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Analytical Modeling of Globular Protein-Ferritin in
a-Helical Conformation: A White Noise Functional
Approach
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Abstract—This study presents a conformational model of the
helical structures of globular protein particularly ferritin in the
framework of white noise path integral formulation by using
Associated Legendre functions, Bessel and convolution of Bessel and
trigonometric functions as modulating functions. The model
incorporates chirality features of proteins and their helix-turn-helix
sequence structural motif.
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1. INTRODUCTION

DERSTANDING the dynamics, simulation and
prediction of protein structure is of great interest in
various fields ranging from bioinformatics to thermal
chemistry for proteins are able to perform their functions by
coiling their amino acid sequences into specific three-
dimensional structure known as protein folding [1], [2]. Also,
functional properties of proteins depend upon their folded
conformations. Driven by experimental results that protein
molecules demonstrate Brownian motion, the overwinding of
DNA strands when stretched by forces as well as the chirality
features of proteins and their helix-turn-helix structure, an
analytical stochastic model of biopolymer conformations was
developed and investigated successfully through the context of
white noise analysis [3]-[6]. An interesting feature of this
model is the modulating function f(s), also known as the

drift coefficient, where 0 <s <L (L being the length of the
polymer), which contains information in the linear sequence of
monomers in the biopolymer being considered. In this report,
we used the Bessel and associated Legendre functions as
modulating functions f(s) which best describes Ferritin

molecule in terms of chirality and helical structures.

II. BROWNIAN MOTION MODEL FOR BIOPOLYMERS

One of the features of biopolymers is its specific three-
dimensional shapes or tertiary structure. For the case of
protein molecule, the sequence of amino acids which make up
its linear structure dictates the manner in which a polypeptide
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folds. To guide us in constructing an analytical model of
biopolymers, it is important to consider previous experiments
involving biopolymer’s behavior in random-walk path
representing polymer conformations.

In this section, we shall briefly review the work of C. C.
Bernido et al. [3], [9]-[11] on particle entanglement. Consider
a biomolecular chain of monomers of length L, winding
around a second straight molecular chain taken to be oriented
along the z-axis. Here L is taken to be the length of the
winding molecule composed of N number of monomers, each

of length |, such that L =NI. Each monomer is allowed to
rotate like a freely hinged rod and in discussing helical
structures, it is convenient to employ circular cylindrical
coordinates, that is r = (r,4z). Taking the intersection of the
straight polymer with the plane at the origin, we can now view
the entangled polymer on the plane as a two-dimensional
random walk consisting of N steps each of length |. By this,
we can examine the various configurations of the random walk
on the plane having endpoints ry and ri. The radius I being
fixed, r=R since the interest is on the number of polymer’s
windings around the origin, where 3is taken to track the
number of turns. By this, we can take the solutions of the
Fokker-Planck equation, whose probability function is given
by;

P(9.9,)=[ex L ) L[R[d—g)—i A(S)Tds}D[Rds] )

L ds) 2D

where Dis a constant diffusion coefficient and A(S) is a

length-dependent drift coefficient that is,

A(S) = f(S)WhereO <s<L.

III.  WINDING PROBABILITIES
Note that for a very long polymer chain on the X — Y, that

is L = NI that winds N — times around the Z — axis, forming a
helical configuration, the winding probability is given by [3]-
[6].

W(n,L)=
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where

Ris the radius of the helix and L=NI. The
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As an application, consider ferritin [16], a globular protein

function f(s) is the drift coefficient that simulates the
biochemical information encoded in the amino acids that make
the polypeptide chain and Dis a diffusion coefficient.
Designating conventions for the handedness or chirality
features for biopolymers [3], [6] and [12], a biopolymer that
winds counterclockwise (n > 0) is a left-handed polymer and
right-handed for biopolymer which winds clockwise (n<0).
Handedness or chirality of the biopolymers has a significant
effect in obtaining the winding probability, W(n, L), This
winding probability function is used to model features of
biopolymers not only the chirality, but also the overwinding
when stretched and the helix-turn-helix motif. When the
modulating function is zero, the winding probability is
independent of the biopolymer’s chirality or handedness.

IV. MODULATING FUNCTIONS FOR HELICAL CONFORMATIONS

The drift coefficient f(s) accounts for the constant

interaction between the monomers in the polypeptide chain
with its aqueous environment. It can also be noted from that
for different forms of f(s)as modulating function leads to

different forms of winding probabilityW(n, L) which in turns
out to describe a specific winding conformation. In this report,
we expand the work of Aringa, H. P. et al., [6], [13] to include
the convolution of Bessel and trigonometric functions as drift
coefficients.

A. Convolution of the Bessel and Trigonometric Functions

Consider a convolution of the Bessel and trigonometric
function of the form

-J e sin(vs)cos(vs) 3)

2

[3,(vs)+ J,(vs)+ I (vs)+ I, (vs)
f(s)=k

After thorough manipulation of this modulating function,
the corresponding winding probability equation is given by

i J[0]+
w(nL)= " xep) &) anee K Lg1af2) oy
_ZC(\/I)_‘_W
4

4)
where
J[o]=1-3,(vL)
I)=1-3,(vL)-23,(vL) 5)
3[2] =13 (vL)=2{3, (vi) - 3, (vL)}
J [3] :1_JO(VL)_z{‘]z(VL)_‘]4(VL)_Js(VL)}’

and 2C(M ) is the Fresnel cosine integral.

complex consisting of protein subunits and is the primary
intracellular iron-storage protein in both prokaryotes and
eukaryotes keeping iron in a soluble and non-toxic form.
Ferritin is consists of 183 residues in which 68% is helical
forming 6 helices, which would be about 35 turns.

Using the data for proteins [14] where the radius of the
helix ~ R=025nm  1=0.15m  n=-35tUrns, the

corresponding W(n, L) versus L graph is shown in Fig. 1.

The result shows 6 major peaks which conforms to the 6
helices of the ferritin’s helix-turn-helix motif. It could be
noticed that initially, there is a zero winding probability which
signifies a non-helix structure followed by a winding shown in
the curve that signifies a helix structure. In between the peaks
are flat regions corresponding to zero winding probability,
W(n, L) =0, regions in which windings or helical formations

are inhibited. When one obtains the W(n, L) versus L graph
for left-handed polymer, that is, for N> 0,a graph of
W(nL)=0 yields for the same range of L which is interpreted

as chiral symmetry is broken.
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Fig. 1 w(n,L) versus L for v=1.27 nm’! and k/D =303.5 nm’!

B. Associated Legendre Functions
Consider  the  drift coefficient of the form
f(s)=kP" cos(vs), where P"cos(vs) is the Associated

Legendre polynomials. The recurrence relations are generated
using the relation given by [15]:

=) SR04 @

with m > 0 and p (x)are the Legendre functions.
Given with the coefficient for the Associated Legendre
polynomials, | =1andm = 0, the drift coefficient now is of

the form f(s)=kP’ =kcos(/s) and after evaluation of this
function and inserting to (2) and supplying the data for
proteins where, R=0.25nm, | =0.15nm, n=-35tUrNs gives

the resulting graph as shown in Fig. 2 where 6 helices are
exhibited.
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Fig. 2 w (n,L) versus L forv=1.34 nm’' and k/D =1843 nm™!

If we consider |=2and M=2, the modulating function is of
the form f(s)=kP’ =3ksin@/s)cos¢s), and manipulation by
inserting this to the winding probability equation given in (2),
the corresponding graph is shown in Fig. 3 which conforms to

some features of the globular protein-ferritin since 6 peaks
were generated.
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Fig. 3 w (n,L) versus L forv=0.79 nm™ and k/D =383 nm’!

The above application of modulating functions namely:
Associated Legendre functions and convolution of Bessel and
trigonometric functions to the Winding Probability function
mimics some of the features of the globular protein-ferritin
molecule, its helix-turn-helix sequence as well as its chirality
or handedness. In addition, an appropriate choice of drift
coefficient could reproduce secondary structures of proteins
which mainly consist of & -helices. It is further noted that the
choice of drift coefficient or modulating function which
resembles the studied functions is the non-periodic oscillatory
behavior of the aforementioned functions applied in this study.
However, the present mathematical formulation and
representation of a polymer is based on a probabilistic theory
and its results should be viewed in this context. Physically, for
instance, the maximum number of winding is constrained by
the total length L of the biopolymer [7]. Two proteins can
have an identical three-dimensional structure even if only
around 30% of their amino acid residues are identical [8].

As shown, in the application of the modulating functions to
ferritin, it is interesting to note that if one graphs the winding

probability w(nL) versus L,one obtains for N> 0,w(nL)=0,
everywhere in the region for the same number of windings,
values of the constants and range of L, which implies broken

chiral symmetry. In these cases, right-handed biopolymers
with & -helical secondary structures are favored.

V. CONCLUSION

In this paper, we have reported another way of handling the
length-dependent drift coefficient f(S), which serves as a
modulating function of the model in the context of the white
noise path integral formulation. We have expressed in
particular, f(S) in terms of the Associated Legendre functions
and convolution of Bessel and trigonometric functions. The
resulting winding probability V\(n,l_) can be used to model

globular proteins in an ¢ -helical conformation. The specific
protein, the ferritin is studied where some of the interesting
features like its helix-turn-helix motif and chirality are
employed. An extension of this work would be a more
systematic use of available and existing data which could
employ the form of the drift coefficient that encodes amino
acid-solvent interactions for the many proteins whose main
chains have « -helical secondary structures. The choice of the
drift coefficient could also assess the physical features of the
proteins in an & -helical conformation.
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