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Abstract—In this paper, we present an analytical analysis of the 
representation of images as the magnitudes of their transform with 
the discrete wavelets. Such a representation plays as a model for 
complex cells in the early stage of visual processing and of high 
technical usefulness for image understanding, because it makes the 
representation insensitive to small local shifts. We found that if the 
signals are band limited and of zero mean, then reconstruction from 
the magnitudes is unique up to the sign for almost all signals. We 
also present an iterative reconstruction algorithm which yields very 
good reconstruction up to the sign minor numerical errors in the very 
low frequencies. 

Keywords—Wavelets, Image processing signal processing, 
Image reconstruction 

I. INTRODUCTION

HE early stage of processing of visual stimuli in the     
cortex is constituted by simple and complex cells in V1. 

Simple cell responses are modeled to considerable accuracy 
by linear convolution with Gabor functions [5,1]. Pairs of 
cells differing in phase by 90 degrees are frequently found [6]. 
Complex cells differ from simple cells by showing less 
specificity concerning the position of the stimulus. Their 
responses are well modeled by the magnitudes of the Gabor 
filter responses. Although the properties of these cells are 
more complicated, especially concerning temporal behavior, 
this functional description remains a good approximation to 
the cell responses.

We focus here on Gabor functions as an adjustable 
compromise between pixel representation and Fourier 
components. They seem to be implemented in the first stages 
of processing in the visual cortex of higher vertebrates, as the 
receptive fields of the so called simple cells can be described 
to some accuracy as Gabor functions [5,1]. There is also 
evidence that the magnitudes of Gabor filter responses are 
calculated by another set of cells called complex cells [7]. 

The simplest model for these findings is that simple cell 
responses are calculated from the image intensities by a feed-
forward neural net, and that complex cells build on their 
information by another feed-forward net. The complex cells, 
in turn, can be combined to more complicated feature 
detectors such as corner detectors [8]. 
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They have also proven useful for higher image 
understanding tasks such as texture classification [9], 
recognition of faces, vehicles [10], and others. The deeper 
reason for this is that the magnitude operation introduces 
some local shift invariance in the sense that under small shifts 
in the image. The Gabor magnitudes are more robust than full 
complex valued responses, because they are much smoother. 
This robustness is crucial for recognition systems, which have 
to cope with small local deformations. As a practical 
consequence, similarity landscapes between local features are 
smoother if magnitudes are used, which makes matching 
faster and less prone to local maxima [2,11]. If the Gabor 
functions are arranged into a wavelet transform and the 
sampling is dense enough then the original image can be 
recovered from the transform values with arbitrary quality 
(except for DC-value). Given the useful properties of the 
magnitudes of the Gabor transform an important theoretical 
question is how much image information can be recovered 
from that.  

There are many results on the reconstruction of images 
from localized phase [13], and they show convincingly that 
localized phase in more useful than global Fourier phase. 
There seems to be general argument that reconstruction from 
phase is similar than reconstruction from local magnitude. 

In this paper, we present a proof that, given appropriate 
transform parameters and band limitation, no image 
information is lost beside the DC-value of the image and a 
global sign. The proof uses techniques from Hayes and applies 
to all images except a possible subset of measure zero. The 
extension to localized Fourier transforms such as Gabor 
wavelets has not been shown before.  

The practical importance of reconstruction from Gabor 
magnitudes seems quite limited. For the visual system, it is 
clearly not a problem because the simple cell information is 
readily available.  The importance of our results lies on the 
theoretical analysis of the effects of the nonlinearity 
introduced by the magnitudes. We demonstrate that, on the 
one hand, the resulting representation shows invariance under 
small shifts, and on the other hand, not more information is 
lost than by sub-sampling by factor two, the global sign and 
DC value. 

II. GABOR WAVELETS TRANSFORM

For the analysis of signal properties at various scales the 
wavelet transform is in wide use. The signal is projected onto 
a family of wavelet functions, which are derived from a single 
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The mother wavelet (and consequently, all wavelets) must 
satisfy the admissibility condition [3]: 
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Consequently the wavelets must have zero DC-value 
00ˆ  and decay sufficiently quickly for increasing .

This condition, together with implementing the translations of 
wavelets as convolutions means that wavelets are band pass 
functions. 

For modeling biological properties as well as to fulfill 
admissibility, standard Gabor functions are modified by term 
that removes their DC-value, turning the real and imaginary 
part into a strict matched filter pair. We let 
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Consequently its Fourier transform is 
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In these equations the diagonal matrix 
1,1

, DiagS  controls the shape of the elliptical 

Gaussian relative to the wavelength. 

III. SAMPLING 

  In this section, we switch from continuous functions to 
discretely sampled images of  NN  pixels. This lattice is 
denoted by NS  , the sampling interval for images and 

translation space by .  To avoid confusion, we use three 
different symbols for the different Fourier transforms: the 
continuous one (FT) is defined by: 
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the 2-D equivalent of Fourier series is defined by 
2,exp)(
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and the completely discretized and finite version (DFT) is 
given by: 
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For simplification, we also use normalized DFT coordinates 

T

NN
),(

2

2

1

1 after some simplification, the final 

discretization of wavelet families in both spatial and 
frequency domain takes the form 
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And their Fourier transform is given by: 
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Now, the discrete Gabor wavelet transform can be computed 
in either domain by the inner product 
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and the inverse wavelet transform becomes 
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where )(0Y  is regularized for inversion by assigning 

0)(1
0Y  where )(0Y drops below an appropriate 

threshold. The transform constitute a frame for a given image 

class M  if 0)(ˆ0)(: 0 IYMI .

IV. SHIFT INVARIANCE OF GABOR MAGNITUDES

 We now argue that the magnitude of the Gabor wavelet 
transform is less sensitive to shift than the transform itself. 
Generally the amount of shift that can be tolerated by a 
representation is directly related to the frequency content of 
the underlying signal. For signals without band limitation (like 
Gabor-filtered images), the frequency content can be 
measured by the normalized frequency moments introduced 
by Dins Gabor (1946), who called them mean frequencies. 
The first one, 

2

2
2

1

)(ˆ
)(

f

fd
fF                                               (13) 

can be interpreted as the center of signal energy in the 
frequency space. For the Gabor function from equation (5) it 
is easily checked that  11 )( eF  that is, any Gabor 
function is centered at the frequency that appears in the 
exponent of the first Gaussian in equation (3) (due to the 
admissibility correlation, this holds only approximately). For 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:9, 2008

641

non-pathological images, 11 )*( eIF  will also holds, 

and for any real nonzero image, 11 )*( eIF  must be 

different from O . On the other hand, the Fourier transform of  
2*I  is the autocorrelation of ˆ.̂I . Any autocorrelation is 

symmetric around the origin, and therefore oIF )*(1 .
This argument shows that the magnitudes consist of lower 
frequencies and consequently show slower variation than the 
Gabor bands themselves. It can be looking at the second 
moment, the variance in frequency domain as well. 

V.   RECONSTRUCTIONF ROM FOURIER     
MAGNITUDES 

Due to their translation invariance, Fourier magnitudes have 
been used for pattern recognition [13]. The fact that the 
inverse DFT applied to modified transform with all 
magnitudes set to 1 and original phases preserves essential 
image properties [12] is frequently interpreted as saying that 
the Fourier magnitudes contain "less" image information than 
the phase. However, analytical results and existing phase 
retrieval algorithms provide hints the situation is not as 
simple. [14] show that the assumption of the global Fourier 
amplitude being irrelevant for the image contents is too simple 
although the amplitude spectrum averaged over orientations 
does not vary too much for natural images. 

The possibility of reconstructing recognizable image from 
phase or amplitude information alone is not a contradiction to 
the above results. It only shows that it is very hard to trace the 
image information in the presence of the simplest of 
nonlinearities. 

In the following we state some facts from [15,16] that show 
that almost all images can be reconstructed from their Fourier 
magnitude. The argument identifies unique reconstructability 
with the reducibility of a polynomial in D variables, where D 
is the signal dimension.  

Fig. 1 In the top row is the original image. In the second row the 
original image was Fourier transformed, then split into the magnitude 
(left) and phase (right), and in the third row, the inverse Fourier 
transform of an arbitrarily chosen phase and the magnitude (left) and 
the opposite case in (right) are displayed respectively. 

A. Polynomials in One or More Dimensions 
The set ),( DnP of all polynomials with complex 

coefficients and total degree n in D variables is a vector over 
C  of dimension ),( Dn . In the case 1D , all  
polynomials are reducible according to the fundamental 
theorem of algebra, that is, they can be factored into 
polynomials of lower degree for polynomials in two or more 
variables the situation is different the following is modified 
version from a theorem from [16] and shows that in certain 
sense, reducible polynomials are very uncommon in more than 
one variable. 

  Theorem [1] 
 The subset of polynomials in ),( DnP  that are reducible 

over the complex numbers corresponds to a set of measure 
zero in ),(2 DnR provided 1D  and 1n  in the following 
sections we will make, full use of this result for two 
dimension signal processing the idea is that only images on a 
finite support are taken onto account and that the many wrong 
phase function lead to reconstructed images with non 
vanishing values outside this support. Throughout this paper 
we mean by a support of a function of two variables the 
smallest rectangle with edges parallel to the coordinate axis 
which contains all nonzero pixels. This should probably be a 
different name, but we don't expect any confusion by this 
simple terminology. 

B. Hayes Theorem and Extensions 
Hayes's theorem identifies the 2D z-transform, 
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and the 2D discrete space Fourier transform on a compact 
space support, with polynomials in two variables, to which 
theorem 1 applies. 
Theorem [2] 

 Let  2,1 II  be 2D real sequences support NS  and let  a 

set of  distinct points in 2,  arranged on a 

lattice )(L  with  )12,12( 21 NN . If )(ˆ zI  has 
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at most one irreducible nonsymmetrical factor and  

)()(ˆ)(ˆ
21 LII                                         (15)

Then

)1(),(),1(),()(ˆ
22221 nNInInNInInI         (16) 

Theorem 2 states that DSFT magnitudes only reconstruction 
yields either the original, or a negated, point reflected, or a 
negated point reflected version of the input signal. Together 
with the statement of theorem 1 that the set of all reducible 

polynomials )(ˆ zI  is of measure zero, the technicality about 
the irreducible nonsymmetric factors can be omitted, and we 
generalize theorem 2 to complex-valued sequences as follows 
Theorem [3] 
   Let  2,1 II  be complex sequences defined on the complex 

support NS  and let  )(1̂I and )(ˆ
2I be only trivially 

reducible and 

)()(ˆ)(ˆ
21 LII                                    (17) 

With )(L , as in theorem 2. Then 

2,0),1()exp(),()exp()( *
21 nNIjnIjnI      (18) 

VI.  EXTENSION TO GABOR MAGNITUDE 

Theorem 3 is a theorem about arbitrary polynomials; it can 
be applied equally well to magnitudes of a complex spatial 
image signal for reconstruction of the discrete Fourier 
transform. 

Theorem [4] 
 Let ),( 21 NN  be the space of all zero-mean band-limited 

functions on NS  such that 0)(Î  for 
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 and 0)0(Î  and let the wavelet 

family )(
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n
lmn constitute a frame in ),( 21 NN

For all ),(, 2121 NNII   such that 
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it follows that 
)()( 21 nInI                                                            (20) 

Proof 
 From Plancherel's theorem, ),,( 01 lmn is a polynomial: 
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1I  and 2I  are defined on  NS  and their Gabor wavelet 

transforms are only trivially reducible polynomials in each 
sub-band ),( lm . For the frequency support argument, we 

shift the DFT frequency box so that  0  is located in the 

middle of it. Then the support of both 1I  and 2I becomes 
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 Since the images are real 1K and 2K must be odd 

numbers, and the support is symmetrical around o .

Furthermore, we define ),,(ˆ lms and  as restricted of  

),,(ˆ lms  and )(Î  on K

From the condition of the theorem, 
12,12 2211 KNKN
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That is, both Gabor transforms must be equal up to a phase 
and a possible point reflection, both of which may be depend 
on the sub-band. In the following steps, we remove the 
ambiguities exploiting known inter and intra sub-band 
structure in frequency domain. First we show that the 
magnitudes must be equal and the point reflected case cannot 
happen. Suppose 

),,(ˆ),,(ˆ *
12 lmlm ss                                       (23) 

or equivalently, 
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We pick a  0 , such that 0)(ˆ
1
s and such that the 

angle between 0  and the kernel's center frequency is 

less than  
2

. It can be concluded 

)(ˆ)( 0,,00,,0 lmlm                                         (25) 

Now, if we substitute  into equation 24, then 

equation 25 can be satisfied only if )(ˆ)(ˆ
0102

ss

while substituting  into equation 24 makes 

)(ˆ)(ˆ
0102

ss necessary. This is a contradiction. 

Second, we consider the Fourier phase in each sub-band: 

),,(ˆarg),(),,(ˆarg 12 lmlmlm ss               (26) 
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Because the phases of Gabor functions are equal for both 
images, it follows that 

),,(ˆarg),(),,(ˆarg 12 lmlmlm ss               (27) 
except at the points where the Gabor function itself is zero, 

which are the grid points on the axis through 0  with the 

angle )
2

(2 Ll
L

.Applying equation 27 to a 0 and 0

outside that axis and the zeros of s
2

ˆ  yields, together with the 
fact that images are real 

),(0),( lmlm                                          (28) 

Choosing any two combinations of lm,  there is always 
some points that lies on neither the exceptional axes and 
where the images is nonzero. Thus, ),( lm  must be equal 
for those two levels, and consequently for all. This means that 
all sub-bands have the correct Fourier phase, or the phase 
function of all sub-bands has offset by , and we conclude 
that 

)(ˆ)(ˆ
12
ss                                                           (29) 

From the band limitation in the conditions of the 

theorem, 1
ˆ  and 2

ˆ  are zero outside K

and therefore equation 29 also holds for them. Finally the 
inverse DFT yields 

)()( 12 nInI                                                            (30) 
which concludes the proof of the theorem. 

VII.     RESULTS 
    In this section we explore the possibility of constructing a 
Gabor retrieval algorithm using the techniques from the proof 
of Theorem 4. We have interchanged spatial and frequency 
domain for the application of Hayes's Theorems, and the same 
can be done in the phase-retrieval algorithm. Then point 
reflections have been corrected with complex conjugation and 
the additive constant phase in each sub-band's frequency 
domain. The main problem in doing so is to make sure that the 
support covers all legal frequencies. The Gabor functions have 
no hard frequency bound, and the nonlinearity might 
introduce high frequencies in an unpredictable way. 
Reconstruction results 2 computed by the Gabor Retrieval 
algorithm. upper row: Original image, and in the bottom row 
result of the reconstruction after ten iterations from real, 
imaginary and absolute value respectively. 

 We have remarked that Gabor phase retrieval is a 
computational gamble, especially given the lack of 
convergence assertion even for the Fourier phase retrieval 
[17]. Furthermore, a complete Fourier phase retrieval for each 
sub-band is computationally expensive and provides poor 
results because the frequency images are not smooth enough 
see 1. So we decided to update the entire set of sub-band 
images by a support correction and after that to project these 
onto the range of the frame operator in order to get a legal 

Gabor wavelet transform. The extracted spatial phase 
functions are combined with the known space magnitudes in 
the next iteration. The support correction can be implemented 
by either of the following methods:  

1. Cutting of the sub-band frequency images at the 
frequency limit of the original image; 

2. Attenuate the frequencies above the frequency limit; 
3. cutting out frequency circles containing the energy 

cluster at  the expected location (For these 
experiments circular Gabor kernels have been used). 

Fig. 2 In the top row is the original image. In the second row left 
reconstructed image after their real part, middle the reconstructed 
image from its imaginary part, and in the right the reconstructed 
image from their wavelet absolute value is displayed after 75 
iterations

VIII.CONCLUSION

We have shown that almost all images can be recovered 
from their Gabor magnitudes. As natural images, which are 
the only interesting ones for computer vision, constitute only a 
tiny subset of all functions with compact support, it is 
theoretically possible that many of them fall into the subset of 
images whose reconstruction is not unique, which we will call 
ambiguous. Although possible, this appears highly unlikely, 
because slight modifications of natural images still yield 
natural images. However, neither the set of natural images nor 
the precise form of the set of ambiguous images is known. 
The latter can not be uncovered with the simple 
dimensionality argument used in this paper and definitely 
requires further research. Furthermore, it is unclear how much 
the different reconstructions of ambiguous Gabor magnitudes 
will differ. If there should be two images with definitely 
different contents but nevertheless identical Gabor 
magnitudes, this would make the method problematic for 
image understanding. We have shown that this is very 
unlikely, but still have no absolute proof that it cannot happen. 
For further evidence, we have implemented a numerical 
algorithm for Gabor phase retrieval, which is based on the 
ideas of the proof. In the cases we tested, we could always 
recover a recognizable version of the image. A different 
reconstruction algorithm [4] uses gradient descent and also 
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yields very good results. Because Fourier phase retrieval 
algorithms cannot be proved to converge neither can ours. 
More detailed questions about, e.g., the sampling rate for 
numerically robust phase retrieval, remain open. 

Our theorem suggests that twice the sampling rate is needed 
in each dimension for reconstruction from magnitudes only 
than for reconstruction from the full transform. As a simple 
rule of thumb, this looks very plausible in neuronal terms, if 
one considers a single complex number to be represented by 
four positive real numbers (because cell activities cannot be 
negative). Thus, four simple cells, which code for the linear 
wavelet coefficient, must be replaced by four complex cells at 
slightly different positions in order to convey the same 
information. However, it may still be suspected that a higher 
rate is necessary for numerical stability. 

Finally, an efficient algorithm will probably not rely on 
separate phase retrieval for each of the many Gabor kernels 
contained in a frame but exploit the overlap (in frequency as 
well as in image space) of those kernels. 
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