
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

306

 Abstract—This paper is a survey of current component-based
software technologies and the description of promotion and
inhibition factors in CBSE. The features that software components
inherit are also discussed. Quality Assurance issues in component-
based software are also catered to. The feat research on the quality
model of component based system starts with the study of what the
components are, CBSE, its development life cycle and the pro &
cons of CBSE. Various attributes are studied and compared keeping
in view the study of various existing models for general systems and
CBS. When illustrating the quality of a software component an apt
set of quality attributes for the description of the system (or
components) should be selected. Finally, the research issues that can
be extended are tabularized.

 Keywords—Component, COTS, Component based development,
Component-based Software Engineering.

I. INTRODUCTION
OMPONENT-based software development approach is
based on the idea to develop software systems by

selecting appropriate off-the-shelf components and then to
assemble them with a well-defined software architecture.
Because the new software development paradigm is very
different from the traditional approach, quality assurance
(QA) for component-based software development is a new
topic in the software engineering community [2].

The purpose of CBSD is to develop large systems,
incorporating previously developed or existing components,
thus cutting down on development time and costs. It can also
be used to reduce maintenance associated with the upgrading
of large systems. It is assumed that common parts (be it
classes or functions) in a software application only need to be
written once and re-used rather than being re-written every
time a new application is developed.

 Iqbaldeep Kaur is Sr.Lecturer with Computer Science &
Engineering Department, Rayat & Bahra Institute of Engineering & Bio-
Technology, Sahauran, Distt. Mohali (Punjab)-140104 India
(Phone: +91-92161-44321; e-mail: er_iqabldeep kaur@yahoo.com).

Parvinder S. Sandhu is Professor with Computer Science &
Engineering Department, Rayat & Bahra Institute of Engineering & Bio-
Technology, Sahauran, Distt. Mohali (Punjab)-140104 India
(Phone: +91-98555-32004; e-mail: parvinder.sandhu@gmail.com).
 Hardeep Singh is Professor with Computer Science the Electrical
Engineering Department,,Guru Nnak Dev University, Amritsar (Punjab)-
India.
 Vandana Saini is Lecturer with Computer Science &
Engineering Department, Rayat & Bahra Institute of Engineering & Bio-
Technology, Sahauran, Distt. Mohali (Punjab)-140104 India.

II. COMPONENT BASED SOFTWARE ENGINEERING
 CBSE embodies the “the ‘buy, don’t build’ philosophy".
CBSE is aiming at realizing long-waited software reuse by
changing both software architecture and software process.
Because of the extensive uses of components, the Component-
Based Software Engineering (CBSE) process is quite different
from that of the traditional waterfall approach. CBSE not only
requires focus on system specification and development, but
also requires additional consideration for overall system

context, individual components properties and component
acquisition and integration process. This work presents an
indicative literature survey of techniques proposed for
different phases of the CBD life cycle. The aim of this survey
is to help provide a better understanding of different CBD
techniques for each of these areas [3].

The CBSE generally embodies the following fundamental
software development principles:

A. Independent Software Development
Large software systems are necessarily assembled from

components developed by different people. To facilitate
independent development, it is essential to decouple
developers and users of components through abstract and
implementation-neutral interface specifications of behavior for
components.

B. Reusability
While some parts of a large system will necessarily be

special-purpose software, it is essential to design and assemble
pre-existing components (within or across domains) in
developing new components.

C. Software quality
A component or system needs to be shown to have desired

behavior, either through logical reasoning, tracing, and/or
testing. The quality assurance approach must be modular to be
scalable.

D. Maintainability
A software system should be understandable, and easy to

evolve [6],[7].

III. COMPONENT
 In defining a software component, this definition can be
quoted:

“A component is a software element that conforms to a
software model and can be independently deployed and

Analytical Study of Component Based Software
Engineering

Iqbaldeep Kaur, Parvinder S. Sandhu, Hardeep Singh, and Vandana Saini

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

307

composed without modification according to a composition
standard” [4].
 CBSE is about creating a software package in such a manner
as to be able to easily reuse its constituent components in
other similar or dissimilar applications. It includes writing
high level code that glues together pieces of pre-built
functionalities or software building blocks called components.
Component is one of the parts of the system that make up a
system. It may be hardware, software or firmware and may be
sub divided into other components [5].

The following figure (Fig. 1) illustrates the architecture
when applying this approach. The Connection between
components A and B is implemented is through the Connector
C. The function of the additional modules, called wrappers is
to adjust the component and this way it will better match to
the requirements of the rest of the system [11],[12].

Fig. 1 Architectural approach for component-based systems

Wa – wrapper for component A
Wb – wrapper for component B
C – Connectors

IV. ABSTRACT SOFTWARE COMPONENT MODEL
This abstract model should be perceived as a reference

framework for all current models with general definitions and
not seen to be specific to any programming language or type
of software. Many component-based software applications use
such models with the following associated terms and
attributes:

A. Syntax
 It refers to the ‘grammar’ or the rules followed in the code
as per the specific programming language. In a component
model, the language used for the component is specified and
the syntax in accordance to that is followed. In most software
component models (SCM), the component is defined as a
class of function.

B. Semantics
 It refers to the actual meaning and view of the components
A component is associated with a name, an interface and the
body that includes the code.
 i) The name of the component describes the use of
component with some kind of naming convention. This
makes it easier for developers working on large projects to
identify existing components in databases, search engines and
in the market place.
 ii) The interface is the visible area through which
information flows to (the input) and from (the output) the
component. This information or data is required for the
component to perform its operations and is accessible from
outside. Usually, the input consists of input values and
parameters. This interface requires documentation that
contains all the necessary information to use the component.

 This documentation also specifies the dependencies to
match the required and provided services.
 iii)The body or code implements the services that are
required of the component and provides the output. This area
is generally visible or accessible to the developer from
outside.

C. Composition
 This relates to the construction and working together of
components. Components are subparts of a larger system. To
make it simpler, they can be seen as the building blocks, these
blocks all assembled, would complete the system.

So, the Software Component model contains a language to
compose the system with suitable syntax and semantics to
connect with the components. In many cases, with high end
programming languages, there are used classifiers or
connectors provided in the environment to handle this
interaction. The Fig. 2 below shows some examples of
component models available to be used.

Fig. 2 Component Models

V. LIFE CYCLE
 The term component-based software development (CBD)
can be referred to as the process for building a system using
components. CBD life cycle consists of a set of phases,
namely, identifying and selecting components based on
stakeholder requirements, integrating and assembling the
selected components and updating the system as components
evolve over time with newer versions [3].

According to [13], software architecture has four levels of
abstraction:

• Internal functionality of components
• Interfaces, exported by a component to the rest of the
system
• Interconnection of the architectural elements
(components, connectors and Wrappers) in architecture
• Rules for the architectural styles
Component-based software systems are developed by

selecting various components and assembling them together
rather than programming an overall system from scratch, thus
the life cycle of component-based software systems is
different from that of the traditional software systems. The life
cycle of component-based software systems can be
summarized as follows [17, 18]:

• Requirements analysis

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

308

• Software architecture selection, construction, analysis,
and evaluation;

• Component identification and customization
• System integration
• System testing
• Software maintenance.

VI. ROLES IN CBSE
The followings figure illustrates the percentage amount of

roles played by different persons currently and in the next two
years in CBSE (see Fig. 3).

Fig. 3 Roles in CBSE

VII. COMPONENT BASED SOFTWARE DEVELOPMENT (CBSD)
 Component-based software development approach is based
on the idea to develop software systems by selecting
appropriate off-the-shelf components and then to assemble
them with a well-defined software architecture. The term
component-based software development (CBD) can be
referred to as the process for building a system using
components [3].
 This approach is based on the idea that software systems
can be developed by selecting appropriate off-the-shelf
components and then assembling them with a well-defined
software architecture [17,18]. This new software development
approach is very different from the traditional approach in
which software systems can only be implemented from
scratch. These commercial off-the shelf (COTS) components
can be developed by different developers using different
languages and different platforms. This can be shown in Fig.
4, where COTS components can be checked out from a
component repository, and assembled into a target software
system.

Fig. 4 Component-Based Software Development

VIII. COMPONENT SPECIFICATION EXAMPLE
 The following example as mentioned in [7],[8] shows the
specification of a List type in RESOLVE notation (reproduced
from [8]). List_Template is a generic concept (specification
template) which is parameterized by the type of entries to be
contained in lists. To provide abstract mathematical
explanations of the operations, an object of type List is
modeled by an ordered pair of mathematical strings of
entries. A string is similar to, but simpler than, a “sequence”
because it does not explicitly include the notion of a position.
The operator “*” denotes string concatenation; “<x>” denotes
the string containing the entry x; and “|s|” denotes the length
of s. Conceptualizing a List object as a pair of strings makes it
easy to explain insertion and removal from the “middle”. A
sample value of a List of Integers object, for example, is the
ordered pair (<3,4,5>,<4,1>). Insertions and removals can be
explained as taking place between the two strings, e.g., at the
left end of the right string. The declaration of type List
introduces the mathematical model and says that an object of
type List initially (i.e., upon declaration) is “empty”: both its
left and right strings are empty strings. Each operation is
specified by a requires clause (precondition), which is an
obligation for the caller; and an ensures clause
(postcondition), which is a guarantee from a correct
implementation. In the postcondition of Insert, for example, #s
and #x denote the incoming values of s and x, respectively,
and s and x denote the outgoing values. Insert has no
requirement, and it ensures that the incoming value of x is
concatenated onto the left end of the right string of the
incoming value of s; the left string is not affected. Notice that
the postcondition describes how the operation updates the
value of s, but the return value of x (which has the mode
alters) remains unspecified.

Given this specification, students act as clients and use lists
in problem solving within the first few weeks of their second
quarter/second semester course. They use a specification-
based “natural” or forward reasoning method to reason about
correctness [8]. Only later they learn how to implement lists
using pointer structures. In addition to classical examples such
as Lists, students also see data abstractions that result from
recasting classical algorithms as objects [9], and aspects of
specification-based interface violation testing using wrapper
components [10]. RESOLVE specifications use a combination
of standard mathematical models such as integers, sets,
functions, and relations, in addition to tuples and strings. The
explicit introduction of mathematical models allows use of
standard notations associated with those models in explaining
the operations. Our experience is that this notation—which is
precise and formal—is nonetheless fairly easy to learn to
understand even for beginning computer science students,
because they have seen most of it before in high school and
earlier.

Concept List Template (type Entry)
Type List is modeled by
(left: string of Entry,
right: string of Entry)
exemplar s

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

309

initialization ensures
|s.left| = 0 and |s.right| = 0
Operation Insert (
alters x: Entry
updates s: List
)
ensures s.left = #s.left and
s.right = <#x> * #s.right
Operation Remove (
replaces x: Entry
updates s: List
)
requires |s.right| > 0
ensures s.left = #s.left and
#s.right = <x> * s.right
Operation Advance (
updates s: List
)
requires |s.right| > 0
ensures s.left * s.right =
#s.left * #s.right and
|s.left| = |#s.left| + 1
Operation Reset (
updates s: List
)
ensures |s.left| = 0 and
s.right = #s.left * #s.right
Operation Advance To End (
updates s: List
)
ensures |s.right| = 0 and
s.left = #s.left * #s.right
Operation Left Length (
restores s: List
): Integer
ensures Left Length = |s.left|
Operation Right Length (
restores s: List
): Integer
ensures Right Length = |s.right|
end List Templat

IX. BENEFITS IN CBSD
 The obvious benefit in SR components is the “time-to-
market”, thus lowering the cost of developing the software.
Shorter development cycles would save time as to developing
a system from scratch. Developing software systems using
CBSE offers many advantages e.g. Development costs are
reduced since existing components are used to develop the
systems. Reliability is increased since the components have
previously been tested in various contexts Time to market is
reduced since the components used already exist. Maintenance
costs are reduced. Efficiency and flexibility is improved due
to the fact that components can easier be added or replaced.
The figure below illustrates the major goals and advantages.
The main tangible benefits are shorter development life cycle
and reduction in IT cost. There are also some intangible
benefits like IT adaptability, improved business processes,

benefit from external products and many more as shown in
Fig. 5.

Fig. 5 Goals in CBSD

X. DIFFICULTIES IN CBSD
 The factors that inhibit the use of components can be
followed as shown in the two figures: Fig. 6 and 7 below. The
second graph lists the difficulties from managerial and
Technical Perspectives.

Fig. 6 Inhibitors to the Use of Component

Fig. 7 Inhibitors from Managerial and Technical Perspectives

XI. METRIC USED IN CBSD
The area of software measurement is one of the areas in

software engineering where researchers are active from a long
time. The area of software measurement is also known as
software metrics.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

310

According to IEEE [IEEE 93],“A software metric is a
quantitative measure of the degree to which a system,
component or process possess a given attribute”.[14]

Software metrics are intended to measure the software
quality and performance characteristics quantitatively
encountered during the planning and execution of software
development resource and effort allocation, scheduling and
product evaluation. These can serve as measures of software
products for the purpose of comparison, cost estimation, fault
prediction and forecasting. Poulin [15] presents a set of
metrics used by IBM to estimate the efforts saved by reuse.
The study suggests the potential benefits against the
expenditures of time and resources required to identify and
integrate reusable software into a product. Study assumes the
cost as the set of data elements like Shipped Source
Instructions (SSI), Changed Source Instructions (CSI), Reused
source Instructions (RSI) etc. Reuse Percentage measures how
much of the product can be attributed to reuse and is given
as:-
Product Reuse Percentage = (RSI / (RSI + SSI)) * 100%

Cho et al [16] proposes a set of metrics for measuring
various aspects of software components like complexity,
customizability and reusability. The work considers two
approaches to measure the reusability of a component. The
first is a metric that measures how a component has reusability
and may be used at design phase in a component development
process. This metric, Component Reusability (CR) is
calculated by dividing sum of interface methods providing
commonality functions in a domain to the sum of total
interface methods. The second approach is a metric called
Component Reusability level (CRL) to measure particular
component’s reuse level per application in a component based
software development. This metric is again divided into two
sub-metrics. First is CRLLOC, which is measured by using
lines of code, and is expressed as percentage as given as:-
CRL LOC (C) = (Reuse (C) / Size (C)) *100%

XII. CURRENT COMPONENT TECHNOLOGIES
 Comparison among current component technologies can be
found in [17]-[23]. Here is simply a summarization of their
different features in Table below.

Fig. 8 Comparison of current component technologies

XIII. APPLICATIONS
 This emerging component development approach is being
widely used in various distinct domains .As it can be observed
from the bar graph shown (see Fig. 9), the approach is vividly
applied in the field of software development /CASE.

Fig. 9 Representative Domains

XIV. CONCLUSION
 CBSD is an inevitable next wave solution that has potential
to improve time –to-market and man power/cost trends that
have been ongoing. CBSD is best implemented using more
modern software technologies like:

• COM
• JAVA
• EJB
• CORBA
• ActiveX

There is little that would prevent virtually any technology
from implementing CBD so long as component conforms to
the basic requirements of its definition [5].

XV. SCOPE AND PROPOSED WORK IN CBSD
 The above discussion leads to the following topics that can
be worked upon in future:

1) Generation and adaptation of component-based
systems

2) Components and model-driven development
3) Specification, verification, testing and checking of

component systems
4) Compositional reasoning techniques for component

models
5) Measurement and prediction models for component

assemblies
6) Patterns and frameworks for component-based

systems
7) Extra-functional system properties of components

and component-based systems
8) Static and execution-based measurement of system

properties
9) Assurance and certification of components and

component-based systems
10) Components for service-oriented architectures, web

services and grid systems

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

311

11) Development environments and tools for building
component-based systems

12) Components for real-time, secure, safety critical
and/or embedded systems

13) Case studies and experience reports

REFERENCES
[1] CBSE Network, “Component based software engineering workshop”,

Budapest April 3-4
[2] APSEC2000, “Software Engineering Conference”, Proceedings,

Seventh-Asia-Pacific, 2000.
[3] www.scitation.aip.org/getabs.
[4] George T. Heineman and William T. Councill, “Component-Based

Software Engineering Putting the Pieces Together”, Addison-Wesley,
Boston, MA ,880, June 2001.

[5] Sajan Mathew, “Software Engineering”, Edition 2nd S.Chand.
[6] M. Sitaraman and B. W. Weide , “Special Feature Component-Based

Software Using RESOLVE”, ACM SIGSOFT Software Engineering
Notes 19, No. 4, 21-67, October 1994.

[7] Murali Sitaraman, Timothy J. Long ,E. James Harner. Bruce W. Weide,
“A Formal Approach to Component-Based Software Engineering
Education and Evaluation”, In ICSE 2001: Proceedings 23rd
International Conference on Software Engineering}, pp. 601-609, 2001.

[8] Sitaraman, M., Atkinson, S., Kulczycki, G., Weide, B. W., Long, T. J.,
Bucci, P., Heym, W., Pike, S., and Hollingsworth, J. E., “Reasoning
About Software Component Behavior”, Proceedings Sixth International
Conference on Software Reuse, Springer Verlag LNCS 1844, 266-283,
2000.

[9] Sitaraman, M., Weide, B. W., Long, T.J., Ogden, W. F., “A Data
Abstraction Alternative to Data Structure/Algorithm Modularization”,
Volume on Generic Programming, LNCS 1766 608, 102-113 Springer-
Verlag, 2000.

[10] Edwards, S., Shakir, G., Sitaraman, M., Weide, B. W., and
Hollingsworth, J., “A Framework for Detecting Interface Violations in
Component-Based Software”, Proceedings of the Fifth International
Conference on Software Reuse, IEEE Computer Society Press, Victoria,
Canada, pp. 46-55, June 1998.

[11] Aleksandar Dimov and Sylvia Ilieva, “System level modeling of
component based software systems”, International Conference on
Computer Systems and Technologies - CompSysTech- II.7-1,2004.

[12] Dean, J. and M. Vigder, “System Implementation using Commercial-
Off-The-Shelf (COTS) Software”,1997. URL:
http://seg.iit.nrc.ca/papers/NRC40173.pdf.

[13] N. Medvidovic, R. Taylor, and E. Whitehead, “Formal Modeling of
Software Architectures at Multiple Levels of Abstraction”, In
Proceedings of the California Software Symposium 1996, Los Angeles,
CA, pp. 28-40., April 1996.

[14] Arun Sharma, Rajesh Kumar, and P. S. Grover, “A Critical Survey of
Reusability Aspects for Component-Based Systems” , Proceedings of
world academy of science engineering and technology ,volume 21,
January 2007.

[15] J. Poulin, J Caruso and D Hancock, “The Business Case for Software
Reuse”, IBM Systems Journal, 32(40),567-594, 1993.

[16] Eun Sook Cho et al., “Component Metrics to Measure Component
Quality ”, Proceedings of the eighths Asia-Pacific Software Engineering
Conference, 1530-1362,2001.

[17] Xia Cai, Michael R. Lyu, Kam-Fai Wong Roy Ko ,“Component-Based
Software Engineering Technologies Development Frameworks and
Quality Assurance Schemes”, The Chinese University of Hong Kong
Hong Kong Productivity Council.

[18] G. Pour, “Component-Based Software Development Approach: New
Opportunities and Challenges”, Proceedings Technology of Object-
Oriented Languages, TOOLS 26.,pp. 375-383,1998.

[19] A.W.Brown, K.C. Wallnau, “The Current State of CBSE”, IEEE
Software ,Volume:15 5, pp. 37-46.,Sept.-Oct. 1998.

[20] G. Pour, “Enterprise JavaBeans, JavaBeans & XML Expanding the
Possibilities for Web-Based Enterprise Application Development”,
Proceedings Technology of Object-Oriented Languages and Systems,
TOOLS 31, pp.282-291. 1999.

[21] G.Pour, M. Griss, J. Favaro, “Making the Transition to Component-
Based Enterprise Software Development: Overcoming the Obstacles –

Patterns for Success”, Proceedings of Technology of Object-Oriented
Languages and systems, pp.419 – 419, 1999.

[22] G. Pour, “Software Component Technologies JavaBeans and ActiveX”,
Proceedings of Technology of Object-Oriented Languages and systems,
pp. 398 – 398, 1999.

[23] C. Szyperski, "Component Software: Beyond Object- Oriented
Programming", Addison-Wesley, New York, 1998.

[24] Roger S. Pressman, Software Engineering, “A Practitioner’s
Approach”,Sixth Edition,Tata McGraw Hill.

[25] Rajiv Mall, “Software Engineering” ,2nd edition , PHI.

