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Analytical solution for the Zakharov-Kuznetsov
equations by differential transform method

Saeideh Hesam, Alireza Nazemi and Ahmad Haghbin

Abstract—This paper presents the approximate analytical solution
of a Zakharov-Kuznetsov ZK(m, n, k) equation with the help of the
differential transform method (DTM). The DTM method is a powerful
and efficient technique for finding solutions of nonlinear equations
without the need of a linearization process. In this approach the
solution is found in the form of a rapidly convergent series with
easily computed components. The two special cases, ZK(2,2,2) and
ZK(3,3,3), are chosen to illustrate the concrete scheme of the DTM
method in ZK(m, n, k) equations. The results demonstrate reliability
and efficiency of the proposed method.

Keywords—Zakharov-Kuznetsov equation, differential transform
method, closed form solution.

I. INTRODUCTION

IN this paper the applied DTM is used to solve the
Zakharov-Kuznetsov ZK(m,n, k) equations of the form

ut + a(um)x + b(un)xxx + c(uk)yyx = 0, m, n, k �= 0, (1)

where a, b, c are arbitrary constants and m,n, k are inte-
gers. This equation governs the behavior of weakly nonlinear
ion-acoustic waves in plasma comprising cold ions and hot
isothermal electrons in the presence of a uniform magnetic
field [1]-[2]. The ZK equation was first derived for describing
weakly nonlinear ion-acoustic waves in strongly magnetized
lossless plasma in two dimensions [3].

Wazwaz [4] used extended tanh method for analytic treat-
ment of the ZK equation, the modified ZK equation, and
the generalized forms of these equations. Huang [5] applied
the polynomial expansion method to solve the coupled ZK
equations. Zhao et al. [6] obtained numbers of solitary waves,
periodic waves and kink waves using the theory of bifurcations
of dynamical systems for the modified ZK equation. Inc [7]
solved nonlinear dispersive ZK equations using the Adomian
decomposition method, and Biazar et al. [8] applied the ho-
motopy perturbation method to solve the Zakharov-Kuznetsov
ZK(m,n, k) equations.

In the present work, we are concerned with the application
of the DTM for the ZK equations. The DTM is a numerical
method based on a Taylor expansion. This method constructs
an analytical solution in the form of a polynomial. The concept
of DTM was first proposed and applied to solve linear and
nonlinear initial value problems in electric circuit analysis by
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[9]. Unlike the traditional high order Taylor series method
which requires a lot of symbolic computations, the DTM is
an iterative procedure for obtaining Taylor series solutions.
This method will not consume too much computer time
when applying to nonlinear or parameter varying systems.
This method gives an analytical solution in the form of a
polynomial. But, it is different from Taylor series method that
requires computation of the high order derivatives. The DTM
is an iterative procedure that is described by the transformed
equations of original functions for solution of differential
equations. Recently, the application of DTM is successfully
extended to obtain analytical approximate solutions to various
linear and nonlinear problems. For instance see [10]-[16].

The paper is organized as follows. In Section 2, theoretical
aspects of the method are discussed. In Section 3, several
examples with analytical solutions will be given to show the
impressiveness of the suggested method. A proof of solution is
exhibited in section 4. Finally, conclusions are given in Section
5.

II. DIFFERENTIAL TRANSFORM METHOD

2.1 Two-dimensional differential transform
The basic definition and the fundamental theorems of the

DTM and its applicability for various kinds of differential
equations are given in [17]-[20]. For convenience of the reader,
we present a review of the DTM.

The differential transform function of the function w(x, y)
is the following form:

W (k, h) =
1

k!h!
[
∂(k+h)w(x, y)

∂xk∂yh
](x=x0, y=y0), (2)

where w(x, y) is the original function and W (k, h) is the
transformed function.

The inverse differential transform of W (k, h) is defined as

w(x, y) =

∞∑
k=0

∞∑
h=0

W (k, h)(x− x0)
k(y − y0)

h. (3)

Combining Eq. (2) and Eq. (3), it can be obtained that

W (k, h) =

∞∑
k=0

∞∑
h=0

1

k!h!
[
∂(k+h)w(x, y)

∂xk∂yh
](x=x0, y=y0)(x− x0)

k(y − y0)
h. (4)

When (x0, y0) are taken as (0, 0), the function w(x, y) in Eq.
(4) is expressed as the following

W (k, h) =

∞∑
k=0

∞∑
h=0

1

k!h!
[
∂(k+h)w(x, y)

∂xk∂yh
](x=x0, y=y0)x

kyh, (5)
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TABLE I
THE OPERATIONS FOR THE TWO-DIMENSIONAL DIFFERENTIAL TRANSFORM METHOD.

Original function Transformed function

w(x, y) = u(x, y) ∓ v(x, y), W (k, h) = U(k, h) ∓ V (k, h)

w(x, y) = αu(x, y) W (k, h) = αU(k, h)

w(x, y) =
∂u(x,y)

∂x
W (k, h) = (k + 1)U(k + 1, h)

w(x, y) =
∂u(x,y)

∂y
W (k, h) = (h + 1)U(k, h + 1)

w(x, y) =
∂(r+s)u(x,y)

∂xr∂ys W (k, h) = (k + 1)(k + 2)...(k + r)(h + 1)(h + 2)...(h + s)U(k + r, h + s)

w(x, y) = u(x, y)v(x, y) W (k, h) =

∑k

r=0

∑h

s=0
U(r, h − s)V (k − r, s)

w(x, y) = xmyn W (k, h) = δ(k − m, h − n) = δ(k − m)δ(h − n), where δ(k − m) = { 1, k = m, h = n

0, otherwise

w(x, y) =
∂u(x,y)

∂x
∂v(x,y)

∂y
W (k, h) =

∑k

r=0

∑h

s=0
(k − r + 1)(h − s + 1)U(k − r + 1, s)V (r, h − s + 1)

w(x, y) = u(x, y)v(x, y)z(x, y) W (k, h) =

∑k

r=0

∑k−r

t=0

∑h

s=0

∑h−s

p=0
U(r, h − s − p)V (t, s)Z(k − r − t, p)

w(x, y) = u(x, y)
∂v(x,y)

∂x
∂z(x,y)

∂x
W (k, h) =

∑k

r=0

∑k−r

t=0

∑h

s=0

∑h−s

p=0
(t + 1)(k − r − t + 1)U(r, h − s − p)V (t + 1, s)Z(k − r − t + 1, p)

w(x, y) = u(x, y)
∂v2

(x,y)

∂x2 W (k, h) =

∑k

r=0

∑h

s=0
(k − r + 2)(k − r + 1)U(r, h − s)V (k − r + 2, s)

w(t) = t W (k) = δ(k − 1)

w(x, y) = xmeat W (k, h) =
ah

h!
δ(k − m).

w(x, y) = ey−x W (k, h) =
1

h

h!

(−1)
k

k!

and Eq. (3) is shown as

w(x, y) =
∞∑

k=0

∞∑
h=0

W (k, h)xkyh. (6)

In real applications, the function w(x, y) by a finite series
of Eq. (6) can be written as

w(x, y) =
n∑

k=0

m∑
h=0

W (x, y)xkyh. (7)

The fundamental mathematical operations performed by two
dimensional differential transform method can readily be ob-
tained and are listed in Table 1.

2.2 Three-dimensional differential transform
By using the same theory as in two-dimensional differential

transform, we can reach the three-dimensional case. The basic
definitions of the three-dimensional differential transform are
shown as below.

Given a w function which has three components such as
x, y, t. Three-dimensional differential transform function of
the function w(x, y, t) is defined

W (k, h,m) =
1

k!h!m!
[
∂(k+h+m)W (x, y, t)

∂xk∂yh∂tm
](0,0,0), (8)

where w(x, y, t) is the original function and W (k, h,m) is the
transformed function.

The inverse differential transform of W (k, h,m) is defined
as

w(x, y, t) =

∞∑
k=0

∞∑
h=0

∞∑
m=0

W (k, h,m)xkyhtm, (9)

and from Eqs. (8) and (9) can be concluded

w(x, y, t) =

∞∑
k=0

∞∑
h=0

∞∑
m=0

1

k!h!m!
[
∂(k+h+m)W (x, y, t)

∂xk∂yh∂tm
](0,0,0)x

kyhtm. (10)

The fundamental mathematical operations performed by three
dimensional differential transform method are listed in Table
2.

III. NUMERICAL RESULTS

In this part, DTM will be applied for solving two spe-
cial equations, namely ZK(2,2,2) and ZK(3,3,3) with specific
initial conditions. The results reveal that the method is very
effective and simple.

Example 3.1: We consider the following ZK(2,2,2) equa-
tion:

ut − (u2)x +
1

8
(u2)xxx +

1

8
(u2)yyx = 0, (11)

the exact solution to Eq. (11) subject to the initial condition

u(x, y, 0) =
4

3
λ sinh2(

1

2
(x+ y)), (12)

where λ is an arbitrary constant.
Using the DTM, we obtain the following relations:

(m+ 1)U(k, h,m+ 1) +

2

k∑
r=0

h∑
s=0

m∑
p=0

(k − r + 1)U(r, h− s,m− p)U(k − r + 1, s, p) +

3

4

k∑
r=0

h∑
s=0

m∑
p=0

(r + 1)U(r + 1, h− s,m− p)(k − r + 1)

(k − r + 2)U(k − r + 2, s, p) +

1

4

k∑
r=0

h∑
s=0

m∑
p=0

U(r, h− s,m− p)
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TABLE II
THE OPERATIONS FOR THE THREE-DIMENSIONAL DIFFERENTIAL TRANSFORM METHOD.

Original function Transformed function

w(x, y, t) = u(x, y, t) ∓ v(x, y, t) W (k, h, m) = U(k, h, m) ∓ V (k, h, m)

w(x, y, t) = αu(x, y, t) W (k, h, m) = αU(k, h, m)

w(x, y, t) =
∂u(x,y,t)

∂x
W (k, h, m) = (k + 1)U(k + 1, h, m)

w(x, y, t) =
∂u(x,y,t)

∂y
W (k, h, m) = (h + 1)U(k, h + 1, m)

w(x, y, t) =
∂u(x,y,t)

∂t
W (k, h, m) = (m + 1)U(k, h, m + 1)

w(x, y, t) =
∂(r+s+p)u(x,y,t)

∂xr∂ys∂tp W (k, h, m) = (k + 1)(k + 2)...(k + r)(h + 1)(h + 2)...(h + s)(m + 1)(m + 2)...(m + p)U(k + r, h + s, m + p)

w(x, y, t) = u(x, y, t)v(x, y, t) W (k, h, m) =

∑k

r=0

∑h

s=0

∑m

p=0
U(r, h − s, m − p)V (k − r, s, p)

w(x, y, t) = u(x, y, t)v(x, y, t)q(x, y, t) W (k, h, m) =

∑k

r=0

∑k−r

t=0

∑h

s=0

∑h−s

p=0

∑m

q=0

∑m−q

n=0
U(r, h − s − p, m − q − n)V (t, s, q)Q(k − r − t, p, n)

w(x, y, t) =
∂u(x,y,t)

∂x
∂v(x,y,t)

∂y
W (k, h, m) =

∑k

r=0

∑h

s=0

∑m

p=0
(k − r + 1)(h − s + 1)U(k − r + 1, s, p)V (r, h − s + 1, m − p)

(k − r + 1)(k − r + 2)(k − r + 3)U(k − r + 3, s, p) +

1

2

k∑
r=0

h∑
s=0

m∑
p=0

(h− s+ 1)

U(r, h− s+ 1,m− p)(s+ 1)(k − r + 1)

U(k − r + 1, s+ 1, p) +
1

4

k∑
r=0

h∑
s=0

m∑
p=0

(r + 1)

U(r + 1, h− s,m− p)(s+ 1)(s+ 2)

U(k − r, s+ 2, p) +
1

4

k∑
r=0

h∑
s=0

m∑
p=0

U(r, h− s,m− p)

(k − r + 1)(s+ 1)(s+ 2)U(k − r + 1, s+ 2, p) = 0, (13)

and

U(k, h, 0) =

−2

3
λ δ(k)δ(h) +

1

3

(−1)k(−1)h

k!h!
λ+

1

3

1

k!h!
λ. (14)

Substituting Eq. (14) into Eq. (13) and by a recursive
method, the results are listed as follows:

If k+h+m=odd, U(k, h,m) = 0, except U(0, 0, 0) = 0,
Otherwise

U(2, 0, 0) =
λ

3
, U(1, 1, 0) =

2λ

3
, U(0, 2, 0) =

λ

3
,

U(2, 2, 0) =
λ

6
, ...

U(1, 0, 1) = −2λ2

3
, U(0, 1, 1) = −2λ2

3
,

U(2, 1, 1) = −λ
2

3
, U(1, 2, 1) = −λ

2

3
, ...

U(0, 0, 2) =
λ3

3
, U(2, 0, 2) =

λ3

6
, U(1, 1, 2) =

λ3

3
,

U(0, 2, 2) =
λ3

6
, U(2, 2, 2) =

λ3

12
, ...

Consequently substituting all U(k, h,m) into Eq. (9) and after
some manipulations, we obtain the closed form series solution

as

u(x, y, t) =

∞∑
k=0

∞∑
h=0

∞∑
m=0

U(k, h,m)xkyhtm =
4

3
λ sinh2(

1

2
(x+ y − λt)),

which is the exact solution of this problem.
Example 3.2: Now we consider the ZK(2,2,2) equation:

ut − (u2)x +
1

8
(u2)xxx +

1

8
(u2)yyx = 0, (15)

the exact solution to Eq. (15) subject to the initial condition

u(x, y, 0) = −4

3
λ cosh2(

1

2
(x+ y)), (16)

where λ is an arbitrary constant.
Employing the DTM, we obtain the following relations:

(m+ 1)U(k, h,m+ 1) +

2
k∑

r=0

h∑
s=0

m∑
p=0

(k − r + 1)U(r, h− s,m− p)

U(k − r + 1, s, p) +
3

4

k∑
r=0

h∑
s=0

m∑
p=0

(r + 1)

U(r + 1, h− s,m− p)(k − r + 1)(k − r + 2)

U(k − r + 2, s, p) +
1

4

k∑
r=0

h∑
s=0

m∑
p=0

U(r, h− s,m− p)

(k − r + 1)(k − r + 2)(k − r + 3)U(k − r + 3, s, p) +

1

2

k∑
r=0

h∑
s=0

m∑
p=0

(h− s+ 1)U(r, h− s+ 1,m− p)(s+ 1)

(k − r + 1)U(k − r + 1, s+ 1, p) +

1

4

k∑
r=0

h∑
s=0

m∑
p=0

(r + 1)U(r + 1, h− s,m− p)

(s+ 1)(s+ 2)U(k − r, s+ 2, p) +

1

4

k∑
r=0

h∑
s=0

m∑
p=0

U(r, h− s,m− p)(k − r + 1)(s+ 1)
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(s+ 2)U(k − r + 1, s+ 2, p) = 0, (17)

and

U(k, h, 0) =

−2

3
λ δ(k)δ(h) − 1

3

(−1)k(−1)h

k!h!
λ− 1

3

1

k!h!
λ. (18)

Substituting Eq. (18) into Eq. (17) and by a recursive
method, the results are listed as follows:

If k + h+m=odd, U(k, h,m) = 0,

Otherwise

U(0, 0, 0) = −4λ

3
, U(2, 0, 0) = −λ

3
, U(1, 1, 0) = −2λ

3
,

U(0, 2, 0) = −λ
3
, U(2, 2, 0) = −λ

6
, ...

U(1, 0, 1) =
2λ2

3
, U(0, 1, 1) =

2λ2

3
, U(2, 1, 1) =

λ2

3
,

U(1, 2, 1) =
λ2

3
, ...

U(0, 0, 2) = −λ
3

3
, U(2, 0, 2) = −λ

3

6
, U(1, 1, 2) = −λ

3

3
,

U(0, 2, 2) = −λ
3

6
, U(2, 2, 2) = −λ

3

12
, ...

Consequently substituting all U(k, h,m) into Eq. (9) we
achieve the closed form series solution as

u(x, y, t) =

∞∑
k=0

∞∑
h=0

∞∑
m=0

U(k, h,m)xkyhtm = −4

3
λ cosh2(

1

2
(x+ y − λt)),

which is the exact solution of the problem.

Example 3.3: Consider the ZK(3, 3, 3) equation in the
following form:

ut − (u3)x + 2(u3)xxx + 2(u3)yyx = 0, (19)

subject to the initial condition:

u(x, y, 0) =

√
3λ

2
Sinh

[
1

6
(x+ y)

]
, (20)

where λ is an arbitrary constant.

Utilizing the DTM, we attain

(m+ 1)U(k, h,m+ 1) +

3
k∑

r=0

k−r∑
t=0

h∑
s=0

h−s∑
p=0

m∑
q=0

m−q∑
n=0

(k − r − t+ 1)

U(r, h− s− p,m− q − n)U(t, s, q)

U(k − r − t+ 1, p, n) −

12

k∑
r=0

k−r∑
t=0

h∑
s=0

h−s∑
p=0

m∑
q=0

m−q∑
n=0

(r + 1)

U(r + 1, h− s− p,m− q − n)(t+ 1)U(t+ 1, s, q)

(k − r − t+ 1)U(k − r − t+ 1, p, n) −

36
k∑

r=0

k−r∑
t=0

h∑
s=0

h−s∑
p=0

m∑
q=0

m−q∑
n=0

U(r, h− s− p,m− q − n)

(t+ 1)U(t+ 1, s, q)(k − r − t+ 2)(k − r − t+ 1)

U(k − r − t+ 2, p, n) −

6

k∑
r=0

k−r∑
t=0

h∑
s=0

h−s∑
p=0

m∑
q=0

m−q∑
n=0

U(r, h− s− p,m− q − n)U(t, s, q)

(k − r − t+ 3)(k − r − t+ 2)(k − r − t+ 1)

U(k − r − t+ 3, p, n) − 12
k∑

r=0

k−r∑
t=0

h∑
s=0

h−s∑
p=0

m∑
q=0

m−q∑
n=0

(r + 1)

U(r + 1, h− s− p,m− q − n)(s+ 1)U(t, s+ 1, q)(p+ 1)

U(k − r − t, p+ 1, n) −

24
k∑

r=0

k−r∑
t=0

h∑
s=0

h−s∑
p=0

m∑
q=0

m−q∑
n=0

U(r, h− s− p,m− q − n)(s+ 1)

U(t, s+ 1, q)(k − r − t+ 1)(p+ 1)

U(k − r − t+ 1, p+ 1, n) −

12

k∑
r=0

k−r∑
t=0

h∑
s=0

h−s∑
p=0

m∑
q=0

m−q∑
n=0

U(r, h− s− p,m− q − n)

(t+ 1)U(t+ 1, s, q)(p+ 2)(p+ 1)U(k − r − t, p+ 2, n) −

6
k∑

r=0

k−r∑
t=0

h∑
s=0

h−s∑
p=0

m∑
q=0

m−q∑
n=0

U(r, h− s− p,m− q − n)U(t, s, q)

(p+ 3)(p+ 2)(p+ 1)U(k − r − t, p+ 3, n) = 0, (21)

and

U(k, h, 0) =

−1

2

√
3

2

√
λ

((−1

6

)k (−1

6

)h
k!h!

−
(

1

6

)k ( 1

6

)h
k!h!

)
. (22)

Substituting Eq. (22) into Eq. (21), the results are summa-
rized as follows:

If k + h+m=even, U(k, h,m) = 0,
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Otherwise

U(1, 0, 0) =

√
λ

2
√

6
, U(0, 1, 0) =

√
λ

2
√

6
,

U(2, 1, 0) =

√
λ

144
√

6
, U(1, 2, 0) =

√
λ

144
√

6
, ...

U(0, 0, 1) = − λ
3
2

2
√

6
, U(2, 0, 1) = − λ

3
2

144
√

6
,

U(1, 1, 1) = − λ
3
2

72
√

6
, U(0, 2, 1) = − λ

3
2

144
√

6
,

U(2, 2, 1) = − λ
5
2

144
√

6
, ...

U(1, 0, 2) =
λ

5
2

144
√

6
, U(0, 1, 2) =

λ
5
2

144
√

6
,

U(2, 1, 2) =
λ

5
2

10368
√

6
, U(1, 2, 2) =

λ
5
2

10368
√

6
, ...

Consequently substituting all U(k, h,m) into Eq. (9) and after
some manipulations, we obtain the closed form series solution
as

u(x, y, t) =

√
3λ

2
Sinh

[
1

6
(x+ y − λt)

]
,

which is the exact solution of the problem.
Example 3.4:
Finally, we exam the following ZK(3, 3, 3) equation:

ut − (u3)x + 2(u3)xxx + 2(u3)yyx = 0, (23)

subject to the initial condition:

u(x, y, 0) =

√
−3λ

2
Cosh

[
1

6
(x+ y)

]
, (24)

where λ is an arbitrary constant.
Using the DTM, we have

(m+ 1)U(k, h,m+ 1) +

3
k∑

r=0

k−r∑
t=0

h∑
s=0

h−s∑
p=0

m∑
q=0

m−q∑
n=0

(k − r − t+ 1)

U(r, h− s− p,m− q − n)U(t, s, q)

U(k − r − t+ 1, p, n) −

12
k∑

r=0

k−r∑
t=0

h∑
s=0

h−s∑
p=0

m∑
q=0

m−q∑
n=0

(r + 1)

U(r + 1, h− s− p,m− q − n)(t+ 1)U(t+ 1, s, q)

(k − r − t+ 1)U(k − r − t+ 1, p, n) −

36
k∑

r=0

k−r∑
t=0

h∑
s=0

h−s∑
p=0

m∑
q=0

m−q∑
n=0

U(r, h− s− p,m− q − n)

(t+ 1)U(t+ 1, s, q)(k − r − t+ 2)(k − r − t+ 1)

U(k − r − t+ 2, p, n) −

6

k∑
r=0

k−r∑
t=0

h∑
s=0

h−s∑
p=0

m∑
q=0

m−q∑
n=0

U(r, h− s− p,m− q − n)

U(t, s, q)(k − r − t+ 3)(k − r − t+ 2)(k − r − t+ 1)

U(k − r − t+ 3, p, n) −

12

k∑
r=0

k−r∑
t=0

h∑
s=0

h−s∑
p=0

m∑
q=0

m−q∑
n=0

(r + 1)

U(r + 1, h− s− p,m− q − n)(s+ 1)U(t, s+ 1, q)

(p+ 1)U(k − r − t, p+ 1, n) −

24

k∑
r=0

k−r∑
t=0

h∑
s=0

h−s∑
p=0

m∑
q=0

m−q∑
n=0

U(r, h− s− p,m− q − n)

(s+ 1)U(t, s+ 1, q)(k − r − t+ 1)

(p+ 1)U(k − r − t+ 1, p+ 1, n) −

12

k∑
r=0

k−r∑
t=0

h∑
s=0

h−s∑
p=0

m∑
q=0

m−q∑
n=0

U(r, h− s− p,m− q − n)

(t+ 1)U(t+ 1, s, q)(p+ 2)(p+ 1)

U(k − r − t, p+ 2, n) −

6
k∑

r=0

k−r∑
t=0

h∑
s=0

h−s∑
p=0

m∑
q=0

m−q∑
n=0

U(r, h− s− p,m− q − n)

U(t, s, q)(p+ 3)(p+ 2)(p+ 1)U(k − r − t, p+ 3, n) = 0, (25)

and

U(k, h, 0) =
1

2

√
−3

2
λ

((−1

6

)k (−1

6

)h
k!h!

+

(
1

6

)k ( 1

6

)h
k!h!

)
. (26)

Substituting Eq. (26) into Eq. (25) and by recursive method,
the result is listed as follows: If k+h+m=odd, U(k, h,m) =
0,
Otherwise

U(0, 0, 0) =

√
−3λ

2
, U(2, 0, 0) =

√−λ
24

√
6
,

U(1, 1, 0) = −
√−λ
12

√
6
, U(0, 2, 0) =

√−λ
24

√
6
,

U(2, 2, 0) =

√−λ
1728

√
6
, ...

U(1, 0, 1) =
(−λ)3/2

12
√

6
, U(0, 1, 1) =

(−λ)3/2

12
√

6
,

U(2, 1, 1) =
(−λ)3/2

864
√

6
, U(1, 2, 1) =

(−λ)3/2

864
√

6
, ...

U(0, 0, 2) =
(−λ)5/2

24
√

6
, U(2, 0, 2) =

(−λ)5/2

1728
√

6
,

U(1, 1, 2) =
(−λ)5/2

864
√

6
, U(0, 2, 2) =

(−λ)5/2

1728
√

6
,

U(2, 2, 2) =
(−λ)5/2

124416
√

6
, ...

Consequently substituting all U(k, h,m) into Eq. (9) and after
some manipulations, we obtain the closed form series solution
as

u(x, y, t) =

√
−3λ

2
Cosh

[
1

6
(x+ y − λt)

]
,

which is the exact solution of the problem.
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IV. PROOF OF SOLUTION

A Mathematica program is given as an example to verify
that u(x, y, t) solutions of the Eq. (1), is as follows:

If a = 1 then

u =

(
2λn

a(n+ 1)
Sin

[
1

2

√
a

b+ c

(
n− 1

n

)
(x+ y − λt)

]2) 1
n−1

,

Simplify[D[u, t] −D
[
u3, x

]
+ 2 D

[
u3, {y, 2}, {x, 1}]+

2 D
[
u3, {x, 3}]].

If a = −1 then

u =

(
2λn

a(n+ 1)
Sinh

[
1

2

√
a

b+ c

(
n− 1

n

)
(x+ y − λt)

]2) 1
n−1

,

Simplify[D[u, t] −D
[
u3, x

]
+ 2 D

[
u3, {y, 2}, {x, 1}]+

2 D
[
u3, {x, 3}]].

V. CONCLUSION

In this work, we have successfully developed DTM to
obtain an approximation to the solution of the Zakharov
equation. It is apparent that this method is a very influential
and efficient technique. There is no need for linearization or
perturbations; large computational work and round-off errors
are avoided. The results obtained demonstrate the reliability of
the algorithm and its applicability to some partial differential
equations. It provides more realistic series solutions that
converge very rapidly in real physical problems. It may be also
concluded that DTM is very powerful and reliable in finding
analytical as well as numerical solutions for wide classes of
nonlinear differential equations.
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