

vp

vp

v w
w

Ai
Ai ×=

)(

)(
, (2) 

 

where p(v) is the parent of node v; and )(deg vp  is the degree 

of the parent of nodev; vw  is the weight of nodev, which we 

define as the number of children and grandchildren of v plus 1, 

i.e. the number of nodes in the sub-tree with depth 2, rooted at 

v. Fig. 2 illustrates the concept of node weight.  
 

 

Fig. 2 Illustration of the concept of node weight. The weight wv of 

node v is the number of nodes in the sub-tree with depth 2, rooted at v 

 

The first algorithm we propose uses (1) for computing the 

space allowed space for the direct children of each node, and 

the second algorithm uses (2). This interval guarantees that 

there will be no edge-crossing since the children of each node 

have their own space for being accommodated. 

C. Angular Coordinates 

As a next step, we use the angular intervals, computed in 

the previous section, for assigning angular coordinates to all 

nodes. As mentioned above, the angular coordinate of the 

drawing center is either 0(for a single-node drawing center) or 

0 and π(for bicentred trees). The angular coordinates of the 

rest of nodes are computed either as: 
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Equation (3) is computing Acin our first algorithm, while 

(4) is used in our second algorithm. Again, p(v) is the parent 

of node v; vind in (3) is the index of node v among its siblings 

(assuming the siblings are ordered in no particular fashion). 

The function vinc
 
in (4) is what we call the accumulative 

weight of node v among its sibling. Assuming again that the 

children of p(v) are ordered somehow, the accumulative 

weight of the first child is 0, and the accumulative weight of 

node v is it’s the sum of weights of all its siblings placed 

before v in the order. The concept of accumulative weight is 

illustrated in Fig. 3. 
 

 

Fig. 3 Illustration of the concept accumulative weight 
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Fig. 4 Four different trees drawn by the two proposed algorithms
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D. Visualization 

To compute Ai and Ac for a node, we need to have its parent 

data (Ac, Ai).Therefore those values should be computed 

starting from the drawing center whose angular interval(s) and 

angular coordinate(s) is(are) fixed as explained above. Once 

this is done, we need to find the geometric position (x, y) of 

each node. We use the angular coordinates for this purpose. 

They are scalar values which can be projected into a 2D 

Cartesian space with an appropriate technique.  

In the drawings above, we used the MDS projection 

technique [5] which takes a dissimilarity matrix (computed for 

a set of scalar values) as an input and produces mD 

coordinates (m ≥2), in this work 2Dcoordinates. The drawing 

center does need special care as by definition it will be placed 

in the center of the drawing area. The dissimilarity matrix for 

a set of n scalar values is an n×n matrix M where Mij is the 

distance between i and j, thus all diagonal elements will be 0. 

Our algorithms make use of angular coordinates; therefore the 

distance between two nodes can be computed as shown in (5). 

 

22 )cos(cos)sin(sin jijiij AcAcAcAcD −+−=  (5) 

 

Since our goal is a radial drawing, all the nodes are placed 

along the edge of a circle with radius 1. We need to take care 

for the distance between the layers in order to avoid overlaps. 

We do this similarly to how it is done [1] and [2], however we 

further adjust the distance between a pair of adjacent layers 

depending on the edge density between them. The larger the 

edge density, the larger is the distance between them for 

producing a clearer drawing. This can be observed in Fig. 4. 

A simpler method for computing Cartesian coordinates 

would be to simply use (dvcosAcv,dvsinAcv) as the position of 

node v, assuming dv is the distance of node v from the drawing 

center. This method is faster; however it is limited to radial 

drawings and cannot be generalized for other types of 

drawings, which may use scalar values for producing might 

graph layouts, such as the dynamics-driven graph drawing 

introduced by Toosi et al. [4]. 

III. RESULT AND DISCUSSION 

A. Comparison between the Algorithms 

In Fig. 4 we show the results of our algorithms for 4 

different tree topologies. The layouts in left column show the 

result from the first algorithm; and the right column shows the 

results from the second algorithm. It can be observed that the 

first algorithm divides the space reserved for the children of 

each node evenly between those children, disregarding their 

weights. Therefore, the further sibling nodes are located from 

the drawing center, the closer they are placed to each other. 

This approach, however, has the advantage that it reserves 

space for new leaves in the outer layers, which can be 

interactively (or real-time) introduced with minimum 

recalculation of the layout. 

The second algorithm takes care of the node weights and 

this can be seen very well in the difference between drawings 

D.1 and D.2 in Fig. 4. In D.1, the space for future leaves in the 

third layer has been reserved, therefore, if a node is inserted in 

that layer there is no need to re-compute the positions of any 

other nodes. However, in D.2 a new leaf in the third layer 

leads to re-computing the coordinates of a portion of the 

nodes. From another point of view, the nodes in the third layer 

in D.1 are tightly close to each other, while in third layer in 

D.2 looks like a better drawing. In B.2 and C.2, we can also 

observe that nodes with heavier weight are better spaced in 

comparison to B.1 and C.1, respectively. However, for small-

size trees, like the one in A.1, the result of the first algorithm 

is similar to the one of the second but more aesthetic for small 

size trees. 

B. Discussion 

We propose a graph visualization technique for trees which 

produces radial tree drawings. Two slightly different 

algorithms within the same approach have been proposed and 

applied. The time complexity for both algorithms is O(n) for a 

tree with n nodes. 

The first algorithm has an advantage for drawing trees 

either interactively or in real-time. While it results in a tighter 

space for nodes in outer layers, it leads to drawings in which 

the branches of the tree are better expressed and easily 

distinguishable. We suggest that this version of our drawing 

approach might be suitable for drawing very large trees in 

real-time with preservation of the mental map, where it is 

more important to visualize the general structure of the tree at 

first and then apply an appropriate navigation technique to 

explore specific parts of the tree in detail. 

The second algorithm is suitable enough for large trees 

since it takes care for the descendants of nodes in order to 

space them accordingly. This version of the algorithm can be a 

better option for static drawings of large trees. As our results 

suggest, either of the two algorithms can produce an 

aesthetically pleasing drawing for small trees. 

APPENDIX 

All the results have been produced with a system written in 

C++ and OpenGL. All example trees are generated by the 

authors. Our software and example trees are available on 

request. 
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